An example of TD Convolution:

TD convolution is used for (i.e.) : TD-C is used in Radar DSP. It can be used in various configurations. In other words, for differenct purposes or using different strategies, it can be used in conjunction with other methods to glean the desire or most information or cleanest information from the signal. For example, (A frequency domain de-convolution approach for transmitter noise cancellation is being developed. The time domain radar return from distributed clutter is the convolution of the coded transmit pulse and the distributed clutter field. By taking the Fast Fourier Transform (FFT) of the distributed clutter return, the IPN contribution of the noisy transmit waveform can be removed by dividing it by the frequency spectrum of the measured transmit waveform. An IFFT is used to return to the time domain for subsequent MTI processing.)

One method to remove clutter uses the TD convolution of the coded transmit pulse and the distributed clutter field. Then it is FFTed and certain noise is removed by dividing it by the frequency spectrum of the waveform. Then an IFFT to revert to the time domain.

By:

Adaptive Distributed
Clutter Improvement Factor (ADDCIF) John Hoffman, Louis Vasquez,
Charles Farthing, and Clarence Ng
Systems Engineering Group, Inc.

Why do we need shape.h?

A: so that we can do multi dimensional arrays in pete. We also want our array class to be extendable to use psi calculus.

Your array class seems simple, what pete stuff had to be implemented?

The last step in making Vec3 PETE-compatible is to provide a way for PETE to assign to a Vec3 from an arbitrary expression. This is done by overloading operator= to take a PETE expression as input, and copy values into its owner:

064 template<class RHS> 065 Vec3 &operator=(const Expression<RHS> &rhs) 066 { 067 d[0] = forEach(rhs, EvalLeaf1(0), OpCombine()); 068 d[1] = forEach(rhs, EvalLeaf1(1), OpCombine()); 069 d[2] = forEach(rhs, EvalLeaf1(2), OpCombine()); 070 071 return *this; 072 } The first thing to notice about this method is that it is templated on an arbitrary class RHS, but its single formal parameter has type Expression<RHS>. This combination means that the compiler can match it against anything that is wrapped in the generic PETE template Expression<>, and only against things that are wrapped in that way. The compiler cannot match against int, complex<short>, or GreatAuntJane_t, since these do not have the form Expression<RHS> for some type RHS.

The forEach function is used to traverse expression trees. The first argument is the expression. The second argument is the leaf tag denoting the operation applied at the leaves. The third argument is a combiner tag, which is used to combine results at non-leaf nodes. By passing EvalLeaf1(0) in line 67, we are indicating that we want the Vec3s at the leaves to return the element at index 0. The LeafFunctor<Scalar<T>, EvalLeaf1> (defined inside of PETE) ensures that scalars return their value no matter the index. While EvalLeaf1 obtains values from the leaves, OpCombine takes these values and combines them according to the operators present at the non-leaf nodes. The result is that line 67 evaluates the expression on the right side of the assignment operator at index 0. Line 68 does this at index 1, and so on. Once evaluation is complete, operator= returns the Vec3 to which values have been assigned, in keeping with normal C++ conventions.

How will this psi be implement with pete?:

1-Iterator like concept.

2-Index composition using expression templates -> special scalar – like type that is copied by value but only performed once per array operation regardless of the matrix size.

What are psi ops benefits?

Removes more temporaries which pete cannot

No intermediate computations on itself (i.e. reverse).

Eliminates the entire loop (not merely reducing it to one (or the minimum number).

Reduces loop to a constant time indexing operation rather than a loop calculation.

Did you test other ops?
No. It wouldn’t make a difference, because we are testing the overhead primarily.

Also, any op can be implemented in pete (virtually).

The evaluation is the same except for ops that can be boiled down to indexing operations.

