We defined and N-dimensional array class with shape in order to support the mechanization operations such as these.

The new array class extends the support for array operations in PETE by defining the shape for the array

class.

PETE is a library that facilitates loop unrolling for computations.  This greatly speeds it up because it removes most temporary arrays from the computation.

The essence of our Array class is the shape notion. 

The shape notion represents the N-dimensional array shape.

In our class, this is passed in as an STL vector.

The array class transforms the underlying linear storage container into an N-dimensional Array representation and facilitates Unary and Binary operations on the shaped Array.  

This slide then gives you a glimpse of the non-materialization optimizations facilitated by PETE.

The Array class integrates many PETE constructs to facilitate this.

If we have an N-dimensional Array computation A+B+C (the result assigned to another like Array)
It is represented as a left associative expression tree (or abstract syntax tree) such as this (point to slide).

Show how it is evaluated (tree)

The nodes of the tree are just templated types and are not actually evaluated.

The evaluation is done by the overloaded assignment operator rather than cascading operator overloading.

This is represented as embedded C++ template types as shown.

The primary expression, shown in white, is of type Expression, and is comprised of many sub-types.

It is essentially a binary node which is compressed of an operation (addition in this case), a reference type with a templated array sub-type, and another binary node which resolves to an array reference type.  Thus, it represents the addition of two arrays.

The second sub-expression (represented in green, represents the A+B portion of the expression tree.

The point of all this is to represent the expression as templated types which are ultimately resolved by the overloaded assignment operator.  Normally, c++ resolves these operations at each step, however, PETE forces them to be resolved only when assigned to another array, thus elimination the need for intermediate storage objects.

Array Class:

As I said before, our Array class uses these constructs and facilitates these operations on N-dimensional arrays.  We tested the performance of our class.  A simplified graph of our results is shown above.  

Essentially, the red line is the performance of hand coded C on the above expression.  

The black line is the performance of C++ (done normally) on the above expression.

The brown line is the performance of our array class on the above expression and the blue line (which almost covers the brown line) is the performance of PETE, with a manual implementation (with out the use of our class) on the expression.

It shows that our class performs almost as well as hand coded c, much better than normally implemented c++ and as well as a manual pete implementation. 

Our experimental results show promising performance on a C++ platform that is more programmable.
The benefit here is fast computation with more programmability by using object oriented constructs.  This also provides a platform for implementing psi calculus rules to further improve the computational speed (to be done in the future). 

The Psi calculus rules rewrite the AST often reducing operations to mere index manipulations.  As well as facilitating memory and processor mapping.

In sum, the system will allow n-dim computations, unroll loops – reducing the number of computations performed – remove temporaries (pete and psi ops) and map to memory hierarchies.
