
Optimisation

Performance TuningPerformance TuningPerformance TuningPerformance Tuning

Optimisation – p.1/22

Constant Elimination

do i=1,n
a(i) = 2*b*c(i)
enddo

What is wrong with this loop?

Compilers can move simple instances of constant

computations outside the loop. Others need to be

done manually.

Optimisation – p.2/22

Merging Expensive Operations

Eg.
division
modulo
sqrt
transcendental
functions

compute V (r) = 1

r12 −
1

r6

r3inv = 1/(r*r*r)
V = r3inv * r3inv - r3inv

not
V = 1/r ** 12 - 1/r ** 6

Optimisation – p.3/22

Special case functions

Replace special case functions with faster
algorithms
eg.

x * x is faster than x**2 ≡ exp(2*log(x))

sqrt(x) is faster than x**.5 ≡ exp(.5*log(x))

iand(x,63) is faster than mod(x,64)

x & 63 is faster than x % 64

In C++, pow(double,int) may be more efficient
than the standard pow(double,double).
Fortran compilers should be able to recognise
x**i as a special case.

Optimisation – p.4/22

Optimised Libraries

Don’t reinvent the wheel!

Well optimised libraries include BLAS, LAPACK

and FFTW.

Optimisation – p.5/22

The Cache

86 88 90 92 94 96 98

CPU speed
Memory speed

DRAM is much cheaper than SRAM, but it is also
much slower. Therefore place a small SRAM
cache near processor.

Optimisation – p.6/22

Cache. . .

CPU Cache Memory

Vector CPUs usually use SRAM for all memory,
and bank it to b. . . ery.

Optimisation – p.7/22

Memory-Cache mapping

The cache is partitioned up into
chunks of size c called cache-lines.
In the simplest caching scheme, ev-
ery memory location x is mapped to a
specific cache line l , along the lines
of:

l = (x mod s)/c

where s is the size of the cache.
A status register records if the cache
line has been written to (dirty) and
so needs to be flushed back to
main memory before that line can be
reused for another part of memory.

cache

· · ·

memory

· · ·

· · ·

...

· · ·

Optimisation – p.8/22

Memory-Cache mapping

The cache is partitioned up into
chunks of size c called cache-lines.
In the simplest caching scheme, ev-
ery memory location x is mapped to a
specific cache line l , along the lines
of:

l = (x mod s)/c

where s is the size of the cache.
A status register records if the cache
line has been written to (dirty) and
so needs to be flushed back to
main memory before that line can be
reused for another part of memory.

cache

· · ·

memory

· · ·

· · ·

...

· · ·

Optimisation – p.8/22

Memory-Cache mapping

The cache is partitioned up into
chunks of size c called cache-lines.
In the simplest caching scheme, ev-
ery memory location x is mapped to a
specific cache line l , along the lines
of:

l = (x mod s)/c

where s is the size of the cache.
A status register records if the cache
line has been written to (dirty) and
so needs to be flushed back to
main memory before that line can be
reused for another part of memory.

cache

· · ·

memory

· · ·

· · ·

...

· · ·

Optimisation – p.8/22

Memory Heirarchy

Registers

Cache

Memory

Disk

Tape

Cost

Capacity

Arrange data locally (eg use stride 1 if
possible)

Avoid strides that are multiples of cache line
size/page size (typically a power of two)

Optimisation – p.9/22

Memory Heirarchy

Registers

Cache

Memory

Disk

Tape

Cost

Capacity
Arrange data locally (eg use stride 1 if
possible)

Avoid strides that are multiples of cache line
size/page size (typically a power of two)

Optimisation – p.9/22

Array Padding

integer::parameter n=1024*1024
real*8 a(n),b(n),c(n)
do i=1,n

a(i)=b(i)+c(i)

These arrays are 8MB in size. Napier has a
2MB cache.

Each array overlaps in cache a(i) has the
same cache location as b(i) and c(i). The
cache line will be flushed 3 times each
iteration!

Optimisation – p.10/22

Array Padding...

integer::parameter n=1024*1024
real*8 a(n),space1(16),b(n)
real*8 space2(16),c(n)
common /foo/a,space1,b,space2,c
do i=1,n

a(i)=b(i)+c(i)

This ensures a(i) is on a different cache line
to b(i) and c(i)

Similarly it may be sensible to add an extra
row to a higher dimensional array:
real*8 a(129,128) rather than
real*8 a(128,128) Optimisation – p.11/22

Prefetching

The latency involved in a cache miss can be
hidden by issuing a load instruction several
instructions ahead of the data actually being
needed.

The optimiser will usually take care of this for
you

This can be simulated in your source code,
but its difficult to arrange this without
interference from the optimiser.

Optimisation – p.12/22

Hyperthreading

Technology invented by Tera corporation, and
bought by Intel.

Implemented in latest Pentium IV CPUs

When a thread stalls due to a cache miss,
CPU switches to another thread.

Compile program with -openmp or -parallel,
and run on 2 threads per CPU

Optimisation – p.13/22

Hyperthreading example

Single precision Matmul compiled with
ifc -O3 -tpp7 -unroll -openmp -vec -axW -xW

0

500

1000

1500

2000

0 2000 4000 6000 8000 10000 12000

M
F

lo
ps

Matrix size

Unvectorised
Vectorised

Hyperthreading
Hyperthreading and Vectorisation

Optimisation – p.14/22

Its a bit more complicated...

Modern CPUs have multiple cache levels (L1,
L2, etc.).

Addresses used at machine language level
are virtual. Virtual addresses are mapped to
physical address by the virtual memory
manager. Mapped addresses are cached in
the Translation Lookaside Buffer (TLB).

The effect of the TLB is like a large cache

Optimisation – p.15/22

Inlining

Subroutine & Function calls degrade
performance

Call and return instructions add overheads

Pushing arguments onto stack and setting
stackframe add overheads

Breaks software pipelines

Inhibits parallelisation (ameliorated with
PURE)

Small functions/subroutines should be inlined

Optimisation – p.16/22

Inlining...

Compilers usually do inlining at highest
optimisation level

C++ has inline keyword

Fortran has internal functions (possibly inlined)

C preprocessor macros can be used in simple
cases

Worst case scenario — you can always manually
inline code

Inlining trades speed for code size — unless cod-
ing for embedded applications, code size is rarely a
problem.

Optimisation – p.17/22

Loop unrolling

Loop overheads: 3 clock cycles per iteration

Increment index i=i+1

Test i<n

Branch if false then exit

Consider axpy
z(i)=a*x(i)+y(i)

3 load/stores, 1 fused add-multiply: Loop over-

heads dominate!

Optimisation – p.18/22

Unrolling (depth 4)

do i=1,n,4
z(i)=a*x(i)+y(i)
z(i+1)=a*x(i+1)+y(i+1)
z(i+2)=a*x(i+2)+y(i+2)
z(i+3)=a*x(i+3)+y(i+3)
enddo
12 load/stores, 4 fused add-multiplies, 3
cycles of loop overhead. Loop overhead no
longer dominates!

But need 13 registers instead of 4. Unrolling
too much leads to register spill.

Unrolling typically performed at -O3.
Optimisation – p.19/22

Temporary Copies

Consider a 5 point stencil

∆xij = κ(xi−1,j + xi+1,j + xi,j−1 + xi,j+1 − 4Xij)

delx=kappa*(eoshift(x,shift=-1,dim=1)+...-4*x)

This creates 4 temporary arrays to hold shifted

data. Lots of copying!

Optimisation – p.20/22

Temporary copies...

Instead:
forall (i=2:n-1,j=2:n-1)

delx(i,j)=kappa(i,j)*(x(i-1,j)+...-4*x(i,j))

A clever compiler may be able to optimise the
eoshift code, but don’t bet on it!

In C++, expression templates can help

Optimisation – p.21/22

Conclusions

Advanced Programming doesn’t always help
performance

but, usually helps code readability

10% of code consume 90% of CPU time

Premature optimisation is the root of all evil
Donald Knuth

Optimisation – p.22/22

Conclusions

Advanced Programming doesn’t always help
performance

but, usually helps code readability

10% of code consume 90% of CPU time

Premature optimisation is the root of all evil
Donald Knuth

Optimisation – p.22/22

Conclusions

Advanced Programming doesn’t always help
performance

but, usually helps code readability

10% of code consume 90% of CPU time

Premature optimisation is the root of all evil
Donald Knuth

Optimisation – p.22/22

Conclusions

Advanced Programming doesn’t always help
performance

but, usually helps code readability

10% of code consume 90% of CPU time

Premature optimisation is the root of all evil
Donald Knuth

Optimisation – p.22/22

	Optimisation
	Constant Elimination
	Merging Expensive Operations
	Special case functions
	Optimised Libraries
	The Cache
	Cacheldots
	Memory-Cache mapping
	Memory Heirarchy
	Array Padding
	Array Padding...
	Prefetching
	Hyperthreading
	Hyperthreading example
	Its a bit more complicated...
	Inlining
	Inlining...
	Loop unrolling
	Unrolling (depth 4)
	Temporary Copies
	Temporary copies...
	Conclusions

