Slide 1 : My name is Larry Bush. - Our paper involves the development and testing of a new class which interfaces with PETE, the Portable Expression Template Engine.
· Our objective is fast array computations.

· Our implementation incorporates n-dimensional capability into PETE, to serve as a platform for Psi calculus rules.
· The performance of our C++ implementation is competitive with Hand Optimized C.
· Our approach combines high performance and programmability.

· This is important to scientific programming applications such as signal processing.

· Specifically Time-Domain analysis,
· This is a straight forward and accurate SAR analysis technique,
· It is computationally intensive, which limits data size.
Faster computational techniques would improve this situation.

Slide 2 : This slide shows a representative Time-Domain Convolution computation mapped to processor and memory hierarchies using Psi-Calculus rules.

1. Basically, we have a filter vector and a Data Vector.

2. The Data is padded with zeros then shifted to represent the problem over the time domain.
3. The problem is then broken up by row to be computed on multiple processors.
4. which creates no inter-processor communication.

5. The problem is further partitioned by column to integrate a cache loop.
6. Each row will fit into the cache to avoid cache misses.
Essentially, we move communication to where it can be performed the fastest.
These rules could be applied to any Array redistribution such as cyclic, block-cyclic or block-block.

This mapping was composed using a series of Psi calculus rules which guarantee minimal data flow.
It results in a higher dimensional problem.
Slide 3 : The idea is to mechanized these rules on our platform using an n-dimensional array class with shape along with eliminating temporary arrays using expression templates.

This slide then gives you a glimpse of how PETE eliminates temporary arrays.

We have an N-dimensional Array computation A+B+C.
PETE represents it internally an expression tree in the form of a C++ templated type.

· The point is to represent the expression as templated types which are ultimately resolved by the overloaded assignment operator.
· C++ normally resolves these operations at each step; however, PETE rewrites the Tree by propagating Algebraic Evaluation rules. This eliminates intermediate storage objects.

Our Array class uses these constructs and facilitates these operations on N-dimensional arrays. All array operations are defined in terms of shape. Other Psi-Calculus operations could use this platform. For example transpose, reversal, decompositions or any composition of these.

We tested the performance of our implementation which shows that it is competitive with hand optimized C.
Consequently, we do not have any performance degradation by supporting the shape notion in our class.

Thank you.[image: image1.png]

PAGE
1

