We defined and N-dimensional array class with shape in order to support the mechanization operations such as these.

The new array class extends the support for array operations in PETE by defining the shape for the array

class.

PETE is a library that facilitates loop unrolling for computations.  This greatly speeds it up because it removes most temporary arrays from the computation.

The essence of our Array class is the shape notion. 

The shape notion represents the N-dimensional array shape.

In our class, this is passed in as an STL vector.

The array class transforms the underlying linear storage container into an N-dimensional Array representation and facilitates Unary and Binary operations on the shaped Array.  

This slide then gives you a glimpse of the non-materialization optimizations facilitated by PETE.

The Array class integrates many PETE constructs to facilitate this.

If we have an N-dimensional Array computation A+B+C (the result assigned to another like Array)

It is represented as a left associative expression tree (or abstract syntax tree) such as this (point to slide).

This is represented as embedded C++ template types as shown.

The primary expression, shown in white, is of type Expression, and is comprised of many sub-types.

It is essentially a binary node which is compressed of an operation (addition in this case), a reference type with a templeated array sub-type, and another binary node which resolves to an array reference type.  Thus, it represents the addition of two arrays.

The second sub-expression (represented in green, represents the A+B portion of the expression tree.

The point of all this is to represent the expression as templated types which are ultimately resolved by the overloaded assignment operator.  Normally, c++ resolves these operations at each step, however, PETE forces them to be resolved only when assigned to another array, thus elimination the need for intermediate storage objects.

Array Class:

As I said before, our Array class uses these constructs and facilitates these operations on N-dimensional arrays.  We tested the performance of our class.  A simplified graph of our results is shown above.  

Essentially, the red line is the performance of hand coded C on the above expression.  

The black line is the performance of C++ (done normally) on the above expression.

The brown line is the performance of our array class on the above expression and the blue line (which almost covers the brown line) is the performance of PETE, with a manual implementation (with out the use of our class) on the expression.

It shows that our class performs almost as well as hand coded c, much better than normally implemented c++ and as well as a manual pete implementation. 

The benefit here is fast computation with more programmability by using object oriented constructs.  This also provides a platform for inplementing psi calculus rules to furthur improve the computational speed. 

The Psi calculus rules rewrite the AST often reducing operations to mere index manipulations.

Through other moa ops as well as memory and processor mapping.

-----------------------------------------------------------------------------------------------------------------------------------------------

Show templated type for the A = B + C + D expression.

Show how it is evaluated (tree)

Explain that the nodes are just templated types and are not actually evaluated.

The evaluation is done by the overloaded assignment operator rather than cascading operator overloading.

With the support for shapes in pete we will be able to mechanize everything.

Although this is not yet done;

demonstrate that we do not have any performance degradation by supporting shapes

and an array class. 

The + example is ok since adding

the other ops will not change performance.

These things must be on the slides with a story as above

 radar

 memory hierarchies

2.      Define N-dimensional array class with shape in

order to support the mechanization linear

transformations in the Psi-Calculus. 

3.      The new array class extends the support for array

operations in PETE by defining the shape for the array

class.

4.      We ran the experiment on two different platforms

yet got the similar result: with PETE and our array

class, we achieved similar performance as is obtained

using C 

5.      Future work may be in adding additional algorothm

methods to enable other psi calculus operations

Application: RADAR, SAR

Future Work:

Related notes:

The last step in making Vec3 PETE-compatible is to provide a way for PETE to assign to a Vec3 from an arbitrary expression. This is done by overloading operator= to take a PETE expression as input, and copy values into its owner: 

064 template<class RHS> 065 Vec3 &operator=(const Expression<RHS> &rhs) 066 { 067 d[0] = forEach(rhs, EvalLeaf1(0), OpCombine()); 068 d[1] = forEach(rhs, EvalLeaf1(1), OpCombine()); 069 d[2] = forEach(rhs, EvalLeaf1(2), OpCombine()); 070 071 return *this; 072 } The first thing to notice about this method is that it is templated on an arbitrary class RHS, but its single formal parameter has type Expression<RHS>. This combination means that the compiler can match it against anything that is wrapped in the generic PETE template Expression<>, and only against things that are wrapped in that way. The compiler cannot match against int, complex<short>, or GreatAuntJane_t, since these do not have the form Expression<RHS> for some type RHS. 

The forEach function is used to traverse expression trees. The first argument is the expression. The second argument is the leaf tag denoting the operation applied at the leaves. The third argument is a combiner tag, which is used to combine results at non-leaf nodes. By passing EvalLeaf1(0) in line 67, we are indicating that we want the Vec3s at the leaves to return the element at index 0. The LeafFunctor<Scalar<T>, EvalLeaf1> (defined inside of PETE) ensures that scalars return their value no matter the index. While EvalLeaf1 obtains values from the leaves, OpCombine takes these values and combines them according to the operators present at the non-leaf nodes. The result is that line 67 evaluates the expression on the right side of the assignment operator at index 0. Line 68 does this at index 1, and so on. Once evaluation is complete, operator= returns the Vec3 to which values have been assigned, in keeping with normal C++ conventions. 

Future Work:

Psi complements this (reverse).

Psi will improve this (to remove temporaries) 

How to implement:

1-Iterator like concept.

2-Index composition using expression templates -> special scalar – like type that is copied by value but only performed once per array operation regardless of the matrix size.

Removes more temporaries which pete cannot 

No intermediate computations on itself (i.e. reverse).

Eliminates the entire loop (not merely reducing it to one (or the minimum number).

Reduces loop to a constant time indexing operation rather than a loop calculation.

