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Problem 1      :
If A <m B and B is a regular language, does it imply that A is a regular language? 

NO.

To explain this, we first will clarify what mapping reducibility means:

A mapping reduction A <m B provides a way to convert questions about membership testing in A to membership testing in B.  Then, if we are able to reduce problem A to problem B by using a mapping reducibility, this means that a computable function exists that converts instances of problem A to instances of problem B.  

Definition 5.12 from Sipser tells us that a computable function is a function f: E* ->E* if some TM, on every input w, halts with just f(w) on its tape.

Then a language A is mapping reducible to language B if there is a computable function f: E* ->E* , where for every w, 


w (A ( f(w) ( B

Since  f is a mapping reduction A -> B , then it is also a mapping reduction A-complement -> B-complement.  

What this means is that for every string in language A there is a mapping to a string in language B and for every string in language A-complement there is a mapping to a string in language B-complement.

So, we are going to start with a language A and construct a computable function f, which maps elements w ( A to elements w ( B.  The function f will also map elements w ( A to elements w ( B.

To show that B being regular does not imply that A is regular, we will let language A be CF where :

A = {0n1n : n>0}

Then M is a PDA that accepts A. 

M












The most important property of A, for the purposes of this proof, is that it is not regular.

A was proven not to be regular in Example 1.38 Sipser.

Language B is Regular as stated in the problem.

Let B = { b }

Then M’ is a FA that accepts B


M’








We know that B is regular because it is produced by the regular grammer:

G

S -> b

Since grammer G follows all the rules of regular grammers (The left side of al production rules consist of one Variable, the right side of the production rules must be of the form xB there x ( E* and B is one of the grammers variables), it is regular.

Now we will create a TM (called MAP) that computes f:

MAP = “On input w:

1. Simulate PDA M on input w

a. If M accepts w, then 

i. erase the tape 

ii. write b to the tape

iii. halt

b. Else if M rejects w, then 

i. erase the tape

ii. write a to the tape

iii. halt

We can see that a new TM B could pick up the tape where it was left off, and it would accept if there is a b on the tape and reject otherwise (i.e. if there is an a on the tape).  This corresponds exactly to whether or not PDA M would have accepted or rejected w.

Therefore, we have constructed a contradiction to the notion that if B is regular then A is regular. 

Problem 2      

Show that if A is Turing-recognizable and 
 INCLUDEPICTURE "http://www.cs.rpi.edu/~goldberg/01-fall/HW/5-hw-01/img2.gif" \* MERGEFORMATINET 


, then A is decidable. 
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We know from Proposition 40 (Class Notes) and Theorem 5.22 from the Sipsner Book that if B is Turing Recognizable and A <m B then A is Turing Recognizable.

Since we determined that [image: image9.png]A<,
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and it is given that A is Turing-recognizable then [image: image12.png]A<,
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 is also Turing-recognizable based on Theorem 5.22.

Therefore, A-complement is Turing Recognizable.

We know from Theorem 4.16 from the Sipsner Book that a language is decidable if and only if it is both Turing-recognizable and co-Turing recognizable.  

Therefore, since A is both Turing-recognizable and co-Turing recognizable then A is decidable.
Problem 3      

Give an example of an undecidable language R such that [image: image13.png]R<m
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. 
Hint: read the problem 5.10 from the textbook (page 195). 


First of all, From Proposition 38 of the class notes we know that if [image: image14.png]
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We know from Proposition 40 (Class Notes) and Theorem 5.22 from the Sipsner Book that if B is Turing Recognizable and A <m B then A is Turing Recognizable.

Therefore, if R is Turing Recognizable then R_ is Turing Recognizable and if R_ is Turing Recognizable then R is Turing Recognizable.  Thus, if R is Turing-recognizable then it is also co-Turing recognizable.
We know from Theorem 4.16 from the Sipsner Book that a language is decidable if and only if it is both Turing-recognizable and co-Turing recognizable.  

Since we are looking for an undecidable language R, such that [image: image20.png]R<m
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, neither R or Rbar could be Turing Recognizable, otherwise, R would be decidable.

Therefore, we are looking for a language that is not Turing Recognizable.

Lets start with a language that is known to be not Turing Recognizable. 

Lets start with bar-ATM and try to construct R from it.

Atm = {<T,w> : T is a TM that accepts string w.}

barAtm = {<T,w> : T is a TM that does not accept string w.}

Note:  There are other strings in the universe of discourse that do not represent a sensible encodeing of a TM and a string.  These can be neglected by assuming they are rejected before we get to R or they can be thought of as part of barAtm since they certainly are not in Atm (because they are not encodings of TMs with a string where TM accepts w).  Since some of barAtm are not acceptable by a TM, barAtm is not recognizable regardless of what barAtm does with these extra strings.  Therefore, this definition is fine for constructing R.

We know from Corollary 4.17 of the Sipsner Book that bar-ATM is not Turing-recognizable.  We know this because ATM is Turing Recognizable and if barATM  were also Turing Recognizable then ATM would be decidable which violates Theorem 4.9 of the Sipser Book.  

We cannot use (ATM by itself for R because it’s complement ATM is recognizable.

As shown above, if B is Turing Recognizable and A <m B then A is Turing Recognizable thus if  R = ATM (recognizable) then this implies (R ((ATM ) is also, but this is not correct.
So, let us construct two languages that are the complement of each other that are both unrecognizable.  

Let R
=     
{w | w = 0x for some x (    ATM or w = 1y for some y ( (ATM }

Let (R
=  
{w | w = 1x for some x ( (ATM or w = 0y for some y (    ATM }

We know that R is not Turing recognizable because it contains every string in 

1y for some y ( (ATM,   some of which are not recognizable.

We know that (R is not Turing recognizable because it contains every string in 

1x for some x ( (ATM,   some of which are not recognizable.

We can also construct a mapping from R to (R.

This mapping simply flips first character of the string.

If the first character in R is 0, then we map it to the same string except that the first character is 1.  This string is in (R.

If the first character in R is 1, then we map it to the same string except that the first character is 0.  This string is in (R.

By the way, the same mapping also works to map (R back to R.

The mapping TM would work as follows.

MAP = “On input w:

2. If the first character on the tape is a 1, 

a. Write a 0 to the tape

b. Halt

3. If the first character on the tape is a 0

a. Write a 1 to the tape

b. Halt

Problem 4      

Is it true that classes P and NP are closed under operations union, concatenation, and complement? Explain your answers. 




Union

Concatenation

Complement 


P
: 
Yes

Yes  


Yes



NP 
: 
Yes

Yes


No

P
:
Union

The class P is closed under Union (() because for any given languages L1 ( P and L2 ( P, there exists a Turing Machine M’ that decides L1 ( L2 in polynomial time.  

We can prove this by constructing a Turing machine that does so.

Let M1 be a TM that decides L1 in polynomial time and let M2 be a TM that decides L2 in polynomial time.  By definition, languages in the class P are decidable in polynomial time on a deterministic single-tape Turing machine.  Using M1 and M2 we construct M’ as follows:

M’ : On input <w>

1. Simulate M1 on w.

2. If M1 accepts, then accept.

3. Simulate M2 on w.

4. If M2 accepts, then accept.

5. Otherwise, reject.

We have therefore constructed a TM that accepts if M1 or M2 accept.  Thus the resulting language is the union of L1 and L2.  

We can see that M’ runs in polynomial time because it simulates M1 and/or M2 both of which run in polynomial time.  It is possible that M’ runs both M1 and M2, however this running time is still equivalent within a constant (2) and the O(2P) = O(P).  Therefore, P is closed under union.

P
:
Complement

The class P is closed under complement (() because for any given language L ( P , there exists a Turing Machine M’ that decides (L in polynomial time.  

We can prove this by constructing a Turing machine that does so.

Let M be a TM that decides L in polynomial time.  By definition, languages in the class P are decidable in polynomial time on a deterministic single-tape Turing machine.  Using M we construct M’ as follows:

M’ : On input <w>

1. Simulate M on w.

2. If M accepts, then reject.

3. If M rejects, then accept.

We can see that M’ runs in polynomial time because it simulates M which runs in polynomial time.  Therefore, P is closed under complementation.

P
:
Concatenation


The class P is closed under Concatenation (() because for any given languages L1 ( P and L2 ( P, there exists a Turing Machine M’ that decides L1 ( L2 in polynomial time.  

We can prove this by constructing a Turing machine that does so.

Let M1 be a TM that decides L1 in P time and let M2 be a TM that decides L2 in P time.  By definition, languages in the class P are decidable in polynomial time on a deterministic single-tape Turing machine.  Using M1 and M2 we construct M’ as follows:

In order for L1oL2 to reject, the TM must know when all variations of w have been processed.  Therefore, we will construct a TM that deterministically splits the input string w (of length p) into every possible combination of 2 pieces, for example, at point n where w1 consists of the first n characters of w and w2 consists of the last p-n characters of w.  

Then, M1 will be run on w1 and M2 will be run on w2 for each of the possible splittings of w.   TM-(  will accept w iff M1 accepts w1 and M2 accepts w2.  TM-o will reject if each splitting w1,w2 of w were rejected by TM1 and TM2 respectively.  Since the correct splitting of  w into w1-w2 will be accepted by TM-(, then w will be accepted by TM-(.  If one or both of w1 and w2 are rejected by TM1 or TM2 in all possible splittings, then w is rejected by TM-o.  This would mean that w is not comprised of the concatenation of a string from L(TM2) and L(TM2).  Therefore, TM-o decides the language L(TM-o) in P time.

We can also show this algorithmically.

TM-(   : On input <w>

1. for i = 0 to |w|

a. run M1 on the first i characters of w

b. run M2 on characters i+1 to |w| of w

c. if both M1 and M2 accept then TM-( accepts.

2. Otherwise, Reject.

We have therefore constructed a TM-(  that accepts if both M1 and M2 accept one of the splittings.  Thus the resulting language is the concatenation of L1 and L2.  

We can see that M’ runs in P time because it simulates M1 and M2  both of which run in P time. Since this running time is still equivalent within n2 which is polynomial time , then the running time is still P.  Therefore, P is closed under concatonation

NP
:
Union

The class NP is closed under Union (() because for any given languages L1 ( NP and L2 ( NP, there exists a Turing Machine M’ that decides L1 ( L2 in NP time.  

We can prove this by constructing a Turing machine that does so.

Let M1 be a TM that decides L1 in NP time and let M2 be a TM that decides L2 in NP time.  By definition, languages in the class NP are decidable in NP time on a non-deterministic polynomial time Turing machine.  Using M1 and M2 we construct M’ as follows:

M’ : On input <w>

Simulate M1 on w.

1. If M1 accepts, then accept.

2. Simulate M2 on w.

3. If M2 accepts, then accept.

4. Otherwise, reject.

We have therefore constructed a TM that accepts if either M1 or M2 accept.  Thus the resulting language is the union of L1 and L2.  

We can see that M’ runs in NP time because it simulates M1 and/or M2 both of which run in NP time.  It is possible that M’ runs both M1 and M2, however this running time is still equivalent within a constant (2) which is immaterial or the same as NP time.  Therefore, NP is closed under union.

NP
:
Complement

The class NP is not closed under complement (().  We will show this by finding an example that contradicts the notion that NP is closed under (.

HAMPATH

Page 244 Sipser demonstrates the HAMPATH algorithm which decides HAMPATH in non-deterministic polynomial time.  Sipser Theorm 7.17 states that a language is in NP iff it is decided by some non-deterministic polynomial time TM.  Therefore HAMPATH ( NP.

Definition 7.15 Sipser states that NP is the class that have polynomial time verifiers.

(HAMPATH does not have a polynomial time verifier.

This is the case, because, even if we could determine that a graph did not have a Hamiltonian path, we cannot verify its non-existence without using the same exponential time algorithm used to determine its non-existence initially.

We know from Definition 7.15 Sipser, that a verifier uses additional information represented by the symbol c (aka the answer or the accepting branch of the decider).  This extra information is what allows a verifier to run in polynomial time.

However, unlike HAMPATH, (HAMPATH produces no such certificate, c, as proof of w ( (HAMPATH.

Since  (HAMPATH is not polynomial verifiable, it is not in NP.

Therefore HAMPATH and (HAMPATH are not both in NP.

Therefore, we have found and shown and example of a language in NP who’s complement is not in NP.

Therefore, NP is not closed under complementation.

NP
:
Concatenation


The class NP is closed under Concatenation (() because for any given languages L1 ( NP and L2 ( NP, there exists a Turing Machine M’ that decides L1 ( L2 in NP time.  

We can prove this by constructing a Turing machine that does so.

Let M1 be a TM that decides L1 in NP time and let M2 be a TM that decides L2 in NP time.  By definition, languages in the class NP are decidable by a non-deterministic polynomial time Turing machine.  Using M1 and M2 we construct M’ as follows:

In order for L1oL2 to reject, the TM must know when all variations of w have been processed.  Therefore, we will construct a TM that deterministically splits the input string w (of length p) into every possible combination of 2 pieces, for example, at point n where w1 consists of the first n characters of w and w2 consists of the last p-n characters of w.  

Then, TM1 will be run on w1 and TM2 will be run on w2 for each of the possible splittings of w.   TM-(  will accept w iff TM1 accepts w1 and TM2 accepts w2.  TM-o will reject if each splitting w1,w2 of w were rejected by TM1 and TM2 respectively.  Since the correct splitting of  w into w1-w2 will be accepted by TM-(, then w will be accepted by TM-(.  If one or both of w1 and w2 are rejected by TM1 or TM2 in all possible splittings, then w is rejected by TM-o.  This would mean that w is not comprised of the concatenation of a string from L(TM2) and L(TM2).  Therefore, TM-o decides the language L(TM-o).

We know that the number of determinist splittings of w into w1, w2 is linear with respect to the length of w.  That is because there are |w|+1 splittings.   Since the TM1 and TM2 is run on each w1 and w2 respectively in NP time, the total time is NP*(|w|+1) which is still NP time.  Therefore TM-o also runs in NP time.

We can also show this algorithmically.

M’ : On input <w>

1. for i = 0 to |w|

a. simulate M1 on the first i characters of w

b. simulate M2 on characters i+1 to |w| of w

c. if both M1 and M2 accept then M’ accepts.

2. Otherwise, Reject.

We have therefore constructed a TM that accepts if M1 o M2 accepts.  Thus the resulting language is the concatonation of L1 and L2.  

Therefore, NP is closed under concatonation

Problem 5      The primality testing is the problem of determining whether a given number is prime. If the input number are written using the standard binary encoding, no polynomial algorithm for the problem is known. 

Show that if we use the unary encoding rather than binary encoding, then primality testing is solvable in polynomial time. 
_____________________________________________________________________

We will show that primality testing is solvable in polynomial time relative to the length of the string (encoded number) if it is represented in unary code.  

First we will define the language:

UNARY-PRIMES = { 1n : where n is prime}

If the number to be checked is represented in unary representation, then it consists of a sequence of ones equal in length to the number to be tested.

This problem is equivalent to showing that UNARY-PRIMES ( P

This can be accomplished by using the standard mod function for example:

primality test for n:

for i = 2 to n-1,

if RELPRIME(n, i) = 0, reject (is not prime)

next





accept (is prime)

In the above algorithm we test every number from 2 to n-1 to see if n is evenly divisible by it.  If it is, we reject because n is therefore not prime.  If we reach n-1 without rejecting, then we accept (n is determined to be prime).  

The loop of this algorithm runs in linear time relative to the length of its unary representation.  So RELPRIME is run n-2 times.

From Sipser Theorem 7.13 we know that RELPRIME ( P and that the following algorithm runs in polynomial time.

RelPrime =  { < s , t > : s and t are relatively prime integers.} 

TM R: if ( Euclid(a,b) == 1) 

    accept; 

  else reject

procedure Euclid (a,b);  

if (b== 0) 

  return a; 

else   

  return Euclid (b, a mod b); 

We can use RELPRIME to determine if n and i have common devisors.  The very first (or second depending on the order) check is dividing n by i and checking if the remainder = 0.  This does the same as mod directly.  But nicely, we already know that RELPRIME is in p.  RELPRIME also checks if there is a smaller common divisor, but this is redundant to previous iterations.

Therefore, this algorithm runs in polynomial time relative to n and |w| since O(p(O(p))) = O(p).

While this algorithm takes 2^L time where L is the length of the binary input string, it is linear with a unary input string.

This is because for a unary input string, n = L, but for a binary input string, n = 2^L -1 in the worst case.  

Note:  The above algorithm assumes that we can convert a Unary representation to a binary representation in polynomial time.  It is a common assumption in complexity theory that a reasonable encoding is used which can encode and decode in polynomial time.  Relying on that assumtion, the above algorithm runs in polynomial time.  (Despite the fact that Unary representation is not reasonable in terms or storage space.)

Problem 6      

Show that if P = NP, then all languages in P except L = 0 and L = E* are NP-complete. 
______________________________________________________________________

Definition 7.27 Sipser states that:

A language B is NP-complete if it satisfies tow conditions:

1. B is in NP and

2. every A in NP is polynomial time reducible to B.

Let language B be an arbitrary language in P.

Since B ( P, and P =  NP then B ( NP.

This satisfies condition 1.

To satisfy condition 2, we must show that every A in NP is polynomial time reducible to B.  By Definition 7.24 Sipser, we know that Language A is polynomial time mapping reducible (or simply polynomial time reducible) to language B(A<pB) if a polynomial time computable function f: E* -> E* exists, where for every w, 

w  ( A ( f(w) ( B

This function f is called the polynomial time reduction of A to B.

Therefore, for an arbitray language A( NP we must create a mapping M that reduces Language A to B in polynomial time.

To reduce A to B (A<pB) , we will construct a TM that runs a decider for A on a string w  and maps it to a  string in B if w ( A or maps it to a string in (B if w ( A.

Let MA be a decider for A.  Since P = NP, then there is a TM deciding A in polynomial time.  In other words, we know MA exists.

M  =  “On input w

1. Run MA on w

2. IF MA accepts,

a. Erase the tape and 

b. Write the w1 ( B on it.

3. If MA rejects

a. erase the tape 

b. Write w2 ( B to the tape

Using this mapping function, we have satisfied condition 2.

Therefore, B (which represents all languages in P) is NP-complete.

What follows after this mapping is that MB (a decider for B) works on the same tape and accepts if MA accepted (if W1 is on the tape) and rejects if MA rejected (if w2 is on the tape).

In this way, MB decides the problem reduced from A.

MB can be thought  as a running in time P or NP because P = NP.

(Regardlessly, A is reduced in polynomial time before getting to MB.)
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