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Abstract

Recognizing arbitrary objects in the wild has been a
challenging problem due to the limitations of existing clas-
sification models and datasets. In this paper, we propose a
new task that aims at parsing scenes with a large and open
vocabulary, and several evaluation metrics are explored for
this problem. Our approach is a joint image pixel and word
concept embeddings framework, where word concepts are
connected by semantic relations. We validate the open vo-
cabulary prediction ability of our framework on ADE20K
dataset which covers a wide variety of scenes and objects.
We further explore the trained joint embedding space to
show its interpretability.

1. Introduction
One of the grand goals in computer vision is to recognize

and segment arbitrary objects in the wild. Recent efforts
in image classification/detection/segmentation have shown
this trend: emerging image datasets enable recognition on
a large scale [6, 30, 32], while image captioning can be
seen as a special instance of this task [12]. However, nowa-
days most recognition models are still not capable of clas-
sifying objects at the level of a human, in particular, taking
into account the taxonomy of object categories. Ordinary
people or laymen classify things on the entry-levels, and
experts give more specific labels: there is no object with
a single correct label, so the prediction vocabulary is inher-
ently open-ended. Furthermore, there is no widely-accepted
way to evaluate open-ended recognition tasks, which is also
a main reason this direction is not pursued more often.

In this work, we are pushing towards open vocabulary
scene parsing: model predictions are not limited to a fixed
set of categories, but also concepts in a larger dictionary,
or even a knowledge graph. Considering existing image
parsing datasets only contain a small number of categories
(~100 classes), there is much more a model can learn from
those images given extra semantic knowledge, like Word-
Net dictionary (~100,000 synsets) or Word2Vec from exter-
nal corpus.

(d) Concept Synthesis(c) Concept Retrieval

(a) Input Image (b) Scene Parsing

Figure 1. We propose an open vocabulary framework such that
given (a) an input image, we can perform (b) scene parsing, (c)
concept retrieval (”table”), and (d) concept synthesis (intersection
of “game equipment” and “table”) through arithmetic operations
in the joint image-concept embedding space.

To solve this new problem, we propose a framework that
is able to segment all objects in an image using open vocab-
ulary labels. In particular, while the method strives to label
each pixel with the same word as the one used by the human
annotator, it resorts to a taxonomy when it is not sure about
its prediction. As a result, our model can make plausible
predictions even for categories that have not been shown
during training, e.g. if the model has never seen tricycle,
it may still give a confident guess on vehicle, performing
more like a human.

Our framework incorporates hypernym/hyponym rela-
tions from WordNet [18] to help with parsing. More con-
cretely, word concepts and image pixel features are embed-
ded into a joint high-dimentional vector space so that (1) hy-
pernym/hyponym relations are preserved for the concepts,
(2) image pixel embeddings are close to concepts related
to their annotations according to some distance measures.
This framework offers three major advantages: (1) predic-
tions are made in a structured way, i.e., they can be interme-
diate nodes in WordNet, and thus yielding more reasonable
mistakes; (2) it is an end-to-end trainable system, its vocab-
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ulary can be huge and is easily extensible; (3) the frame-
work leaves more freedom to the annotations: inconsistent
annotations from workers with different domain knowledge
have less of an affect on the performance of the model.

We explore several evaluation metrics, which are useful
measures not only for our open vocabulary parsing tasks,
but also for any large-scale recognition tasks where con-
fusions often exist. The open vocabulary parsing ability of
the proposed framework is evaluated on the recent ADE20K
dataset [33]. We further study the properties of the embed-
ding space by loosing classification boundary, concept re-
trieval, and concept synthesis with arithmetics.

1.1. Related work

Semantic segmentation and scene parsing. Due to
astonishing performance of deep learning, in particular
CNNs [14], pixel-wise dense labeling has received signif-
icant amount of attention. Popular architectures include
fully convolutional neural network (FCN) [17], deconvo-
lutional neural network [19], encoder-decoder SegNet [2],
dilated neural network [3, 31], etc. These networks perform
well on datasets like PASCAL VOC [8] with 20 object cat-
egories, Cityscapes [4] with 30 classes, and a recently re-
leased benchmark SceneParse150 [33] covering 150 most
frequent daily objects. However, they are not easily adapt-
able to new objects. In this paper we aim at going beyond
this limit and to make predictions in the wild.

Zero-shot learning. Zero-shot learning addresses
knowledge transfer and generalization [24, 10]. Models are
often evaluated on unseen categories, and predictions are
made based on the knowledge extracted from the training
categories. Rohrbach [25] introduced the idea to transfer
large-scale linguistic knowledge into vision tasks. Socher
et al. [27] and Frome et al. [9] directly embedded visual
features into the word vector space so that visual similarities
are connected to semantic similarities. Norouzi et al. [20]
used a convex combination of visual features of training
classes to represent new categories. Attribute-based meth-
ods map object attribute labels or language descriptions to
visual classifiers [22, 1, 16, 15].

Hierarchical classifications. Hierarchical classification
addresses the common circumstances that candidate cate-
gories share hierarchical semantic relations. Deng et al. [7]
achieved hierarchical image-level classification by trading
off accuracy and gain as an optimization problem. Ordonez
et al. [21], on the other hand, proposed to make entry-level
predictions when dealing with a large number of categories.
More recently, Deng et al. [5] formulated a label relation
graph that could be directly integrated with deep neural net-
works.

While embedding-based approaches cannot embed
knowledge from semantic graphs, optimization-based
methods do not have the ability to generalize to new/zero-
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Figure 2. Jointly embedding vocabulary concepts and image pixel
features.

shot concepts. Our approach on hierarchical parsing is in-
spired by the order-embeddings work [28], we attempt to
construct an asymmetric embedding space, so that both im-
age features and hierarchy from knowledge graphs are ef-
fectively and implicitly encoded by the deep neural net-
works. The major advantage of our approach is that it makes
an end-to-end trainable network, which is easily scalable
when dealing with larger datasets in practical applications.

2. Learning joint embeddings for pixel features
and word concepts

We treat open-ended scene parsing as a retrieval prob-
lem for each pixel, following the ideas of image-caption
retrieval work [28]. Our goal is to embed image pixel fea-
tures and word concepts into a joint high-dimensional posi-
tive vector space RN

+ , as illustrated in Figure 2. The guid-
ing principle while constructing the joint embedding space
is that image features should be close to their concept la-
bels, and word concepts should preserve their semantic hy-
pernym/hyponym relations. In this embedding space, (1)
vectors close to origin are general concepts, and vectors
with larger norms represent higher specificity; (2) hyper-
nym/hyponym relation is defined by whether one vector is
smaller/greater than another vector in all theN dimensions.
A hypernym scoring function is crucial in building this em-
bedding space, which will be detailed in Section 2.1.

Figure 3 gives an overview of our proposed framework.
It is composed of two streams: a concept stream and an im-
age stream. The concept stream encodes the pre-defined se-
mantics: it learns an embedding function f(·) that maps the
words intoRN

+ so that the hypernym/hyponym relationships
between word concepts are preserved. The image stream
g(·) embeds image pixels into the same space by pushing
them close to their labels (word concepts). We describe
these two streams in more details in Section 2.2 and 2.3.



Vehicle 

Car 

Concept pair 
Hypernym Score 

Image Stream 

Concept Stream 

entity 

artifact 
living thing 

vessel 
car 

… 

✔	

✗	

entity artifact vehicle car 

… 
vessel 

Predictions Fully Convolutional Segmentation Network 

Word Embedding Network 

Image-Label 
Score 

vehicle 

Figure 3. The open vocabulary parsing network. The concept stream encodes word concept hierarchy based on dictionaries like WordNet.
The image stream parses images based on the learned hierarchy.

2.1. Scoring functions

In this embedding problem, training is performed on
pairs: image-label pairs and concept-concept pairs. For ei-
ther of the streams, the goal is to maximize scores of match-
ing pairs and minimize scores of non-matching pairs. So
the choice of scoring functions S(x, y) becomes important.
There are symmetric scoring functions like Lp distance and
cosine similarity widely used in the embedding tasks,

SLp(x, y) = −‖x− y‖p, Scos(x, y) = x · y. (1)

In order to reveal the asymmetric hypernym/hyponym re-
lations between word concepts, a hypernym scoring func-
tion [28] is indispensable,

Shyper(x, y) = −‖max(0, x− y)‖p. (2)

If x is hypernym of y (x � y), then ideally all the
coordinates of x are smaller than y (

∧
i(xi ≤ yi)), so

Shyper(x, y) = Shyper,max = 0. Note that due to asym-
metry, swapping x and y will result in different scores.

2.2. Concept stream

The objective of the concept stream is to build up seman-
tic relations in the embedding space. In our case, the seman-
tic hierarchy is obtained from WordNet hypernym/hyponym
relations. Consider all the vocabulary concepts form a di-
rected acyclic graph (DAG) H = (V,E), sharing a com-
mon root v̂ ∈ V “entity”, each node in the graph v ∈ V can
be an abstract concept as the unions of its children nodes,
or a specific class as a leaf. A visualization of part of the
DAG we built based on WordNet and ADE20K labels can
be found in Supplementary Materials.

Internally, the concept stream include parallel layers of
a shared trainable lookup table, mapping the word concepts
u, v to f(u), f(v). And then they are evaluated on hyper-
nym scores Sconcept(f(u), f(v)) = Shyper(f(u), f(v)),

which tells how confident u is a hypernym of v. A max-
margin loss is used to learn the embedding function f(·),

Lconcept(u, v) ={
−Sconcept(f(u), f(v)) if u � v,
max{0, α+ Sconcept(f(u), f(v))} otherwise

Note that positive samples u � v are the cases where u is
an ancestor of v in the graph, so all the coordinates of f(v)
are pushed towards values larger than f(u); negative sam-
ples can be inverted pairs or random pairs, the loss function
pushes them apart in the embedding space. In our training,
we fix the root of DAG “entity” as anchor at origin, so the
embedding space stays in RN

+ .

2.3. Image stream

The image stream is composed of a fully convolutional
network which is commonly used in image segmentation
tasks, and a lookup layer shared with the word concept
stream. Consider an image pixel at position (i, j) with
label xi,j , its feature yi,j is the top layer output of the
convolutional network. Our mapping function g(yi,j) em-
beds the pixel features into the same space as their label
f(xi,j), and then evaluate them with a scoring function
Simage(f(xi,j), g(yi,j)).

As label retrieval is inherently a ranking problem, neg-
ative labels x′i,j are introduced in training. A max-margin
ranking loss is commonly used [9] to encourage the scores
of true labels be larger than negative labels by a margin,

Limage(yi,j) =∑
x′
i,j

max{0, β − Simage(f(xi,j), g(yi,j)) + Simage(f(x
′
i,j), g(yi,j))}.

(3)
In the experiment, we use a softmax loss for all our models
and empirically find better performance,



Limage(yi,j) =

− log
eSimage(f(xi,j),g(yi,j))

eSimage(f(xi,j),g(yi,j)) +
∑

x′
i,j
eSimage(f(x′

i,j),g(yi,j))
.

(4)
This loss function is a variation of triplet ranking loss pro-
posed in [11].

The choice of scoring function here is flexible, we
can either (1) simply make image pixel features “close”
to the embedding of their labels by using symmetric
scores SLp(f(xi,j), g(yi,j)), Scos(f(xi,j), g(yi,j)); (2) or
use asymmetric hypernym score Shyper(f(xi,j), g(yi,j)).
In the latter case, we treat images as specific instances or
specializations of their label concepts, and labels as general
abstraction of the images.

2.4. Joint model

Our joint model combines the two streams via a joint
loss function to preserve concept hierarchy as well as visual
feature similarities. In particular, we simply weighted sum
the losses of two streams L = Limage + λLconcept(λ = 5)
during training. We set the embedding space dimension to
N = 300, which is commonly used in word embeddings.
Training and model details are described in Section 4.2.

3. Evaluation Criteria

3.1. Baseline flat metrics

While working on a limited number of classes, four
traditional criteria are good measures of the scene pars-
ing model performance: (1) pixel-wise accuracy: the pro-
portion of correctly classified pixels; (2) mean accuracy:
the proportion of correctly classified pixels averaged over
all the classes; (3) mean IoU: the intersection-over-union
averaged over all the classes; (4) weighted IoU: the IoU
weighted by pixel ratio of each class.

3.2. Open vocabulary metrics

Given the nature of open vocabulary recognition, select-
ing a good evaluation criteria is non-trivial. Firstly, it should
leverage the graph structure of the concepts to tell the dis-
tance of the predicted class from the ground truth. Secondly,
the evaluation should correctly represent the highly unbal-
anced distribution of the dataset classes, which are also
common in the objects seen in nature.

For each sample/pixel, a score s(l, p) is used to measure
the similarity between the label s and the prediction p. The
final score is the mean score over all the samples.

3.2.1 Hierarchical precision, recall and F-score

Hierarchical precision, recall and F-score are known as Wu-
Palmer similarity, which was originally used for lexical se-
lection [29].

For two given concepts l and p, we define the lowest
common ancestor LCA as the most specific concept (i.e. fur-
thest from the root Entity) that is an hypernym of both. Then
hierarchical precision and recall are defined by the number
of common hypernyms that prediction and label have over
the vocabulary hierarchy H , formally:

sHP (l, p) =
dLCA
dp

, sHR(l, p) =
dLCA
dl

, (5)

where d is the depth of certain concept node in H .
Combining hierarchical precision and hierarchical recall,

we get hierarchical F-score sHF (l, p), defined as the depth
of LCA node over the sum of depth of label and prediction
nodes:

sHF (l, p) =
2sHP (l, p) · sHR(l, p)

sHP (l, p) + sHR(l, p)
=

2 · dLCA
dl + dp

. (6)

One prominent advantage of these hierarchical metrics
is they penalize predictions when being too specific. For
example, “guitar” (dl=10) and “piano” (dp=10) are all “mu-
sical instrument” (dLCA=8). When “guitar” is predicted as
“piano”, sHF = 2·8

10+10 = 0.8; when “guitar” is predicted
as “musical instrument”, sHF = 2·8

10+8 = 0.89. It agrees
with human judgment that the prediction “musical instru-
ment” is more accurate than “piano”.

3.2.2 Information content ratio
Performance could be dominated by frequent classes when
distribution of data points is unbalanced. Information con-
tent ratio, which was also used in lexical search, addresses
these problems effectively.

According to information theory and statistics, the infor-
mation content of a message is the inverse logarithm of its
frequency I(c) = − logP (c). We inherit this idea and ob-
tain the pixel frequency of each concept v ∈ H . Specif-
ically, the frequency of a concept is the sum of its own
frequency and all its descendents’ frequencies in the image
dataset. It is expected that the root “entity” has frequency
1.0 and information content 0.

During evaluations, we measure, how much information
our prediction gets out of the amount of information in the
label. So the final score is determined by the information of
the ground truth, prediction and LCA:

sI(l, p) =
2 · ILCA
Il + Ip

=
2 · logP (LCA)

logP (l) + logP (p)
(7)

As information content ratio considers dataset statistics and
semantic hierarchy, it rewards both inference difficulty and
hierarchical accuracy.



Table 1. Scene parsing performance on 150 classes, evaluated with flat metrics.
Networks Pixel Accuracy Mean Accuracy Mean IoU Frequency Weighted IoU
Softmax [33] 73.55% 44.59% 0.3231 0.6014
Conditional Softmax [23] 72.23% 42.64% 0.3127 0.5942
Word2Vec [9] 71.31% 40.31% 0.2918 0.5879
Word2Vec+ 73.11% 42.31% 0.3160 0.5998
Image-L2 70.18% 38.89% 0.2174 0.4764
Image-Cosine 71.40% 40.17% 0.2803 0.5677
Image-Hyper 67.75% 37.10% 0.2158 0.4692
Joint-L2 71.48% 39.88% 0.2692 0.5642
Joint-Cosine 73.15% 43.01% 0.3152 0.6001
Joint-Hyper 72.74% 42.29% 0.3120 0.5940
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Figure 4. Scene parsing results on 150 classes, images are nearly fully segmented.

4. Experiments
4.1. Image label and concept association

We associate each class in ADE20K dataset with a synset
in WordNet, representing a unique concept. The data asso-
ciation process requires semantic understanding, so we re-
sort to Amazon Mechanical Turks (AMTs). We develop a
rigorous annotation protocol, which is detailed in Supple-
mentary Materials.

After association, we end up with 3019 classes in the
dataset having synset matches. Out of these there are 2019
unique synsets forming a DAG. All the matched synsets
have entity.n.01 as the top hypernym and there are in av-
erage 8.2 synsets in between. The depths of the ADE20K
dataset annotations range from 4 to 19.

4.2. Network implementations

4.2.1 Concept stream

The concept stream takes in positive and negative concept
pairs. The positive training pairs are found by traversing
the graph H and find all the transitive closure hypernym
pairs, e.g. “neckwear” and “tie”, “clothing” and “tie”, “en-
tity” and “tie”; negative samples are randomly generated by
excluding these positive samples.

4.2.2 Image stream

Our core CNN in the image stream is adapted from VGG-16
by taking away pool4 and pool5 and then making all the fol-
lowing convolution layers dilated (or Atrous) [3, 31]. Con-
sidering the features of an image pixel from the last layer
of the fully convolutional network fc7 to be yi,j with di-
mension 4096, we add a 1 × 1 convolution layer g(·) with
weight dimension of 4096×300 to embed the pixel feature.
To ensure positivity, we further add a ReLU layer.

To improve the numerical stability of training, we fix the
norms of the embeddings of image pixels to be 30, where a
wide range of values will work. Intuitively, fixing image to
have a large norm makes sense in the hierarchical embed-
ding space: image pixels are most specific descriptions of
concepts, while words are general, and closer to the origin.

4.2.3 Training and inference
In all the experiments, we first train the concept stream to
get the word embeddings, and then use them as initializa-
tions in the joint training. Image stream is initialized by
pre-trained weights from VGG-ImageNet [26].

Adam optimizer [13] with learning rate 1e-3 is used to
update weights across the model. The margin of loss func-
tions is default to α = 1.0.



Table 2. Zero-shot parsing performance, evaluated with hierarchical metrics.
Networks Hierarchical Precision Hierarchical Recall Hierarchical F-score Information content ratio
Softmax [33] 0.5620 0.5168 0.5325 0.1632
Conditional Softmax [23] 0.5701 0.5146 0.5340 0.1657
Word2Vec [9] 0.5782 0.5265 0.5507 0.1794
Convex Combination [20] 0.5777 0.5384 0.5492 0.1745
Word2Vec+ 0.6138 0.5248 0.5671 0.2002
Image-L2 0.5741 0.5032 0.5375 0.1650
Image-Hyper 0.6318 0.5346 0.5937 0.2136
Joint-L2 0.5956 0.5385 0.5655 0.1945
Joint-Hyper 0.6567 0.5838 0.6174 0.2226

Ground Truth: 
  - rocking chair 
Predictions: 
  - chair 
  - furniture, piece of  
   furniture 

Ground Truth: 
  - cliff, drop, drop-off 
Predictions: 
  - geological formation 
  - cliff, drop, drop-off 
  - location 

Ground Truth: 
  - trouser, pant 
Predictions: 
  - clothing, article of        
   clothing 
  - apparel, wearing apparel 
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  - deck chair, beach chair  
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  - chair 
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Figure 5. Zero-shot parsing results on the infrequent object classes.

In the inference stage, there are two cases: (1) While
testing on the 150 training classes, the pixel embeddings
are compared with the embeddings of all the 150 candidate
labels based on the scoring function, the class with the high-
est score is taken as the prediction; (2) While doing zero-
shot predictions, on the other hand, we use a threshold on
the scores to decide the cutoff score, concepts with scores
above the cutoff are taken as predictions. This best thresh-
old is found before testing on a set of 100 validation images.

4.3. Results on scene parsing

In this section, we report the performance of our model
on scene parsing task. Training is performed on the most
frequent 150 classes of stuffs and objects in the ADE20K
dataset, where each of the class has at least 0.02% of total
pixels in the dataset.

We have trained some models in the references and sev-
eral variants of our proposed model, all of which share the
same core CNN to make fair comparisons. Softmax is the
baseline model that does classical multi-class classification.

Conditional Softmax is a hierarchical classification
model proposed in [23]. It builds a tree based on the la-
bel relations, and softmax is performed only between nodes
of a common parent, so only conditional probabilities for
each node are computed. To get absolute probabilities dur-
ing testing, the conditional probabilities are multiplied fol-

lowing the paths to root.
Word2Vec regresses the image pixel features to pre-

trained word embeddings, where we use the GoogleNews
vectors. Cosine similarity and max-margin ranking loss
with negative samples are used. This model is a direct coun-
terpart of DeViSe[9] in our scene parsing settings.

Word2Vec+ is our improved version of Word2Vec model.
Max margin loss is replaces by a softmax loss as mentioned
in Section 2.3;

There are 6 variants of our proposed model. Model
names with Image-* refer to the cases where only image
stream is trained, by fixing the concept embeddings. In
models Joint-* we train two streams together to learn a joint
embedding space. Three aforementioned scoring functions
are used for the image stream, their corresponding models
are marked as *-L2, *-Cosine and *-Hyper.

4.3.1 Performance on 150 classes

Evaluating on the 150 training classes, our proposed mod-
els offer competitive results. Baseline flat metrics are used
to compare the performance, as shown in Table 1. Without
surprise, the best performance is achieved by the Softmax
baseline, which agrees with the observation from [9], classi-
fication formulations usually achieves higher accuracy than
regression formulations. At the same time, our proposed
models Joint-Cosine and Word2Vec+ fall short of Softmax
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Figure 7. Pixel-level concept search with increasing abstraction.

by only around 1%, which is an affordable sacrifice given
the zero-shot prediction capability and interpretability that
will be discussed later. Visual results of the best proposed
model Joint-Cosine are shown in Figure 4.

4.3.2 Zero-shot predictions

We then move to the zero-shot prediction tasks to fully
leverage the hierarchical prediction ability of our models.
The models are evaluated on 500 less frequent object classes
in the ADE20K dataset. Predictions can be in the 500
classes, or their hypernyms, which could be evaluated with
our open vocabulary metrics.

Softmax and Conditional Softmax models are not able
to make inferences outside the training classes, so we take
their predictions within the 150 classes for evaluation.

Convex Combination [20] is another baseline model: we
take the probability output from Softmax within the 150
classes, to form new embeddings in the word vector space,
and then find the nearest neighbors in vector space. This
approach does not require re-training, but still offers rea-
sonable performance.

Figure 8. Sittable objects have high scores while retrieving “chair”,
indicating abstract attributes encoded in the embedding space.

Query           Image    Score Map              

max(“game equipment”, “table”) 

min(“bicycle”, “canopy”) 

“table” 

“bicycle” 

Test Image 

Test Image 

Figure 9. Pixel-level search with synthesized concepts through
arithmetic operations. Intersections and unions are achieved in the
embedding space by max and min.

Most of our proposed models can retrieve the hypernyms
of the testing classes, except *-Cosine as they throw away
the norm information during scoring, which is important for
hypernym predictions.

Table 2 shows results on zero-shot predictions. In terms
of the hierarchical metrics, Joint-Hyper gives the best per-
formance. And our proposed models in general win by a
large margin over baseline methods. It confirms us that
modeling the asymmetric relations of data pairs better rep-
resents the hierarchy. Figure 5 shows some prediction sam-
ples of our best model Joint-Hyper (see Supplementary Ma-
terials for full predictions of our model). In each image, we
only show one ground truth category to make clear visu-
alizations, different colors represent different predictions.
Though the model does not always get the ground truth la-
bels exactly correct, it gives reasonable predictions. An-
other observation is that predictions are sometimes noisy,
we get 2-3 predictions on a single objects. Some of the
inconsistencies are plausible though, e.g. in the first row,
the upper part of the “rocking chair” is predicted as “chair”
while the lower part is predicted as “furniture”. As the pix-
els in the upper segment are closer to ordinary chairs while
the lower segment does not, so in the latter case the model
gives a more general prediction.



4.4. Diversity test

The open vocabulary recognition problem naturally
raises a question: how many training classes do we need
to generalize well on zero-shot tasks? To answer this ques-
tion, we do a diversity test in this section.

Different from the previous experiments, we do not take
the most frequent classes for training, instead uniformly
sample training and testing classes from the histogram of
pixel numbers. For better comparison, we fix the number of
zero-shot test set classes to be 500, and the training classes
range from 50 to 1500. In the training process, we offset
the unbalance in pixel numbers by weighting the training
class loss with their corresponding information content, so
the less frequent classes contribute higher loss.

We only experiment with our best model Joint-Hyper for
this diversity test. Results in Figure 6 suggest that per-
formance could saturate after training with more than 500
classes. We conjecture that training with many classes with
few instances could introduce sample noises. So to further
improve performance, more high quality data is required.

5. Interpreting the embedding space

The joint embedding space we trained earlier features
different properties from known spaces like Word2Vec. In
this section, we conduct three qualitative tests to explore
these properties.
Concept search. In our framework, the joint training does
not require all the concepts to have corresponding image
data, as semantics can be propagated. This enables us to
search with concepts that are not trained with images at
test time, and visualize their activations in images. Given
a search concept, we obtain its embedding f(x) from the
concept stream, and calculate per-pixel score of target im-
age features g(yi,j) according to scoring function. Re-
sults are shown in Figure 7, with heatmaps representing the
scores. Joint-Hyper and Word2Vec+ perform equally well
when searching for specific concepts. But as the search
concepts become increasingly abstract, our model far out-
performs Word2Vec+, indicating the effective encoding of
hierarchical information in our embedding space.
Implicit attributes encoding. One intriguing property of
feature embeddings is that it is a continuous space, and clas-
sification boundaries are flexible. So we explore the vicinity
of some concepts. In Figure 8, we show score maps when
searching for the concept “chair”. Interestingly, it is a com-
mon phenomenon that objects like “bench” and “ottoman”,
which are not hyponyms of “chair” in WordNet, get reason-
able response. We conjecture that the embedding space im-
plicitly encodes some abstract attributes by clustering them,
e.g. sittable is an affordance attribute. So by loosing classi-
fication threshold of “chair”, one can detect regions where
one can sit on.

Concept synthesis with arithmetics. Similar to Word2Vec,
in our joint embedding space, new concepts or object de-
tectors can be synthesized with arithmetics. Given two con-
cepts, we take elementwise min or max operations on their
embeddings f(x1) and f(x2) to synthesize a new embed-
ding, and then search for the synthesized concepts in the im-
ages, results are shown in Figure 9. It can be seen that max
operation takes the intersection of the concepts, e.g. the
“pool table” is a common hyponym of “table” and “game
equipment”; and min takes the union, e.g. the “cart” is
composed of attributes of “bicycle” and “canopy”. These
observations agree with the fact that the embedding space
encodes hypernym/hyponym relations.

6. Discussions

Benefits on annotations. Our learning framework offers
more freedom for open vocabulary annotations: annotators
can freely find a closest concept in the dictionary. Peo-
ple with different domain knowledge might label an object
at different depths of the knowledge graph, e.g. labeling
“Husky” as “dog”. This inconsistency does not harm the
training of our model as our formulation inherently consid-
ers hierarchical relations.
Making general or specific predictions? In hierarchical
classification problems, there is no consensus on whether to
make general or specific predictions. Human are more tol-
erant of general concepts than incorrect specific concepts.
In our framework, it is dependent on the cutoff threshold in
the inference stage, so we could choose to balance precision
and recall.
Limitations. Similar to other zero-shot learning frame-
works, the system suffers when the target objects share few
visual or context similarities with the training data. We
are also limited by the scarcity of training data, the image
dataset is very small comparing to the large label set. As
discussed in Section 4.4, we expect diverse and abundant
data could further improve the generalizability. So we hope
the community could put more efforts on open-ended clas-
sification problems and dataset collection.

7. Conclusion

We introduced a new challenging task: open vocabu-
lary scene parsing, which aims at parsing images in the
wild. And we proposed a framework to solve it by embed-
ding concepts image pixel features into a joint vector space,
where the hierarchical semantics is preserved.
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