Larry Bush

 April 30, 2002

Student ID: 660 220 742
Email: bushl2@rpi.edu or Lawrence_Bush@dps.state.ny.us

Larry Bush

 April 30, 2002

Student ID: 660 220 742
Email: bushl2@rpi.edu or Lawrence_Bush@dps.state.ny.us

Lock-Free Linked List using Compare & Swap

Demonstration Notes

1. Outline

Page 3

2. Future Work

Page 4

3. Program File Descriptions
Page 5

4. Program Test Sequence

Page 8

Demonstration Outline:

1.
Bring Valois Thesis

2.
Run Simulation

3.
Explain Each File

· Show Code On Screen.

· Refer to Program File Descriptions.

Main

Test

TestFunctionF

Lock

CriticalSection

List

Function:
Insert

Function:
Erase

Function:
Begin

Node

Function:
Compare&Swap

Iterator

Function:
Update Iterator

4.
Go over possible future work.

Possible Future Work:

Implementation

1. Fully implement memory management.

2. Recursive backtracking of deleted auxiliary nodes by the delete function.

3. Full Reference Count.

4. Memory Recycling

i. Free List

5. Use a real Test and Set Primitive

6. Implement errata memory management fix.

Implementation Problems

7. Figure out if the memory management fix really works.

8. How do we implement without accessing the free list, or deleted nodes?

9. Timed test of algorithm.

10. Test algorithm with other data types.

Theory Problem

11. No lockout is only possible in software by N consensus number for n processes.

Topic Review

Concurrent Theory

12. What is the relationship between consensus number and providing no lockout to mutual exclusion primitives?

13. What is the current body of knowledge on the relationship between consensus number and providing no lockout to mutual exclusion primitives.

14. What research has been done on efficient concurrent ADT implementations.

Concurrent Implementation
15. What concurrent ADT implementation currently exist.

16. What concurrent libraries currently exist.

17. What ongoing research and library developement exists for concurent ADTs (and algorithms).

18. Figure out what is most relavent to this topic.

Program File Description

File

Purpose

main.cpp
This file contains the main function.

The main function creates a list test object and

runs the multithreaded test and integrity test.

test.h:

Header file for the test class.

It declares the interface for the test class.

test.cpp

Spawns threads and tests the list.

Implementation of test member functions.

This class performs a test on the Lock-Free linked list.

The test involves many threads.

Each thread initially inserts many nodes into the list.

Then, each thread iterates to the 25th node in the list and begins

inserting and deleting a bunch of nodes. It does this many times.

The objective is to create contention by having all of the threads

inserting and deleting in the same area.

The following are some of the Important Member Functions and

Member Data of the test class:

This class conatains 2 CriticalSection objects for syncronizing the

screen ouput and avoiding race conditions on the thread number member variable.

ThreadFunc()

multithreaded_test()

integrityTest()

TestFuctionF()

lockfreelist.h
Declares and implements a Generic Lock-Free Linked List class.

This file contains three classes:

1.
LockFreeList<ListType>

Implements a singly generic Lock-Free linked list.

It also conatins the list_node and iterator sub-structures.

The LockFreeList class stores objects in a linked list.

The Storage sturcture heirarchy of an object of type ListType looks like this:

LockFreeList(basenode) -> list_node(data) -> ListType

A LockFreeList object contains a pointer(basenode) to a list of nodes,

that are linked together. Each node contains a pointer (data) that

points to an object.

 This class allows concurrent insertions and deletions into the list.

 The inserting function does not need to provide mutual exclustion.

 The calling functions can insert, delete and traverse without being

 concerned with synchronization. The implementation is "Lock-Free."

Important functions:

 begin()

 erase()

 delete_node()

 insert()

 update_iterator()

2.
LockFreeList<ListType>::iterator

Implements a linked list iterator for LockFreeList.

(This is a sub-class of LockFreeList.)

Important functions:

update_iterator()

test_iterator()

Overloaded Operators:

++
prefix

++ postfix

=

==

!=

->

*

3.
LockFreeList<ListType>::list_node

Implements a linked list node for LockFreeList

(This is a sub-class of LockFreeList.)

Important functions:

is_valid()

is_aux_cell()

is_normal_cell()

is_basenode()

is_lastnode()

is_not_basenode()

is_not_lastnode()

set_is_basenode()

set_is_lastnode()

compare_and_swap_next()

This class contains the CriticalSection object "m_sync_compare_and_swap"

for making the compare and swap function atomic.

lock.h

This file declares the Lock class interface.

It contains a CriticalSection pointer member variable.

It also contains a constructor, destructor, and an unLock function.

lock.cpp

This file implements the Lock class member functions.

It contains a CriticalSection pointer member variable.

It also contains a constructor, destructor, and an unLock function.

This class works with the CriticalSection class that I also created.

The Lock constructor sets its internal pointer to a CriticalSection

object that is passed in. Then it enters the critical section.

The destructor uses the internal pointer to leave the critical section.

Therefore, to use this lock, we must pass it a CriticalSection object

upon instantiation. The lock can be directly unlocked using the unLock

member function. However, the lock is unlocked automatically when

it goes out of scope.

criticalsection.h

This file declares the critical section class interface.

It contains a windows CRITICAL_SECTION object.

It declares the constructor, destructor, enter

and leave member functions.

criticalsection.cpp
This file implements the critical section class.

This class makes it easier to instantiate, enter, and

leave a Win32 critical section.

When a CriticalSection object is created, it automatically

creates a real Win32 critical section.

Basically, the purpose of this class to make the calls object oriented rather than

function oriented. It also makes them look nicer.

The real benefit is when this object is used in conjunction with the lock object.

Program Test Sequence

This section explains the program test sequence and the sample output included in the accompanying attachment (Attachment 3).

Please refer to Attachment 5, files test.cpp and test.h for the complete test sequence code.

Note: This explaintion was also incorporated into the project write-up.

The test sequence described below is approximately the 10th significant iteration of the test sequence. I kept rewriting more robust versions that would test the ADT more exhaustively and create a lot of contention.

To test this ADT I created a separate class that runs a program test sequence. The test sequence was written to be exhaustive (many inserts, deletes and traversals) and to create a lot of contention. The test program runs 40 concurrent threads. Each thread makes about 1,000 insertions and 400 deletions for a total of about 40,000 insertions and about 16,000 deletions. The function “TestFunctionG” (in the attached file test.cpp) performs this thread specific testing sequence. The test sequence is as follows:

Each thread makes 500 insertions. It does this 10 nodes at a time, and then moves the iterator back to the beginning of the list.

Each thread then performs the following sequence 100 times.

1. Move the iterator to the begining of the list.

2. Iterate to the 25th cell (note iterating skips auxiliary cells).

3. Delete 2 nodes.

4. Iterate 2 nodes forward.

5. Insert 3 cells.

6. Move the iterator to the beginning of the list.

7. Iterate to the 25th real node.

8. Insert 3 nodes.

9. Iterate forward 2 nodes.

10. Delete 2 nodes.

Each of the 40 threads operate concurrently.

The general idea is that the deletions would cause the inserting iterators to “fall” back to its position. This would then make them perform operations on the same cell or on directly adjacent cells, creating contention.

The test program tracks various statistics to verify the results.

The contention created by the numerous insertions and deletions causes some of the insertions and deletions to fail. This is the intended behavior of the ADT.

When an insertion or deletion fails, it returns the value of false. When an insertion or deletion is successful, it returns the value of true.

Each thread keeps track of how many insertions and deletions it makes. It also keeps track of how many of these fail. Each thread then calculates a net number of additions to the list (i.e. successful insertions – successful deletions). Each thread then adds these figures to the (net) total number added to the test data structure (using a synchronization object to prevent race conditions on the value). That number is shown in the Sample Output as the “Sum of threads net additions to the list.”

The number of successful and un-succesful insertions and deletions for each individual thread is also shown in the “Sample Output” Attachment 3. One interesting point that the data reveals is that the thread that finishes first typically has fewer failed insertions and deletions than the other threads. This is because it had more time in the insertion area by itself (or without as many other concurrently operating threads). In other words, it experiences less contention. The same is true for the threads that finish last. Note that the threads are run in order (1 – 40) but they do not necessarily finish in that order. This really depends on how much CPU time each thread is given.

The list data structure also tracks these additions and deletions. A synchronization object also protects the changes to this value. That number is shown below as the “List internal add/delete counter: ListSize.”

After all of the threads have quit, the program runs an integrity test on the list. This is run in non-concurrent mode. It adds up all the normal and auxiliary nodes in the list and reports the figures (“List internal add/delete counter: ListSize” and “total_aux_cells”).

You can see from the data below that all 3 measurements indicate the same number of normal cells in the list. This shows that the list functions are correctly executing the insertion and deletion requests. It also means that the ADT correctly reportes to the threads when these operations fail. In all the tests I performed, these numbers always matched.

You can see from the data in Attachment 3 that there were numerous insertion failures. This is normally the case. It is a small percentage of the total attempts but with 40,000 inserts, the small percentage is a significant number (about 600 in total).

There are only 4 failed deletions in this run. There are usually 0 –5 for this particular test. The test attempts to create as much contention as possible by having 40 concurrent threads all inserting and deleting in the same area of the list (approximately from node 20 – 40). However, causing deletions to fail requires more contention than causing insertions to fail.

The data in the Attachment 3 shows a list of the first 1,000 nodes in the final list. The data below also shows the total number of real nodes and auxiliary nodes. There is 1 more auxiliary node than normal cell in the final list. This is perfect because we need at least one more auxiliary node so that there is one before and after each cell.

The algorithm does not guarantee that there will be just 1 more auxiliary node than real nodes. However, this is usually the case. Sometimes there are a few more than needed. The algorithm attempts to remove them all, but depending on the type and amount of contention, it can leave some extras. They will be cleaned up later, but at any given moment, there may be some extra auxiliary nodes in the list. This is consistent with the intended operation of the ADT.

Attachment 3 includes a report on the contents and type of the first 1,000 cells so that you can see that this is so. The list also contains 1 basenode and 1 lastnode (the last node is not shown in the report).

9

