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Abstract

Embedded software processing requirements for DSP, especially for radar, computa-
tions are expected to exceed 1 x 10'2 operations per second within 5 years. Consequently,
the efficient use of memory at all levels of the memory hierarchy is becoming increas-
ingly essential in these computations. For radar, and more generally DSP, computations
generally involve compositions of linear and multi-linear operators, and consequently, are
array-based. Here, we illustrate how a general array algebra, together with a suitably
rich compatible index calculus, can be used to develop software for radar and other DSP
applications tuned to use the levels of memory hierarchies efficiently. We do this by
using the array algebra, MoA, together with the index calculus ¥-Calculus, to develop a
convolution algorithm tuned to use a processor/memory hierarchy efficiently. Keywords:
embedded digital systems, radar, signal processing, arrays, high performance, index
calculus, shapes, psi, MoA.
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1 Introduction

1.1 Reasoning about Radar

Reasoning about radar, from a computational perspective, entails reasoning about the data structures underly-
ing the algorithms for radar computations. Most, such algorithms, are characterized by linear and multi-linear
operations, especially convolution. Thus, they are characterized computationally by matrix operations. Con-
sequently, we believe that the future development of efficient scalable, portable algorithms, for radar, more
generally for DSP applications, will be greatly facilitated by the use of a high-level array algebra during
algorithm design. Additionally, since program efficiency depends critically upon the efficient use of mem-
ory/processor hierarchy, this array algebra should be combined with a suitably powerful index calculus. This
calculus should facilitate data layout, movement, and manipulation at all levels of the memory/processor
hierarchy. We present strong evidence that MoA and Psi Calculus[15, 8] are suitable candidates for such
an algebra and calculus. This evidence consists of a detailed semi-mechanized development using MoA and
the Psi-Calculus of an algorithm for convolution. During the algorithm development, we carry out array
dimension lifting and data restructuring driven by the memory/processor hierarchy, coincident with array
decompositions and layouts. We also show how temporary array materializations are minimized using Moa
and the Psi Calculus.

Contemporary programming languages!, often provide the expressivity but not the performance required
for real time systems. One major reason for this is that they do not provide adequate methods to under-
stand and predictively analyze the performance of algorithms given diverse memory and processor layouts?.
Languages typically scalarize their monolithic array operations. They then use various loop transformation
theories to discover structure, parallelism, etc. However, once scalarization occurs the intentional information
of the algorithm in terms of compositions/products of high-level arrays is lost.

2 MoA and the Psi Calculus

The array algebra, MoA, and the index calculus Psi Calculus , can describe array computations on both uni-
or multi-processor topologies. It is centered around a generalized array indexing function, psi.

All array operations in this theory are defined using the indexing function. The algebra of MoA denotes a
core set of operations proven useful for representing algorithms in scientific disciplines. Unlike other theories
about arrays[18, 11], all operations in MoA are defined using shapes and the indexing function psi( 1) which,
in conjunction with the reduction semantics of the Psi Calculus, provides not just transformational properties,
but compositional reduction properties which produce an optimal normal form possessing the Church-Rosser
Property][2].

There have been several investigations into a mathematics to describe array computations. These include
More’s theory of arrays (AT)[11], a formal description of AT’s nested arrays in a first order logic[9] and the
development of a Mathematics of Arrays (MoA) [15]. In [10] the correspondence between AT and MoA is
described. MoA builds on Iverson’s concepts and extends the transformational properties of his algebra while
removing all anamolies. The Psi Calculus and MoA put closure on concepts introduced by Abrams[1] to
optimize the evaluation of monolithic array expressions based on an algebra of indexing.

2.1 Mapping Arrays to Processors

Much work has been done in describing architectures in terms of abstract models and then using the abstract
model as the basis for mapping decisions[17]. However, it is still a primarily manual effort to design the
mapping of the computation to the abstract model. The automation of this step is crucial if we are to make
effective use of parallel architectures.

The abstract model for the organization of the processors is often in the form of a graph whereby the
nodes of the graph are processors and the edges are communication links. For many practical models the
graph can be represented by an array in which each processor is given an address and each processor to which

'Matlab, C++, Fortran 90/95
2Even when attempts are made to communicate with the compiler, e.g. distributions for multiprocessing][6,
20], the semantics of what is desired is delivered without a guarantee of how the algorithm was built.



a link is available is at an address one away along one of the axes. The array model can describe a list of
processors, a 2 dimensional mesh, a hypercube, a balanced tree[3], or a network of workstations[5, 17, 4]. Our
approach will be to view an architecture as having two array organizations, one which is the abstract model
best suited for describing the problem and a second which corresponds to an enumeration of the processors as
a list. For an actual architecture the latter corresponds to the list of processor identity numbers and is used
to determine the actual send and receive instructions issued by the resulting program.

In doing the mapping from the data arrays of the problem to the array-like arrangements of processors,
there is a need to be able to systematically determine what information to distribute to which processors.
Having made those decisions, the high level algorithm expressed in terms of array operations has to be turned
into low level code that selects data elements from one-dimensional memory, sends it to the appropriate
processor in the one-dimensional list of processors. Each processor has to be supplied with code that is
parameterized so that it operates on the data in its local memory to carry out its portion of the parallel
algorithm.

The difficulties are compounded when a problem is so large that it must be attacked in slices. Thus, a
vector of length & = m % n % p, where m is the number of slices, n is the amount of data each processor can
process in one go, and p is the number of processors, can be viewed algorithmically as a 3-dimensional array
of shape m by n by p, where the first axis indicates slices of work to be done one after the other.

The manipulations of the data addresses to ensure that the problem decompositions are handled correctly
can be quite intricate and are difficult to get right by hand. Thus, having a formal technique for deriving the
address computations, one that can be automated to a large extent, is essential if rapid progress is going to
be made in exploiting parallel hardware for scientific computation.

We can also use the idea of mapping Cartesian coordinates to their lexicographic ordering when we want
to partition and map arrays to a multiprocessor topology in a portable, scalable way. Consider, for example, a
parallel vector-matrix multiply of vector A and matrix B, where s4 =< n > and sp =< np >. One effective
way to organize the computation is to map each of the rows of B to a processor, send the elements of A to the
corresponding processors, do an integer-vector multiply to form vectors in each processor, and then add the
vectors pointwise to produce the result. The last step involves the adding together of n vectors and is best
done by adding pairs of vectors in parallel. Abstractly, this last step can be seen as adding together the rows
of a matrix pointwise. A hypercube topology is ideal for such a computation and at best would take O(logn)
on 7 processors to compute.

Often a hypercube topology is not available, we may only have a LAN of workstations or a linear list
of processors. But, we can view any processor topology abstractly as a hypercube and map the rows to
processors by imposing an ordering on the p available processors. That is we look at p; where 0 <7 < p as
the lexicographically ordered items of the hypercube.

Hence, in the case of the LAN we obtain a vector of socket addresses. We then abstractly restructure
the vector of addresses as a k-dimensional hypercube where £ = [log,n]. In order to map the matrix
to the abstract hypercube we restructure the matrix into a 3-dimensional array such that there is a 1-1
correspondence between the restructured array’s planes and the available processors. That is, we send the ith
plane of the restructured array to the i*" processor lexicographically. If there are more rows than processors
then the planes are sequentially reduced within each processor in parallel.

We can apply the Psi Correspondence Theorem[12] to the data to see how to address the i*" planes from
memory efficiently. The same methodology can be applied to address the processors effectively.

For example, suppose we want to add up the rows of a 256 by 512 matrix and we have 8 workstations
connected by a LAN. We would restructure the matrix into a 8 by 32 by 512 array which we denote by A
The socket address of the workstations are put into a matrix P and each < 7 > 1/)Al,z' =1,...,8 is sent to the
processor addressed by P;. The sum of the rows for each plane are formed in parallel producing 8 vectors of
length 512 in each processor.

We then restructure P into a 3-d hypercube implicitly and use this arrangement to decide how to perform
the access and subsequent addition between the processors. In the first step we add processor plane 1 to
plane 0. By the Psi Correspondence Theorem this implies adding the contents of processors 4 to 7 to those of
processors 0 to 3. In the next step we add processor row 1 to row 0, which implies the contents of processors
2 and 3 are added to those of processors 0 and 1. Finally, we add the contents of processor 1 to the contents
of processor 0. Thus, we have added up all the rows in log, 8 or 3 steps.

The method can be employed for any size matrix and can utilize an arbitrary number of homogeneous
workstations connected by a LAN. It is a portable scalable design. A more detailed description of this technique



(including timing results) can be found in [17]. We ported and scaled these designs to a 32 processor CM5[4].
We used a similar approach, a linear processor array, to map a parallel sparse LU Decomposition to a network
of RS6000s[5]. These ideas were later realized in hardware[13].

3 Time-Domain Convolution

Over the last 5 decades, the synthetic aperture radar(SAR) has been developed as a unique imaging instrument
with high resolution, day/night and all weather operation capabilities[22]. As a result, the SAR has been
used in a wide variety of applications, including target detection, continuously observing dynamic phenomena:
seismic movement, ocean currents, sea ice motion and classification of vegetation. In comparison with the
spectral analysis(FFT) and frequency domain convolution, the time-domain(TD) analysis has been introduced
and has become the simplest and most accurate algorithm for SAR signal processing. As the time-modulated
wave transmission and receiving by SAR, the TD algorithm directly processes the signal echo by using the
matched filters without approximation. However, the TD algorithm is also the most computationally intensive,
thus it can only be used for size-limited SAR data. As the requirement of large-size and high-resolution SAR
imagery increases, the investigation and development of time-domain schemes are conducted with respect
to a fast computational algorithm to implement the dime-domain analysis. What follows is a MoA design
and derivation of the Time-Domain Convolution. Whenever, possible a functional description will be given.
Examples and Figures will illustrate functional descriptions. Generic designs, parameterized by array size,
number of processors, and size of cache will be developed.

TD Convolution: MoA Design and Derivation
We want to perform the convolution of vector X with vector 7. Denote the length of X and H by X and
H respectively. Denote the result of the convolution by Z. Denote the cache size by cache. Assume:
1. X > H
2. rH > cache
3. 7H mod cache =0
Example:
1. ¥=< 12345 >, s0tX=5
2. H=< 678 >, soTH =3

3. Let X* denote a vector representmg how 0’s are used to pad x during the convolution. Here X' s
< 001234500 >. In general, X =rX+2rH- 2

4. The length of Z, denoted by TZ, is TH + 17X — 1, in this case 7.

I To see the time domain using arrays, shift X 72 times: by 0, by 1, ... by 7Z — 1. The following array
denotes 72 time steps.

0 01 2 3 4 5 00
012 3 45 000
1.2 3 45 0000

5 0 0 0 01 2 3 4

II. From each row, i.e. time step, take the necessary H pieces.

0 0 1
01 2
1 2 3
5 0 0



III. To obtain Z perform the multiplication and addition with A.

Z(Tﬁ)—l

i=0 76 00 1
A - 01 2
H-1 | 8 7 6|, |1 2 3
=0

8 7 6 5 0 0

(rH)-1
2o
IV. With this generally formulated in MoA, then reduced by the Psi Calculus, the following normal form is

produced:
Element j of Zis

TH
YNo<rfi— (G +1)>ypHx <i +j> X (1)
i’ =0

qed (2)

where 0 < j < rZ.

This completes the derivation for the convolution algorithm on a sequential processor and denotes the
generic design of how to build the code.

3.1 Adding Processors

Recall how the computation is performed on a uniprocessor®. Suppose the number of processors, p, is 2.

(rH)-1
i=Q, 8 7 6 0 0 1
YT 18 7 6 01 2
= Z(:’Li)*l 8 7 6 |1 2 3
8 7 6 5 0 0

Z(T’ﬁ)71
i=0
An analysis of the data flow shows that the best way to decompose the matrix computation is over

the primary axis since breaking up the problem over rows creates no communication. If we break up over
columns, %H must be used in each section AND the addition would be over multiple processors. That is, the
7Z dimension is broken into 2 parts, p and %, Comnsequently, each processor computes half the elements of
Z. This lifts the dimension of the problem by one.

If communication is necessary, it is best to do it at lower, faster levels of the memory hierarchy.

Suppose now that (7X) =9 and (7H) = 6 where ¥ =<123456789 >and H =< 101112131415 >
and there are two processors. In this case 7Z = ((7H) —1)+ (7X) = 5+9 = 14. Consequently, each processor
would process 7 rows.

YW r15 14 13 12 11 107 [0 0 0 0 0 17
E(T’*‘)—l 15 14 13 12 11 10 000 0 1 2
=0
) . X . — processor 0
Z(T%z)fl L15 14 13 12 11 100] L1 2 3 4 5 6 |
i=0
YIPTNr15 14 13 12 11 107 [2 3 4 5 6 77
E(T“H 15 14 13 12 11 10 3 45 6 7 8
1=0
. . X . — processor 1
E(T'ﬁm |15 14 13 12 11 10] [9 0 0 0 0 0
i=0

3We will later see that processors, caches, etc., are simply abstract memory levels ordered by speed.



This decomposition implies we must reshape our array abstraction thus adding a processor loop to our
original design. Thus 7Z becomes (p +|—|'%'|) We consequently reshape by partitioning the Oth dimension,
or time domain portion of the array abstraction, thus increasing the dimension of the abstraction by one.

3.2 Adding Cache

If we now want to add a cache loop we must partition the 1st dimension of our abstraction , i.e. (rH) thus
adding yet another dimension. We started with a 1-d problem, abstracted the computation to a 2-d time
dimension, adding processors went to 3-d, adding a cache; 4-d. We reshape again by partitioning the 1st
dimension. Note how the adder is pulled outside.

()1 3 15 14 13 0 0 0
ae STt 12 11 10 0 0 1
o g v | _ _ _
tache \\(rH)-1 15 14 13 00 0
2S5 Xilo 12 11 10 01 2 .
) : X - - — processor
(Tﬁ)—1. - I ’ 1 r q
cache (T’H)*l 15 14 13 ]_ 2 3
2 2l 12 11 10 )| [|45 6] ]
(rA)=1 3 ([15 14 1317 [[2 3 477
ke N~(rH)-1
Y Y, 12 11 10 5 6 7
(r#)-1 - r 1 -
cache ()1 15 14 13 3 4 5
2 Ll 12 11 10 6 7 8
) : X - - — processor 1
E(Zi),;l i1 | [ 15 14 13 ] (9 0 0]
=0 i=0 | |12 11 10| [|O0 0 O] |

3.3 ONTF for TD Convolution

Putting this all together we produce a generic design for processors and cache. Each element of Z is obtained
by:

H g

cache 3

Z ﬁ[((‘rﬁ) — ((icacherow x cache) + (v cache)) — 1] x 2\?[((((%] X 40) + 41) + icacherow X cache) + ¢ cache)] (3)

icachepoyw =0

3.3.1 ONF and a Generic Algorithm Specification

The following denotes a generic algorithm specification given the ONF above.

1. For io =0 to p—1 do:
This is the processor loop.

2. Fori1=0toTT?—1d0:

3. sum < 0

4. For icacherow = 0 to c;ﬁw — 1 do:

5. For 73 = 0 to cache — 1 do:

This is the cachesize loop.

6. sum — sum-+ ﬁl((Tﬁ) — ((icacherow % cache) +1i3)) — 1]

xf[(((([%] X 40) + 11) + icacherow X cache) + i3)]
Note how H is accessed from the rear.

qed (4)



4
4.1

Conclusion

Benefits of Moa and Psi Calculus

e A processor/memory hierarchy can be modeled by reshaping data using an extra dimension for each
level.

e Composition of monolithic operations can be reexpressed as compositions of operations on smaller data
granularities that

— Match memory hierarchy levels.

— Avoid materialization of intermediate arrays.

e Algorithms can be automatically, algebraically, transformed to reflect array reshapings above.

e Facilitate programming expressed at a high level

— Facilitate intentional program designs and analysis.

— Facilitate portability and scalability.

e This approach is applicable to many problems in radar.
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