This slide shows the mapping of a TD Convolution to processor and memory.

This reflects the application of a series of Psi Calculus rules implemented by hand, presented in the paper “Efficient Radar Processing Via Array and Index Algebras by Mullin, Hunt and Rosenkrantz from the Proceedings of the 1st Workshop on Optimizations for DSP and Embedded Systems in 2003.
Benefits of MOA (Mathematics of Arrays) and Psi Calculus –

· A processor/memory hierarchy can be modeled by reshaping data using an extra dimension for each level.

· Composition of monolithic operations can be re-expressed as compositions of operations on smaller data granularities that; match memory hierarchy levels and avoid materialization of intermediate arrays

· Algorithms cam be automatically, algebraically, transformed to reflect array reshaping shown above.
· This approach facilitates programming or mechanizing the reshaping for computer computation.

· For any given array expression, reduction rules from the Psi Calculus can be applied in a mechanical process.

· According to Prof. Mullin’s “A Mathematics of Arrays” PhD thesis, this is guaranteed to produce an implementation having the least possible number of memory reads and writes.
Basically, this slide shows a 2-vector problem, restructured.

The restructuring requires higher dimensions.

In this representation, the partitioning of the problem to be performed on parallel processors is represented vertically. The splitting of the problem using an arbitrary cache size is represented by the summation notation.

Basically, we have a vector X and H where H is the filter or the vector <15 … 10> and X, shown as <1 … 9> is the SAR data padded with zeros to match the filter array size.

The blocks on the right represent breaking the problem in the time domain. It is essentially a shift operation.

The problem is then broken up to be computed on multiple processors, in this example.

When you break up the computation over processors, you do it in a way that minimizes communication, in this case be break it up by rows.

In this example, the problem is broken up so that the upper blocks are computed on one processor and the lower blocks on another with no IPC.

The problem is further broken up so as to integrate a cache loop into the problem.

The filter is partitioned into two shorter rows (as an example to reflect a restricted cache size). Basically, the filter <15 … 10> is split into 2 rows.

Each row fits into the cache and is computed efficiently with no time wasting page faults.

The idea of our research is to mechanize the psi rules along with fast N-dimensional array computations.

This requires:

adding shape and psi calculus rules.
Our array class provides part of the platform, with pete, for mechanizing these rules.

Integrating additional Psi rules into pete such as the rules required for the dimension lifting and partitioning shown above is additionally important.

The rules were demonstrated manually. Mechanizing these manipulations is the key to faster computations.

Our partial solution to the problem demonstrates that we do not have any performance degradation by supporting shapes in our array class.
