Towards an Indexing Calculus for Efficient Distributed
Array Computation

Harry B. Hunt III Lenore Mullin
Computer Science Department Computer Science Department
University at Albany University at Albany
State University of New York State University of New York
Albany, NY 12222 Albany, NY 12222
hunt@cs.albany.edu lenore@cs.albany.edu

Daniel J. Rosenkrantz
Computer Science Department
University at Albany
State University of New York

Albany, NY 12222
djr@cs.albany.edu

December 1997

1 Introduction

High performance computing and communication is used to solve large scientific problems.
Scientific programming and subsequent compilation is significantly complicated when pro-
grams are expected to execute on one or many processors for any size or dimensional prob-
lems. Although scientific programming languages are sophisticated and powerful, they have
been slow to evolve from the level of operations on scalars to data parallel operations applica-
ble to whole arrays or array sections. Moreover, the structure of arrays and the architectural
topology to which the arrays are mapped, impact the efficiency, portability and scalabil-
ity of algorithm design. Programming languages such as High Performance Fortran (HPF)
[2] enable the programmer to specify operations on whole arrays and array sections, and
to give directives indication the distribution and alignment of arrays. A compiler for such
a language must mechanize a systematic method for operating on distributed arrays. In
addition, array level transformations can significantly improve the performance of a given
program. For instance, many array operations, such as transpose and concatenation, involve
the rearrangement and replication of array elements. These operations essentially utilize
array indexing, and are independent of the domain of values of the scalars involved. Often
it is unnecessary to generate code for these operations. Instead of materializing the result of

1

such an operation (i.e. constructing the resulting array at run—time), the compiler can keep
track of how elements of the resulting array can be obtained by appropriately addressing
the operands of the operation. Subsequent references to the result of the operation can be
replaced by suitably modified references to the operands of the operation. We believe that
nonmaterialization of partial results of selected operations can be an important compiler
optimization.

This paper presents fundamental definitions for an algebraic theory of array indexing,
with a focus on issues involving array addressing, distribution, decomposition, layout, and
reshaping. The index calculus developed here is based on Mullin’s Psi Calculus model of
array operations [4, 3, 5, 1].

2 Formalization

2.1 Notation for Finite Sequences, Vectors, and Arrays

In this paper, we consider arrays consisting of elements from a set §. Variables ranging over
the set S are denoted by «a through =

Let SEQ(S) be the set of finite sequences of elements of S. In particular, for the set
N of natural numbers, SEQ(N) is the set of finite sequences of elements of A'. Variables
ranging over finite sequences are denoted by & through w. We also denote finite sequences by
enclosing the elements of a given sequence within angle brackets, e.g. <1 2 3>. © denotes
the empty sequence < >.

Square brackets are used around arrays of two or more dimensions. The symbols < and
> are used around one-dimensional arrays.

2.2 The Selectors Operation

Definition 2.1 The function Selectors has domain SEQ(N) and range ZSgQ(N), and is
defined as follows. Let & = <ag ... 1> be in SEQ(N). Then

Selectors(a) ={<ig ... tpm1>] 0<14; < ay, for0 <j<m}.

Example 2.1
Selectors(<32>) ={<00>,<01>,<10>,<11>,<20>,<2 1>}.

The way in which we will use Selectors(é) is that & will be the shape of an array, and
each element of Selectors(&) will be a full index selecting an element of the array.

Observe that Selectors(é)) = {(:)} Note that if for some j, 0 < j <m — 1, a; = 0, then
Selectors(é) = { }, the empty set.

2.3 Arrays
We formalize an array as an ordered pair consisting of a shape sequence giving the size of

each dimension, and a mapping function giving the value of each component of the array.

Example 2.2 The two-dimensional array

83
46
59

has shape sequence <3 2> and mapping function ¢, where

H(<00>) =8
H(<01>) =3
P(<10>)=4
H(<11>) =6
B(<20>) =5
P(<21>)=9
Definition 2.2 An S-array ¢ is a pair { =(&,), where & € SEQ(N), and ¢ is a function

with domain Selectors(a) and range S. ARRAY(S) denotes the set of S-arrays. We call
& the shape sequence of ¢ and 1 the mapping function of ¢. O

Note that ARRAY(N') denotes the set of N-arrays. Often, in this document, N-arrays
will be arrays of indices.

As will be defined in Definition 4.3, the dimension of an S-array & =(&,1) is equal to
the number of components of &.

2.4 Scalars

Definition 2.3 An S-scalar is an S-array whose first component is o. O

Note: Recall that Selectors(é)) is the set containing the single element o. Thus, from
Definition 2.2, for an S-scalar (0,), mapping function ¢ is only defined on O, and ¥(0) = a
for some element a € S. Hence, there is a natural bijection between the set of S-scalars and

S.

2.5 Vectors

Definition 2.4 An S-vector is an S-array of the form £ = (&,1) where & has one com-
ponent. VEC(S) denotes the set of S-vectors. O

There is a natural bijection =g from VEC(S) to SEQ(S), defined as follows. For S-vector
£ = (<m>,),

=s(€) equals the sequence & = <ag ... a;—1> where a; = (i), for 0 <1 < m.

In particular, for N-vectors, Zy is a bijection from VEC(N) to SEQ(N). For example,
consider the N-vector £ = <47 85 14> = (<3>,1) where

P(<0>) =47
P(<1>) =85
h(<2>) = 14.

Then Zy(€) is equal to <47 85 14>, and = (<47 85 14>) is equal to &.

For functions defined on S-vectors, we will often want to apply such a function to a
sequence, and will accomplish this by applying Z35' to the sequence, and then applying the
function to the resulting S-vector. For an example where this is done, see Observation 4.3

2.6 Empty Arrays

Given an S-array £ = (&,), if at least one component of & is zero, then Selectors(a) = { },
so 1 has empty domain.

Definition 2.5 An empty array is an S-array £ = (&,) such that at least one component
of & is zero. We let © denote the S-vector (<0>,4), where 1 has empty domain. O

Observation 2.1

N

(©) = 6.

[1]

a

Given & € SEQ(N) such that at least one component of & is zero, we let ©, denote the
array (&, 1), where b has empty domain. Note that O is the same as O <>, and that O is
the only empty one-dimensional array. For any n > 1, there are an infinite number of empty
n—dimensional arrays. For instance, O« o>, O«, o> for any a« € N, and O ,~ for any
be N, are all empty two-dimensional arrays.

3 Operations on Finite Sequences

3.1 product — =

Definition 3.1 The function product, denoted by =, has domain SEQ(N') and range N,
and is defined as follows. Let m € N, and let & in SEQ(N) be <ag ... ap_1>. Then

(m=1)
m(&) = [a whenm > 0,
=0
and

71'((:)) =1 when m = 0.

3.2 Partitioning Functions — Take and Drop

Definition 3.2 The partial function Take, has domain SEQ(S) x Z x Z and range
SEQ(S). Let i =< xg ... X1 > € SEQ(S). Let p and ¢ € Z satisfy the constraints
that either 0 <p<g<morp=m and ¢g=m —1. Then

Take(Z,p,q) = < xp ... x4 >.
O

Definition 3.3 The partial function Drop, has domain SEQ(S) x Z x Z and range
SEQ(S). Let i =< xg ... X1 > € SEQ(S). Let p and ¢ € Z satisfy the constraints
that either 0 <p<g<morp=0and ¢q=—1. Then

Drop(&,p,q) = < g ... Tpo1 Tgp1 v Tme1 >

O
Observation 3.1 For & € SEQ(S), let m = 7(&). Then, the following hold.
Take(%,0,m — 1) = &.
Take(Z,m,m — 1) = o.
Drop(&,0,—1) = 1.
Drop(,0,m — 1) = ©.
O

4 Operations on Arrays

4.1 Structural Functions

4.1.1 shape — p

Definition 4.1 The function shape, denoted by p, with domain ARRAY(S) and range
SEQ(N) is defined by p((&,4)) = 4. O

4.1.2 total — 7
The function total gives the number of elements in an array.

Definition 4.2 The function total, denoted by T, with domain ARRAY(S) and range N
is defined by 7((&, %)) = 7(&). O

Observation 4.1 For & € SEQ(S), p € Z, and q € Z such that Take(Z,p,q) is defined,

T(Egl(Take(:%,p,q))) =qg—p+ 1.

Observation 4.2 For & € SEQ(S), p € Z, and q € Z such that Drop(&,p,q) is defined,

(=5 (Drop(d,p.q))) = 7(E5' () —q+p— L.

4.1.3 dimension — 8

Definition 4.3 The function dimension, denoted by &, with domain ARRAY(S) and
range N is defined by §((&,v)) = m where & = <ag ... Qpu_y>. O

Observe for an S-scalar ¢ = ((:),;/)), 6(£) = 0 and 7(¢) = 1. For an S-vector £ =
(<a>,1),6(&) =1 and 7(£) = a. For the array £ in Example 2.2, §(¢) = 2 and 7(&) = 6.

Observation 4.3 For any S-array (&,),
8((6,1)) = 7(Zx ().

a

For notational convenience in the rest of this paper, we will usually drop the explicit
use of =/, and write an expression such as occurs in Observation 4.3 in the simpler form

6((&,v)) = 7(&). Thus, we will use the shorthand notation 7(&) for & in SEQ(S), instead
of the longer 7(Z5'(&)).

4.1.4 sequence—concatenation and vector—concatenation

Definition 4.4 The funclion sequence—concatenation, denoted by 4+, has domain

SEQ(N) x SEQ(N) and range SEQ(N'), and is defined as follows.

<050 am—1> +|_s <ﬂ0 6n—1> - <050 e | 60 6n—1>-

The function vector—concatenation, denoted by +,, has domain VEC(S) x VEC(S)
and range VEC(S), and is defined as follows. Let & = (<r1>,101) and & = (<re> 1) €
VEC(S). Then & Hy, &2 = & where &3 = (<ry + 1>, 103), with

P (<i>) if 0 <1<

iz = { Uo<i—ri>) i <i<rt

Observation 4.4 For any & and 3 in SEQ(S),

N

& 4, B=EZs(Z3(6) +. Z5(8)).

Observation 4.5 For any & in SEQ(S),

N N

& .0 =0 4, a = a

4.2 index—generator — ¢

Definition 4.5 The function index—generator, denoted by ¢, has domain SEQ(N) and
range ARRAYV(N), and is defined as follows. Let & = <ag ... ap_1> € SEQ(N). Then
W&) = (&', where &' = <ag ... ap_y m> and)’ is as follows. For 3= <ig ... im> €
Selector(&'), ' (B) = i,,,. O

Observation 4.6 For any & € SEQ(N), (&) = (&',¢"), where & = & 4+, p(&). 0

Note that in writing Observation 4.6, we are using the shorthand expression p(&) instead
of the more explicit expression p(Z3'(&)).

For example, suppose & = <3 5>. Then (<3 5>) = (<3 52>,%'), as follows.

00
01
02
03
04

10
11
(<35>)=1 | 12
13
14

20
21
22
23
24

For example, ' (<24 0>) =2, 4 (<24 1>) =4, ¢ (<130>) =1, and '(<1 3 1>) = 3.

4.3 The Index Function ¥

Definition 4.6 The partial function Index—Via—Sequence, denoted by W, has domain
SEQ(N) x ARRAY(S) and range ARRAY(S). Let £ = (&,¢) € ARRAY(S), where
A=<ag ... ap1>. Let1=<ig ... iy 1> € SEQ(N), where 2 satisfies the constraints
that m <mn and 0 <¢; < a; for0<j <m. Let p=n —m. Then 1 WE = (&',2p") is defined
as follows.

(a) & = <ay ... oz;_1> where oz; = Qpt; for 0 < g < p.
(b) for each 3e Selectors(&'), ;/)/(B) = ;/)(2 . B) O

Later, in Section 4.5, we will define a generalization of W where the left operand is an
N-array.

Suppose that T(%) = 6(¢). Then p=10,s0 & = ©. Note that Selectors(é)) = {(:)}, and
that ¢/(é)) = ;/)(2) Therefore, in this case the ¥ operation returns an S-scalar, as selected
from ¢ by 1.

Suppose that : = ©. Then p=mn,s & =& and (:)\Ilf = ¢, that is the whole array,
yielding the following identity.

Observation 4.7 For any S-array ¢, (:)\Ilf =¢. O
Observation 4.8 Fori € SEQ(S) and £ € ARRAY(S), such that 1¥¢ is defined,

p(1E) = Take(p(€),7(1),8(6) —1) = Drop(p(€),0,7(1) — 1).

Example 4.1 Consider the three—dimensional array

01 2 3
45 6 7

8 9 10 11

{=(<234>,¢4) =

12 13 14 15
16 17 18 19
20 21 22 23] |
Then
To1 2 3
45 6 7
8 9 10 11
OW¢ =
12 13 14 15
16 17 18 19
20 21 22 23] |

01 2 3
<0>¥E=14 5 6 7
8 9 10 11

<1 2>WE = <20 21 22 23>.
<01 2>W¢ = ((:),;/)/) where ¢/(é)) = 6.

Definition 4.7 Let R be a binary relation on S. Then R, is the binary relation on SEQ(S),
defined as follows. Let v = <vg,...,v,-1> and 0 = <wg, ..., w,—1>. Then O R, 0 is true
iff m <pandv; R w; forallj, 0 <75 <m. O

For example, consider the relation <, on SEQ(N). <H 34> <, <64 5>, and
<h 34> <, <645 1>. Note that that it is not the case that <53 4> <, <5>, so <,

does not correspond to lexicographic ordering based on <.

Observation 4.9 For all & € SEQ(N), 6 <. a. a

In particular, 0 <. 0. Thus, although < on A is irreflexive, <, on SEQ(N) is not
irreflexive.

Definition 4.8 1 € SEQ(N) is a valid index for an array & if 1 <. p(€). 0
Definition 4.9 L € SEQ(N) is a full index for an array £ if 1 is a valid index for & and
T(2) = 6(¢). 0
Observation 4.10 For: € SEQ(N) and S-array &, 1 WE is defined iff i is a valid index for
€. O
Observation 4.11 If % anc]} € SEQ(N) are such that i +, J is a valid index for S-array
€ then (7 4+,)WE = jW(WE) 0

Observation 4.12 For any i € SEQ(N) and S-array £ such that (W ¢ s defined,

p(%\Ilf) = DTOp(p(f),O,T(z) - 1)'

a
Observation 4.13 For & € SEQ(N),
Selectors(a) = {1 | 1 € SEQN),7(1) = 7(&), and 1 <. é&}.
a
Observation 4.14 For i and & € SEQ(N) such that 1 € Selectors(é),
Wi(&) = 1.
a

4.4 Arrays of Sequences

Recall that given a set S, SEQ(S) is the set of finite sequences of elements of S. Such finite
sequences can themselves be elements of an array. Thus, ARRAY(SEQ(S)) denotes the

set of arrays whose components are members of SEQ(S).

Definition 4.10 An array (€ ARRAY(SEQ(S)) is uniform if there is a k € N such
that each component of (contains k elements. Uniform— ARRAY(SEQ(S)) denotes the

set of S-arrays that are uniform. O

There is a natural bijection between ARRAY(S) and Uniform-ARRAY(SEQ(S)), de-

fined as follows.

Definition 4.11 The function ArrayToArrayOfSeq has domain ARRAY(S) and range
Uniform-ARRAY(SEQ(S)). Let & = (&,%) € ARRAY(S), where & = <ag ... Q1>
Then ArrayToArrayOfSeq(f) (&', "), where & = <ap ... am_y> and)’ is as follows.
Fori € Selector(a'), o' ()= (Z\Ilf)

The function ArrayOfSeqToArray has domain Uniform- ARRAY(SEQ(S)) and range
ARRAY(S). Let (= (a,v) € Uniform-ARRAYV(SEQ(S)), where & = <ag ... qp_1>,
and each component of (is a sequence containmg k elements. Then ArrayOfSeqToArray(C)
= (&/,¢/), where & = <ag ... ooy k>, and ' is as follows. Fori = <igp ... ip_qin> €
Selector(&'), ;/)/(2) = Take(p(<tg <o tme1>>),lm, tm)- O

Example 4.2 Consider the three—dimensional array

To1 2 37 1
45 6 7
8 9 10 11

12 13 14 15
16 17 18 19

§=(<234>,¢) =

20 21 22 23

Then ArrayToArrayOfSeq(§) = (, where

, 0123 4567 891011
(= (<235.0) = < > < > < >]

<12 13 14 15> <16 17 18 19> <20 21 22 23>
Observation 4.15 For { € ARRAY(S),
ArrayO fSeqToArray(ArrayToArrayO fSeq(€)) = €.
For ¢ € Uniform-ARRAY(SEQ(S)),

ArrayToArrayO fSeq(ArrayO fSeqToArray(())

.

10

4.5 Generalizing the Index Function — ¥

The following definition generalizes the function Index—Via—Sequence (i.e., ¥ from Definition
4.6) so that its left operand can be an array of full indices. This left operand, denoted as (
in Definition 4.12, is an m—dimensional array of elements of N'. But it is used as a (m — 1)
dimensional array of N-vectors. Each of these N'-vectors is interpreted as a sequence that is
a full index of the right operand, denoted as £ in Definition 4.12. The result of the operation
is a (m — 1)-dimensional array of elements from the right operand ¢, as selected by these
full indices.

The last dimension of (must be equal to the number of dimensions of £. For instance,
suppose that ¢ is a 3—dimensional S-array (so that 6(¢) = 3) and p(§) = <50 30 70>.
Then the last component of the shape sequence of (must be 3. For instance, if p(¢) =
<800 180 60 200 3>, then the result of the operation is an S-array whose shape sequence
is <800 180 60 200>. In addition to the constraint on the last component of the shape
sequence of (, there is a constraint on the values in (. Letting m be 6((), this constraint is
that each m —1-component valid index for { must select a 1-dimensional sub-array of (that
can be used as a full index for £. In the above example, where (is a 5—dimensional array,
this constraint requires that each 1-dimensional sub—array of (selected by a 4-component
valid index for (can be used as a full index for {£. More precisely, for each <ig ¢1 75 23> that
is a valid index for (, =(<ig i1 12 13> () must be a full index of £&. Let w be the mapping
function of (. Then =(<ig t1 12 13>V () = < w(ig i1 1273 0) w(tg 11913 1) w(ip 11 13 252) >.
Thus, the constraint on the values in (is that w(ip ¢1 42 25 0) < 50, w(ip ¢1 2 i3 1) < 30,
and w(ig 11 22 13 2) < 70. Suppose we express p(£) as <ag a1 a>. (In the current example,
ag = 50, ag = 30, and ay = 70.) Then the constraint on the values in (can be expressed
succinctly as w(ig 11 12 13 14) < Q.

Definition 4.12 The partial function Index—Via—Array, denoted by ¥, has domain ARRAY(N)
X ARRAY(S) and range ARRAY(S). Let £ = (a,¢) € ARRAY(S), where & =
<ag .. ap1>. Let (= (6,w) € ARRAY(N), where 6 = <o¢ ... op_1>. Let (
satisfy the constraints that o,_1 = n, and for al i = < iy ... im_1> € Selectors(o),

w(%) <« . Then (W¢ = (6',4") is defined as follows.
(a) &5 = <06 U;n_2> where 0; =o0; for0<j3<m-—2.
(b) for cach B = <Bo ... Bu_a> € Selectors("), ' (3) = ¢(Z(FVC)). O

Observation 4.16 The constraints in Definition /.12 are equivalent to requiring that for
every (m — 1)—component valid index for , 1= < iy ... lym2 >,

E(E\IIC) is a full index for €.
Also, in Definition 4.12(b),

N

Z(AWC) = <w(B Hs <0>) ... w(B He <n—1>)>.

11

For examples of \il, let

To1 2 37 1
45 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23

£=(<234>.¢) =

Suppose

_ o O O =
N = = O N
DO WD W

I

Il
OO = O =
N = = O
O = NN W

O = == O
— NN DN DD
— W N W W

Since p(¢) = <3 5 3>, C\ilf has shape sequence <3 5>, and is the following array.

19 2 18 5 8
11 23 22 23 5

(WE =

2306722]

To see how a typical value in the above array is computed, note that

P (<2 4>) = 1)(

[1]

(<2 4>W()) = p(E(<0 1 1)) = (<0 1 1>) =5.

Now, suppose

—_ 0 = OO
N W= O =N

DO NN DN N

12

Since p(¢) = <6 3>, C\ilf has shape sequence <6>, and is the following array.
(WE= <692009 23 22>

_ Now, suppose ¢ = <0 1 2. Since p(¢) = <3>, the shape sequence of C\ilf is (:), and
(W is a S-scalar, as follows.

<01 2-W¢ = ((:),;/)/) where ¢/(é)) = 6.
Observation 4.17 For{ € ARRAY(S),
(p(O)) & = &

O
Suppose that ¢ is a S-scalar, £ = ((:),;/)), where ¢(é)) = a for some element a € S.

Suppose that (is an empty array, and the last component of its shape vector is zero.

For concreteness, suppose that ¢ is © <5 5 o> Then, C\ilf = (<5 3>,;/)/), where for each
= Selectors(<5 3>), ;/)/(2) =a. le.,

®<5 3 0>‘i’€ =

SRR SIS RS S
SRR SIS RS S
SRR SIS RS S

Observation 4.18 Let £ be an S-scalar, ((:),;/)) where ;/)(C:)) = a for some element a € S.
For any & € SEQN), let ¢ be the empty array with shape vector & +,<0 >. Then
CWE = (&,9"), where for each @ € Selectors(a), ¥'(1) = a. O

The function ¥ can be generalized so that its left operand can be an array of valid indices,
which are not necessarily full indices.

Definition 4.13 The partial function Index—Via—Array, denoted by ¥, has domain ARRAY(N)
X ARRAY(S) and range ARRAY(S). Let £ = (a,¢) € ARRAY(S), where & =
<y ... apoy > Let (= (6,w) € ARRAY(N), where 6 = < 09 ... 0pey >. Let
(satisfy the constraints that o,_1 < n, and for each P = < 20 ... lm_o > that s a valid

A

index for ¢, 22 () is a valid index for . Then (W¢ = (6',4") is defined as follows. Let

p:m—1—|—n—0'm_1.

(@)

o; for0 <3 <m-—2

& = on ... O where o =)
< % -1 2 ! { Qjomtitom_y Jorm—2<j <p.

(b) for each B=<Bo ... Bpo1> € Selectors(s'),
W(8) = $(E(<Po o Bua>V0) Hy <Bpor oor Bpa>).

13

4.6 Mapping Functions for Layout

Computer languages vary in the way they lay out data in memory. For example, C stores
arrays in row major order, while FORTRAN stores arrays in column major order. Here,
we formalize mapping functions that correspond to row major and column major layouts in
memory. More generally, we want to define mapping functions appropriate to various layouts
of array elements into memory, or appropriate to various processor interconnection network
topologies.

We introduce mapping functions between the full indices of an array, and the offsets of
the elements of the array when the array is layed out linearly using row major or column
major ordering. These mapping functions represent the correspondence between the full
index selecting a given array element, and the offset of that array element in the layout.
For a given layout method A, function Index—to—Offsety takes a tull index and a shape, and
returns an offset based on layout method A. Function Offset—to—Indez) takes an offset and a
shape, and returns a full index sequence based on layout method A. Note that the mappings
between full index and offset are different for row and column major ordering.

Example 4.3 Consider the following two—dimensional array:
012
(= [345] '

In row major order, the layout is 0, 1, 2, 3, 4, 5. In column major order, the layout is
0,3,1,4, 2, 5. Let Q¢ denote the address in memory of the first element of £. Suppose we
want the element 3 in £, i.e. the element in row 1 and column 0. Then, in row major order
the element is stored in @¢+3 and in column major order the element is stored in @¢4-1.

The following two mapping functions are based on row major order. In the following
definition, & is a shape vector, and 7 is a full index.

Definition 4.14 The partial function Index—to—Offset,., denoted by ~,., has domain SEQ(N)
X SEQ(N) and range N'. Let 1 = < i, . tme1> and & = <ag ... Up_1> € SEQ(N),
where v and & satisfy the constraint that + € Selectors(&). Then, ~,(1, &) is defined as
follows.)
7(0,0) = 0if m=0,
77’(27&) = im—l + (am—l *Yr < iO s im—2>7 <050 s am—2>)) me > 0.

O

Definition 4.15 The partial function Offset—to—Index,., denoted by 'y;, has domain N x

SEQ(N) and range SEQ(N). Let ¢ € N and & = <ag ... ap_1> € SEQ(N), where ¢
and & satisfy the constraint that ¢ < w(&). Then, ~.(q,&) is defined as follows.

’y;((),é)) =0 ifm=0,

’y;(q,d) = ’y;(q div o1, <ap ... Qp_2>) Hs < ¢ mod ay_q > if m > 0.

14

Suppose that in Definition 4.15, m = 1, so that & = <ay>. Then the constraint
on ¢ and & is that ¢ < «ag. Therefore, ¢ mod ag = ¢. Furthermore, ¢ div g = 0 and
<ag ... Q9> = O. Therefore ’y;(q div ey, <OQ oo Qg >) = 7;(0, (:)) - 0. Hence,
from Observation 4.5,

(g, <ap>) = <g¢>.

The following two mapping functions are based on column major order.

Definition 4.16 The partial function Index—to—Offset., denoted by ~y., has domain SEQ(N)
x SEQ(N) and range N. Let t =<ty e > and & = <ag ... Q> € SEQ(N),
where 1 and & satisfy the constraint that i € Selectors(a). Then, %(2, &) is defined as
follows.
%(0,0) = 0ifm >0,
Ye(t, &) = o+ (o *7:(< 11 oot tme1>, <@y oov Qpe1>)) if m > 0.
O

Definition 4.17 The partial function Offset—to—Index., denoted by 'y;, has domain N x
SEQ(N) and range SEQ(N). Let ¢ € N and & = <ag ... ap_1> € SEQ(N), where ¢
and & satisfy the constraint that ¢ < w(&). Then, ~v.(q, &) is defined as follows.

7.(0,0) =6 ifm =0,

’y;(q,ol) = < ¢ mod ag > H, ’y;(q div ag, <ayg ... Qp_1>) if m > 0.

O
Suppose that in Definition 4.17, m = 1, so that & = <ap>. Then
(1, <a0>) = <¢>.
Observation 4.19 For & € SEQ(N) and i € Selectors(1),
7, (7 (1,8), &) = @ and
Ye(relt,d),é) = .
O
Observation 4.20 For & € SEQ(N) andn € N such that n < 7 (&),
Ye((n, &), &) = n and
Ye(7e(n,d), &) = n.
O

Consider the array ¢ from Example 4.3. ~,(<1 0>,<23>) =04 (3% 1) = 3, indicating
that for row major order, the <1 0> element of £ is allocated position @¢ + 3.

7.(<10>,<23>) =14 (2%0) = 1, indicating that for column major order, the <1 0>
element of ¢ is allocated position @& + 1.

15

4.7 Transformation Functions Based on FORTRAN Intrinsics
4.7.1 Transpose

Definition 4.18 A sequence B in SEQ(N') is a permutation sequence for m € N if
B =<Bo ... Buo1> where 0 < 3 < m for 0 <@ < m, and B; = B; = © =) for
0<z,y<m. a

In the following definition of Transpose(ﬁ, €), € is the array being transposed, and B is a
permutation sequence specifying how £ is to be transposed.

Definition 4.19 The partial function Transpose, has domain SEQ(N) x ARRAY(S)
and range ARRAY(S). Let £ = (4,v) € ARRAY(S), where & = <ag ... ap_1>. Let
B = <Bo ... Buo1> € SEQ(N), where B satisfies the constraint that B is a permutation
sequence for m. Then Transpose(ﬁ,f) = (&',9") is defined as follows.

(a) & = <ay ... a,_ > where oz; = ay, for that value k such that 3 = j.

(b) for cachi = <igiy ... im_1> € Selectors(d’),

;oA

& (Z) = ¢(<iﬁo iﬁ1 iﬁm—l >)

O

For instance, suppose that ¢ = (&,1) is an array Where a = <ag ap > =
<30 40 50> Let B= <fBo B fo> = <20 1>. Letf = (&',¢) = Tmnspose(ﬂ f) Let
a = <ay o) ay>. First consider ozo Since 8, = 0, ay = ay = 40. For a, since fy = 1,

ozl = ay = 50. For ozz, since ﬂo =2, ozz = ap = 30. Thus
&' = <apay ap> = <40 50 30>.

Furthermore,
P (< dg 1y 12>) = (< 1g 19 11>).
For instance, o' (<37 45 8>) = (<8 37 45>).

As another example, suppose that § = (&, 1) is an array where & a = <ag ay oz az> =

<3040 50 60>. Let B = <fBo By B2 B> = <0312>. Let ¢ = (&', 9" = Tmnspose(ﬂ f)
Then,
&' = <agay az > = <30 50 60 40>.

Furthermore,
P (< g iy 2 13 >) = P(< 1g i3 1q 12 >).
Note that the relationship between & and & in Definition 4.19(a) can be restated as
ozk:o/ﬁkfor()ﬁk<m.

16

4.7.2 Reshape

In the following definition of p (€, B, f), € is the array being reshaped, B is the new shape
sequence, and f is a fill-in value to be used if the new array has more elements than the old
array.

Definition 4.20 Let A be a layout method for which functions vy and ~, are defined. The
function Reshapey, denoted by px, has domain ARRAY(S) x SEQ(N) x S and range
ARRAY(S). Let ¢ = (6,¢) € ARRAY(S). Let § = € SEQ(N). Let f € S. Then
ﬁA(f,B,f) = (B,;/)/) where for each i € Selectors(ﬁ),

o [RO G8),8) G, B) < r(6)
v (1) {f i) 2 (6).

4.7.3 Cshift

In the following definition of Cshift(&, a,q), £ is the array being shifted, @ is the amount of
the shift, and ¢ is the dimension to be shifted. Cshift does a circular left shift if a is positive,
and a circular right shift if a is negative.

Definition 4.21 The partial function Cshift has domain ARRAY(S) x Z x N and range
ARRAY(S). Let £ = (&,v) € ARRAY(S), where & = <ag ... apm1>. Let a € Z. Let
q € N, where q satisfies the constraint that ¢ < m. Then Cshift(€,a,q) = (&,"), where ¢’
is defined as follows. Let b=<koky ... k1> € Selectors(é). For 0 <i < m, let

R fi#q
‘ (ky +a) mod oy ifi =q.

Then)
@/’ (k) = ¢(<k0 k1 km—1>)‘

For example,

Cshift(< 20 21 22 23 24 25 »=,2,0) = < 22 23 24 25 20 21 >.

Cshift(< 20 21 22 23 24 25 »=,—-2,0) = < 24 25 20 21 22 23 ».

Observation 4.21 For & € VEC(S), let m = 7(&), and let k € N be such that 0 < k < m.
Then
Cshift(a, k,0) = Z5'(Take(Z(&), kym — 1) ++5 Take(Z(&),0,k — 1))

Cshift(&, —k,0) = Z3'(Take(Z(&),m —k +1,m — 1) ++, Take(=(&),0,m — k))

17

4.7.4 EOSshift

In the following definition of EFOSshift({,a,q, [), £ is the array being shifted, a is the amount
of the shift, ¢ is the dimension to be shifted, and f is a fill-in value to be used for array
positions vacated by the shift. FOSshift does a noncircular left shift if a is positive, and a
noncircular right shift if a is negative.

Definition 4.22 The partial function EOSshift has domain ARRAY(S) x Z x N x S
and range ARRAY(S). Let ¢ = (&,¢) € ARRAY(S), where & = <ag ... Qpo1>.
Let a € Z. Let ¢ € N, where q satisfies the constraint that q <m. Let f € S. Then

EOSshift(€,a,q, f) = (&,%"), where ¥ is defined as follows. Let k = <k ky ... kp_1> €
Selectors(é).

a) Suppose (a >0 and k, < o, — a) or (a <0 and k, > —a). For 0 <1< m, let
9 9 9
‘ (ky +a) ifi=q.
Then)
& (k) = ¢(<ko k1 km—1>)'

(b) Suppose (a >0 and ky; > oy — a) or (a <0 and k, < —a). Then

v'(k) = 1.
O
For example,
FEOSshift(< 20 21 22 23 24 25 »=,2,0,8) = < 2223 24 258 8 ».
FEOSshift(< 20 21 22 23 24 25 »,-2,0,8) = < 8 8 20 21 22 23 ».
4.8 Array Sections
Definition 4.23 Given set S, we let 8* denote the set S U {x}. O

Definition 4.24 The partial function Index—Via—Sequence®, denoted by W*, has domain
SEQIN™) x ARRAY(S) and range ARRAY(S). Let £ = (&,¢) € ARRAY(S), where
&=<ap ... ap1>. Let1=<iyg ... i,.1> € SEQ(N™), where ? satisfies the constraint
that for 0 < j < n, either o is %, or a; € N and i; < a;. Let p equal the number of
occurrences of % int. Let [be the injective function from {0, 1, ... p—1} to {0, 1, ... n—1},
defined by

f(j) = k| iy, = * and Take(7,0, k)contains exactly k + 1 occurrences of * .

Then 1¥*¢ = (&', as follows.

18

(a) & = <o ... oz;_1> where oz; = aj(y for 0 <5 <p.
(b) Given B=<By ... By_1> € Selectors(&'), let 3 =<pBy ... B._> where

3= { ' Ji e N

J 6f—1(j) Zf 1; = *x.

Then, ¥'(3) = ¥(3). O

For example, consider the three-dimensional array from Example 4.1.

To1 2 37 1
45 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23

£=(<234>.¢) =

12 13 14 15
20 21 22 23

<1 ox 4> W ¢ = {16 17 18 19

<*1*>\I,*§:l4 5 6 7]‘

16 17 18 19

. 2 6 10
<HAZ>TTL = l14 18 22]'

U* can be expressed using Transpose and W. For instance, for a five-dimensional array

£,
<967 x>WE = <96 7> W Transpose(<03 124> ¢).

As another example, for an eight—dimensional array &,
<k 5k x2 % 8 %x>WE = 528> W Transpose(<30451627>,¢).

Observation 4.22 Lel | = <ig ... i,-1> € SEQN*) and & € ARRAY(S) be such
that 10*¢ is defined. Let p equal the number of occurrences of * in 1. Let 1 be 1 with all
occurrences of x deleted (so that 7(2’) =n—p). Let B=<By ... Buii> € SEQ(N) be as
follows.

3 = { J — (number of * ’s in Take(z,(),j) ifi; e N

I P —|—j Zf ij = *,
Then,
W = Transpose(ﬁ,f).

19

A cknowledement

We acknowledge Richard E. Stearns for a number of helpful discussions and suggestions for

developing this formalism, and Shi—Yu Chen for preparing an early version of this manuscript.

References

1]

L. Mullin et al. The pgi-psi project: Preprocessing optimizations for existing and new
f90 intrinsics in hpf using compositional symmetric indexing of the psi calculus. In
M. Gerndt, editor, Proceedings of the 6th Workshop on Compilers for Parallel Computers.
Forschungszentrum Julich GmbH, 1996.

High Performance Fortran Forum. High Performance Fortran Language Specification,

Version 1, May 1993.

L. Mullin. The psi compiler project. In Workshop on Compilers for Parallel Computers.
TU Delft, Holland, 1993.

L. M. R. Mullin. A Mathematics of Arrays. PhD thesis, Syracuse University, December
1988.

L.R. Mullin, D. Dooling, E. Sandberg, and S. Thibault. Formal methods for scheduling
and communication protocol. In Proceedings of the Second International Symposium on

High Performance Distributed Computing(HPDC-2). IEEE Computer Society, July 1993.

20

