6.825 - Techniques of Artificial Intelligence
Project 11

Lawrence A. Bush and Daniel M. Roy
{larrybush, droy}@mit.edu

November 4, 2004

Abstract

In this paper, we investigate exact and approximate inference algorithms using three Bayesian graph-
ical models of increasing complexity. Specifically, we calculate the exact values for a set of queries using
variable elimination, and then use these values to judge the relative merits of two approximate inference
algorithms, likelihood weighting and Gibbs sampling. We make this comparison precise by employing
the Kullback-Leibler divergence measure. Finally, we test the efficacy of greedy heuristics for choosing
elimination orders, and compare the relative accuracy of random v. systematic resampling in the Gibbs

sampling algorithm.

Introduction

We implemented the algorithms in both Java and
MATLAB. Beyond the advantage of verifying results,
implementing the code in both languages provided
insight into the relative merits of the two languages
for math intensive programming. Unsurprisingly, the
Java implementation was bloated and riddled with
excessive amounts of support code, while the MAT-
LAB code required virtually none; The first-class sta-
tus of matrices in MATLAB simplified implementa-
tion, and the instantaneous access to plotting and
other graphical and statistical functions made the
MATLAB implementation a breeze. We highly rec-

ommend MATLAB to future classes. e
~r

The Java Implementation: We produced Java
versions of the variable elimination, likelihood weight-
ing and Gibbs sampling algorithms presented in chap-
ters 7-9 of Bayesian Networks and Beyond, a unpub-

lished draft of a book by Daphne Koller and Nir
Friedman. The Java implementation used the pro-
vided base codel.

The primary class in this implementation is Fac-
torSet, which manages a set of conditional probabil-
ity tables, and their respective variables. For exam-
ple, FactorSet includes member functions to store,
multiply and marginalize variables from conditional
probability tables. The class implementation includes
member functions which make query construction
easy and error-free. The Queries class manages the
queries and time trials. The Output class manages
the output of the code into human and machine read-
able formats. For example, time trials are output
to a file in a format readable by a graphics pack-
age. Overall, the Java Implementation provides an
object-oriented package, which lends itself to reuse in
a larger application. However, Java is not the best
tool for experimenting with algorithms.

1BN.jar http://courses.csail.mit.edu/6.825/proj2/new /BN jar

The MATLAB Implementation: We also im-
plemented the aforementioned algorithms in MAT-
LAB. We mimicked the external interface of Kevin
Murphy’s Bayes Net Toolkit? so that we could take
advantage of Ken Shan’s BIF2BNT converter pro-
gram to translate the input files from BIF for-
mat into MATLAB script drivers®. Specifically,
we implemented our own versions of mk_bnet and
tabular_CPD, allowing us to use and query any BNT-
compatible network. However, because the provided
code used a different set of probabilities, we also
wrote code to change the probabilities in the network
to those in the provided code?. Knowing only the
meaning of the input parameters to Murphy’s BNT,
we implemented our own suite of Bayesian inference
tools. The same script files for BNT are runnable
with our toolkit. The MATLAB implementation
proved faster and easier to develop and is much easier
to read and understand. With the added benefit of
immediate access to plotting functionality, MATLAB
was the superior choice and should be recommended
to students in the future.

1 Variable Elimination

To test our implementation of variable elimination,
we verified the implementation return the correct dis-
. . - — 3
tributions for known queries. Three of these queries
were provided in the problem set handout. The re-

sults of these queries appear below®:

P(B|J=t,M=t)
P(E|J =t,B=t)

(0.7158, 0.2842)
{0.9980, 0.0020)

P(PropCost | Age = Adolescent, Antilock = False, Mileage =

FiftyThou)
PropCost Probability
1000 0.4572
10000 0.3427
100000 0.1730
1000000 0.0271

These numbers match those in the handout, and
both implementations agree on the values. See Ap-
pendix B for the variable elimination code and Ap-
pendix B(a) for the code used to generate these re-
sults.

2http://www.ai.mit.edu/ murphyk/Software/BNT/bnt.html
3http: //www.digitas.harvard.edu/ "ken/bif2bnt /

2 Exact Inference

2(a)

We next investigated changing the above queries on
the Insurance network. In particular, we were inter-
ested in the effect of knowing that the insured car
was sporty and the effect of knowing that the insured
driver was a good student. By common sense, the ex-
pected value of PropCost should increase conditioned
on the car being sporty and knowing that the driver
is a good student should result in a cheaper prop-
erty cost. However, the following query results show
that only the former intuition is consistent with the
calculated results:

Insurance

PropCost SportsCar GoodStudent
1000 0.4513 0.4588
10000 0.3459 0.3277
100000 0.1718 0.1837
1000000 0.0309 0.0297

The table above shows the conditional probability
of PropCost, over 4 possible domain values ($1,000,
$10,000, $100,000, $1,000,000).

These queries extend the Insurance query from the
previous section by conditioning on the evidence
MakeModel = SportsCar and GoodStudent = True.

See Appendix C for the code that produced these
query results.

To interpret these changes, we calculated the o
pected value of PropCost for each of the three cases.
Given that the vehicle is a sports car, the expected
value of PropCost increases 7.68% (from $48,284 to
$51,990). The changes caused by knowing that the
vehicle is a sports car are caused by the effect on
CarValue and RiskAversion. We intuitively expect
the PropCost to increase because we expect that a
sports car is more expensive than the average car,
and that a sports car driver is less risk averse than

how !
i
Lath

fo Thdan

I
an average driver. The RiskAversion then affects a WMM

broad array of nodes, including the quality of driving,
all of which contribute to a larger PropCost.

Given that the driver is a good student, the expected
value increases by 7.29% to $51,806. Our intuitive
expectation of the impact of the driver being a good
student is incorrect as it ignores some secondary ef-
fects of knowing that a student is a good student.

4Tomas Izo provided the list of assignments necessary to automate this process
5We will use angle brackets (,) to denote binary distributions where the first element is the probability of false.

? That's
a Choner
b Ja

o

oha

Based on the GoodStudent conditional probability
table, an upper-middle or wealthy adolescent is much
more likely to be a good student than a middle or pro-
letariat adolescent. Therefore, being a good student
increases the probability that one is in the upper-
middle or wealthy socio-economic class. GoodStu-
dent is connected to RiskAversion through SocioEcon
(Age is in the evidence and is, therefore, unaffected
by GoodStudent). Based on the RiskAversion con-
ditional probability table, if an adolescent is upper-
middle class or wealthy, that adolescent is less risk
averse. Therefore, a GoodStudent is actually more
risk prone in this situation. In addition, a wealth-
ier driver is more likely to have a expensive car. To-
gether, these effects contribute to an increase in Prop-
Cost.

2(b) Carpo

We next tested our variable elimination algorithm by
calculating two queries on the Carpo network. The
Carpo network encodes the causal relationships be-
tween diseases and symptoms. This is a “cleansed”
network, meaning that the actual variable names and
domain value names have been renamed to arbitrary
symbols. As such, there is little intuitive understand-
ing of the network, over and above topological obser-
vations.

The following two queries probably represent a pos-
terior probability query of two diseases given a set of
symptoms:

P(N112|N64 = 3, N113 = 1, N116 = 0) = (0.9880, 0.0120)

P(N143|N146 = 1, N116 = 0, N121 = 1) = (0.9000, 0.1000)

We computed the above results using both implemen-
tations. The results from both implementation were
identical within the rounding error of double preci-
sion.

3 Elimination Order

An important question concerning any exact infer-
ence algorithm is its computational complexity. Con-
ditional variable elimination is P#£-hard, which is be-
lieved to be even harder than NP-hard. However,
theoretical complexity and actual complexity in the
field are sometimes uncorrelated. For example, most
random 3SAT problems are “easy” and, therefore, its
NP-complete complexity is less of a problem. In this

section, we looked at the effect of elimination order
on the time complexity of variable elimination. We
conducted a series of 500 experimental runs of vari-
able elimination using random elimination orders for
each query. As such an experiment would be impos-
sible if the algorithms actually calculated and stored
all of the factors, we modified the algorithm to keep
only a running tally of the number of addition and
multiplications executed during the factor computa-
tions. The return value of this variable elimination
algorithm is now the total number of operations. It
is easy to see that this fake implementation can be
implemented in polynomial time, making the above
experiment tractable. Figure 1 contains four his-
tograms, one for each of the four queries of problem
2. See Appendix H for the code used to collect these
results.

F’(FmpCosﬁMakeModel-SpcnaCar) P[PmpCos'l|GoodStudent—true)

40 40
20 20
0 o
4 6 8 10
log, (operations) log, n(opelallms)

P(N112 | N64=3N113=1,N116=0) P(N143 | N146=1,N116=0,N121=1)
60 60

40 40

20 20

0 0
0 15

5 10
Iogl O(nparau'ons) Iog B n(oparanons)

Figure 1: Complexity of Random Elimination Orders

Looking at these graphs, we see a very large dif-
ference in running time between different runs of
each query. Shorter runs require roughly 10 to
10° operations while longer runs take nearly 1012 =
1,000, 000,000,000 operations. Of the two Insur-
ance queries, the SportsCar query seems to be, on
the average, easier, with most of the weight of
the distribution around 10%, while the GoodStu-
dent query is centered around 107. Reading directly
from the graph, a random GoodStudent-conditioned
query is roughly 10 times slower than a MakeModel-
conditioned (SportsCar) query.

It is also interesting to note that the Carpo queries
are much more complex than the Insurance queries
given a random order. The Carpo queries range from

s !

By b7

i

£ atisdy

hundreds of thousands of operations to nearly a tril-
lion operations.

Finally, these distributions could be well modelled as
Gaussian (or perhaps betas, as the distributions are
discrete and bounded). Perhaps a good measure of
the complexity of a network would be the mean and
variance of the distribution of the number of opera-
tions required by variable elimination given random
elimination orders.

We also ran timing results for random orders. As
can be expected by inspecting Figure 1, many of the
timing trials ran out of memory (or if memory was
increased, took to long too run). The aggregate re-
sults appear in the following table and as a histogram
in Appendix I:

SportsCar GoodStudent N112 N143
Time (ms) 769M 903M 865M 903M
Operations 6.5M 6.2M 43M 93M

4 Greedy Elimination Order

Because random elimination orders can result in im-
possibly long run times, a,easy way to generate good
elimination orders is essential. One such method is to
greedily choose the next node to eliminate such that
the resulting factor sizes are minimized. There are
several measures of size. One is simply the number
of factors, another is the size of the scopes of fac-
tors, and yet another is the total size of the domains
(which takes into consideration that domain size of
each node).

We entertained a variety of these, including: factor
scope size, number of multiplications, factor size. Ini-
tially, we tried simply minimizing the scope at each
iteration: fewer variables generally results in fewer
multiplications. However, this method ignores the
sizes of the domains and gave worse results than the
other heuristics. We also tried using the number of
multiplications required to compute the next factor
as a metric. This metric was better on the Carpo
network but worse on the Insurance network. The
reason may be that, in some cases, choosing fewer
multiplications at a particular step resulted in much
larger factors being generated down the road.

We finally settled on choosing the elimination order
with the smallest factor size, using the number of
multiplications as a tie breaker. This metric proved

to be better in all situations. We ran our algorithm
for 50 trials each and reported the mean run times®.
The results of these trials appear as Figure 2. The
first column of each set reflects the baseline greedy
algorithm based on the resulting factor’s scope size.
The second column reflects the multiplication met-
ric. The third column reflects the greedy factor size
metric with the number of multiplications as a tie
breaker.

Time (ms) Per Query
2000 -

] I Factor Size
[Num FLOPS
1500 I Combined
8
5
3 10001
@2
E
500
0 || 7
P(SportsCar|...)P(GoodStudent|...) P(N112]...) P(143]...)
" % x10° Number of Multiplications Per Query
I Factor Size
10} 7] [—_—_INum FLOPS |]
I Combined
w S I
s
® 6
@
Q
o
4
2
0 -
P(SportsCar]...)P(GoodStudent]...) P(N112|...) P(143|...)

Figure 2: Timing/Complexity Results using a Greedy Heuristic
with Variable Elimination in Java

We also implemented the factor-size-based heuristic
in MATLAB. We used the fake implementation from
the previous problem to count the number of oper-
ations required (including those necessary to select
the minimal node to eliminate). The results, which
can be compared to those in Figure 1, appear in the

following graph:
Win wwl'o {LL’ /dd‘

Ceo A

5Because there are ties when considering factor sizes, the run time can be different each time if we choose a random factor

to break the tie.

A, IM470W‘3 L ok,

#W’“

Amdmw

wtaﬂb'?"wy" WMLW A WW flatlat 7

Query Runtimes using Greedy Heuristic

Figure 3: Complexity of Factor-Size Greedy Heuristic

As you can see, these timing results (shown in log
base-10) rank amongst the shorter runs represented
in the bell curves found in Figure 1. Again, the greedy
heuristic works very well, generating efficient elimina-
tion orders in these networks. See Appendix H(a) for
the driver code that generated these results.

5 Approximate Inference

As can be seen from the previous two sections, exact
inference is often expensive, especially when a good
elimination order is not known or cannot be cheaply
generated. Specifically, it is NP-hard”. For the net-
work used in this paper, the complexity was man-
ageable. However, approximate inference is required
for densely connected, large networks, due to their
intractable complexity®. This section and the next
discuss approximate inference methods.

5(a) Likelihood Weighting

The first, likelihood weighting, is a variation of direct
sampling that better integrates the evidence nodes.
Our MATLAB implementation can be found in Ap-
pendix E. The following are the result of performing
the queries from problems 1 and 2 using this algo-

rithm (see Appendix E(a) for the driver code):
P(BlJ=t,M=1) = (0.8644,0.1356)
P(E|J=t,B=1t) = (0.9979,0.0021)

PropCost Original SportsCar GoodStudent
1000 0.4586 0.4409 0.4599
10000 0.3410 0.3518 0.3195
100000 0.1729 0.1779 0.1907
1000000 0.0276 0.0293 0.0299

P(N112|N64 = 3, N113 = 1, N116 = 0) = (0.9893, 0.0107)
P(N143|N146 = 1, N116 = 0, N121 = 1) = (0.9046, 0.0954)
The burglary network queries required 3,000 samples.

The Insurance queries each required 10,000 samples.
Finally, the Carpo queries required 10,000 samples.

Overall, the above results match well with the exact
values determined by the variable elimination algo-
rithm. Interestingly, the first query on the burglary
network is off by a significant amount. However, if
we simply increase the samples to 10,000, the query
converges through the 2nd decimal point.

5(b) Gibbs Sampling

Gibbs sampling is one of several sampling methods
known as Markov Chain Monte Carlo. We imple-
mented a Gibbs sampler (see Appendix F) and ran
the above queries (see Appendix F(a) for the driver
code that generated these results):

P(BlJ=t,M=t) =
P(E|J=t,B=t) =

(0.7150, 0.2850)
(0.9983,0.0017)

PropCost Original SportsCar GoodStudent
1000 0.4417 0.4790 0.5017
10000 0.3343 0.3424 0.3361
100000 0.1946 0.1627 0.1388
1000000 0.0294 0.0259 0.0234

P(N112|N64 = 3,N113 = 1, N116 = 0) = (0.9889, 0.0111)

P(N143|N146 = 1, N116 = 0, N121 = 1) = (0.9069, 0.0931)

The burglary queries required 3,000 samples. The
Insurance and Carpo networks both required 10,000
samples.

The above results match very well with the exact val-
ues determined by the variable elimination algorithm.
One interesting observation is that Gibbs does bet-
ter in the Burglary network with the same number
of samples, which is to be expected given the limita-
tion of likelihood weighting in the face of “late” evi-
dence. On the larger networks, however, Gibbs does
not converge as quickly as likelihood weighting, and
therefore, for similar sample sizes, Gibbs results have
higher divergence. Section 7 makes this comparison
precise by graphing the divergence against the num-
ber of samples for both algorithms on all queries.

"Cooper, G.F. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence

42 (1990), 393-405

8Kevin B. Korb, Ann E. Nicholson, Bayesian Artificial Intelligence, 2004

;o

x10”
2

Number of Burn—In Samples versus Kullback-Leibler Divergence

3000
burnin samples out of 10000 samples

4000 5000

Figure 4: How does burn-in affect Gibbs’ accuracy? These lines represent the KL divergence for every burn-
in setting between 0 and 6,000 out of 10,000 samples for a burglary network query. The thick dashed line
represents the maximum‘&i-;;rgence across all trials, while the dot-dashed line represents the average KL
divergence across all trials. The vertical dashed line is the number of samples corresponding to the minimum
KL divergence of the maximum, while the dot-dashed vertical line is the number of samples that corresponds

with the minimum KL divergence of the average.

This section addresses how the Gibbs sampler burn-in
setting affects the accuracy of the estimate as mea-
sured by the KL divergence metric. To test the affect
of burnin, we conducted the following experiment:
We ran the Gibbs sampler on the first Insurance net-
work query 30 times, with 10,000 samples per run.
Instead of calculating a single distribution, the im-
plementation returns the estimated distribution at
every sample. These incremental distributions were
then compared with the actual distribution using the
Kullback-Leibler divergence measure. This method
produced graphs that relate the divergence versus the
burn-in at the granularity of single samples.

We plotted the divergence versus the number of burn-
in samples (Figure 4). These results suggest that a
burn-in of roughly 800 samples is the best for this
particular query at 10,000 samples. A question arises
as to how these numbers change as the network and
number of samples change. The optimal burn-in cer-
tainly depends on the number of samples. For exam-
ple, 800 burn-in out of 1,000 total samples may leave
too few samples to get an accurate sample count. The
best way to choose the burn-in setting may be to use
10% of the total samples (as suggested by these re-
sults). The burn-in should be the amount of time it

et

. takes the network to “forget” its initial position. Dif-
ferent networks will require different burn-in settings,
therefore this result does not necessarily scale (even
to other queries in the same network). We ran an
identical experiment on the Insurance network and
found that 10% was also a good setting. However,
it was only slightly better than having no burn-in at
all, which undermines the generalization. Ultimately,
burn-in is related to the initial random position, the
network, the query, the evidence and the total num-
ber of samples. We highly suspect that there is no
free lunch when it comes to choosing an optimal burn-
in setting across queries. See Appendix F(b) for the
code that generated these results.

7 Kullback-Leibler Divergence

Assessing approximate inference performance re-
quires a measure of the quality of the estimated dis-
tributions. We used the Kullback-Leibler divergence
metric, comparing the estimated distribution to the
actual distribution computed by variable elimination.

A sampling method is preferred over an exact method
when it computes a sufficiently accurate estimate in
a shorter period of time than does the exact method.
Sampling methods will be preferred, therefore, as the

LW P(PropCost|SportsCar, .) LW P(PropCost|GoodSt,) . LW P(N112].) LW P(N143]..)
45 0. 04
o o7 T 03s
035
06 03
05
03
05 025
g g g £
a a 04 & s 02
8 g2 a [T &
03 0.15
015
02
02 0.1
01
Q.08 01 L 005
00 500 1000 1500 2000 DD 500 1000 1500 2000 00 1000 2000 3000 4000 00 1000 2000 3000 4000
samples samples samples sas
Figure 5: Kullback-Leibler Divergence for Likelihood Weighting
Gibbs P(PropCost|SporsCar,.) s Gibbs P(PropCost|GoodSt,...) Gibbs P(N112]..) Gibbs P(N143]..)
18
2 18
14
15 1.2
g T
[z !
o o
1 08
06
05 04 i M
02 o 'i\!
i k AR, s
0 05 1 15 2 o 05 1 15 2 5000 10000
s %10 samples x10* samples
Figure 6: Kullback-Leibler Divergence for Gibbs Sampling

complexity of the graphical model increases. In the
case of the networks discussed in this paper, our
greedy implementation of variable elimination com-
putes the exact inference extremely fast (between
119 and 1,701 milliseconds). This is equivalent to
approximately 900 likelihood weighting samples or
350 Gibbs samples. Neither sampling algorithm con-
verges this quickly. Therefore the exact method is
preferred and it is not meaningful to compare the
performance of our sampling methods to that of the
exact method. However, we will judge the methods
against each other in order to get an idea of which
method is best for large, dense networks.

Our Gibbs sampler and likelihood weighting imple-
mentations (Java and MATLAB) ran at different rel-

ative speeds. In other words, the time it takes to
do one sample of Gibbs sampling versus one sample
of likelihood weighting is implementation dependent.
For analysis purposes, we will assume that they are
equal and therefore we will treat samples as if they
were a fundamental computational unit. Our anal-
ysis is based on data collected from our MATLAB
implementation.

Preferred Method

The following is an itemization of which sampling
method performed the best on each of the four
queries:

e Insurance Query #1: Likelihood is Preferred

The Gibbs sampler takes a very time (approxi- aAdditional Observations

mately 15,000 samples) to converge to a reason-
able KL divergence value on this query (Fig-
ure 6). One particularly bad run of the first
Insurance query maintained a high KL diver-
gence through the 10,000 sample marker. Like-
lihood weighting, on the other hand, converges
quickly on this query (Figure 5). Likelihood
weighting achieves a KL divergence value of ap-
proximately 0.01, around 1,500 samples.

e Insurance Query #2: Likelihood is Preferred

Likelihood weighting converges to a respectable
KL divergence value in approximately 1,000
samples, on this query (Figure 5). The Gibbs
sampler, on the other hand, does a poor job of
converging.

e Carpo Query #1: Gibbs Preferred

The Gibbs sampler converges to a KL diver-
gence of less than 0.025 very quickly (Figure 6).
Likelihood weighting converges quickly, on this
query, as well, but not as quickly as the Gibbs
sampler (Figure 5). This is probably due to the
fact that all of the evidence variables are at the
lowest level of the network, which hurts the per-
formance of the likelihood weighting method.
Late evidence variables whose values are, in
general, improbable result in low-weight values
and lead to a poor estimation of the probability
distribution.

e Carpo Query #2: Likelihood Preferred

The Gibbs sampler converges on this query
to a KL divergence of 0.02 after 7,000 sam-
ples(Figure 6). However, likelihood weighting
converges to 0.02 with fewer than 1,000 samples
(Figure 5). Likelihood sampling is helped by
the fact that one of the evidence nodes, N146,
has no parents.

Mean Performance

Figure 7, which shows the mean performance of the
algorithms across the four queries, is in line with our
previous observations. One notable observation from
the mean graphs is how the performance of the algo-
rithms vary so greatly. The most significant differ-
ence is how well the Gibbs sampler performs on the
N112 problem, compared to the other problems.

Our complexity analysis of these two algorithms re-
veals that both methods worked well on the Carpo
network, but likelihood weighting clearly worked best
on the Insurance network. The most apparent reason
for Gibbs’ relative failure on the Insurance network is
the networks practical lack of ergodicity despite the
last minute attempts to fix this problem by replacing
zero probabilities with infinitesimal ones.

e Ergodicity

While the Insurance network is ergodic, it is
only ergodic because we forced any zero prob-
abilities to be a very small number. While this
allows the algorithm to converge to a steady
state, it may do so much more slowly, if it finds
itself in certain assignments, particularly those
associated with values of 1071%°, This would
handicap the Gibbs sampling algorithm, since
its sampling method depends on the network
being ergodic relative to the number of sam-
ples. With such small values in the network, the
number of samples required to converge grows
enormously.

e Connectivity

Another issue is connectivity. The Insurance
network is smaller (27 nodes vs. 60 nodes).
However, it is also more connected (49 connec-
tions for 27 nodes, versus 73 connections for 60
nodes). Consequently, the Carpo network has
fewer undirected loops. It is not a poly-tree,
which would allow for very efficient inference,
but it is less connected and has more singly-
connected node pairs.

e Likelihood weighting performance is heavily
problem dependent

We can see that the likelihood weighting con-
verged faster for the N143 Carpo query than it
did for the N112 Carpo query. As noted above,
all of the evidence variables in the N112 query
are at the lowest level. This may also be in-
fluenced by the fact that N112’s only parent
(N73) rarely has a value of true, therefore, like-
lihood weighting continually generates samples
with low weight. N143, on the other hand, is
a root node and therefore does not have this
issue.

Mean Di of Likeli

Mean Di

g

ghting

of Gibbs Sampling

0.08
“e——— ar
0.07f - - -N112
- N143
006
005
§ 004
003
A

divergence

025

Figure 7: Mean KL Divergence of Likelihood Weighting and Gibbs Sampling

e The "SportsCar” Problem

An interesting observation from this analysis
is that the Gibbs sampler is slow to converge
on the "SportsCar” query. Specifically, the KL
value is quite high until 5,000 samples. Likeli-
hood weighting, on the other hand, does not.
This is a very pronounced difference. Gibbs
may fail to converge because of the small prob-
abilities in the conditional probability tables.

- , However, there may be something more insid-
ious at work such as strongly correlated vari-
ables making the Gibbs sampler take a long
time to generate independent samples®. All in
all, this a very perplexing phenomenon.

8 Non-systematic Gibbs Sam-
pling .

There are many different ways to implement Gibbs
Sampling. Typically, all the non-evidence variables
are resampled systematically on each iteration of the
algorithm. An alternative approach is to randomly
and uniformly select a non-evidence variable to re-
sample. We implemented this alternative in addition
to the systematic approach. The following are results
using the random method on queries previously per-
formed using the systematic sampler:

P(BlJ=t,M=t)
P(E|J =t,B=t)

(0.7420, 0.2580)
(0.9982, 0.0018)

PropCost Original SportsCar GoodStudent
1000 0.4421 0.4879 0.3643
10000 0.3428 0.3874 0.3489
100000 0.1879 0.1124 0.2472
1000000 0.0272 0.0213 0.0395

P(N112|N64 = 3, N113 = 1, N116 = 0) = (0.9775, 0.0225)
P(N143|N146 = 1,N116 = 0, N121 = 1) = (0.8914, 0.1086)

The burglary results required 12,000 samples, with
2,000 burn-in samples. This is the same total number
of samples as in section 5. The Insurance and Carpo
queries required 60,000 samples and 5,000 burn-in
samples per trial. This is far less than the 600,000
total resampling iterations required in the systematic
trials.

The number of samples, however, must be balanced
with the quality of the results. On the small burglary
network, the Non-Systematic Gibbs Sampler gener-
ated a less accurate estimate, on average, than the
Systematic Gibbs Sampler, for the same number of
sample iterations.

The accuracy of the Non-Systematic Gibbs Sampler
on the larger Insurance and Carpo networks, how-
ever, was similar on average to that of the System-
atic Gibbs Sampler with far fewer samples. Of the
five different queries which we performed on these
networks, 3 yielded very similar results, one yielded
better results, and one yielded worse results.

9David J. C. MacKay, Information Theory, Inference and Learning Algorithms (2003), p.371

When we put this into context, it is clear that the ran-
dom implementation is a much more efficient estima-
tor (for these networks), than the Systematic Gibbs

Sampler.
Codl.

Conclusion

We have discussed the relative merits of likelihood
weighting and Gibbs sampling as approximate in-
ference methods by analyzing their convergence in
an empirical setting using the KL divergence metric.
In networks with late evidence, likelihood weighting
methods required more samples for results as accu-

gwd P

rate as those obtained by Gibbs sampling with the
same number of samples. While approximate meth-
ods are usually faster on intractable networks, the
networks we investigated were small enough that the
exact methods were fastest.

We also tested a variety of heuristics that chose
elimination orders for the variable elimination algo-
rithm. We devised a factor size based heuristic using
a multiplication-count tie breaker and showed that it
outperformed the other heuristics on our examples.

Finally, our dual implementation on Java and MAT-
LAB confirm that MATLAB should be used when ex-
perimenting with mathematical algorithms and per-
forming analysis.

10

