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ABSTRACT

This work interprets the internal representations of deep neural networks trained for clas-
sification of diseased tissue in 2D mammograms. We propose an expert-in-the-loop inter-
pretation method to label the behavior of internal units in convolutional neural networks
(CNNs). Expert radiologists identify that the visual patterns detected by the units are cor-
related with meaningful medical phenomena such as mass tissue and calcificated vessels. We
demonstrate that several trained CNN models are able to produce explanatory descriptions
to support the final classification decisions. We view this as an important first step toward
interpreting the internal representations of medical classification CNNs and explaining their
predictions.

Keywords: medical image understanding, deep learning for diagnosis, interpretable ma-
chine learning, expert-in-the-loop methods

1. PURPOSE

State-of-the-art convolutional neural networks (CNNs) can now match and even supersede
human performance on many visual recognition tasks;1,2 however, these significant ad-
vances in discriminative ability have been achieved in part by increasing the complexity of
the neural network model which compounds computational obscurity.3–6 CNN models are
often criticized as black boxes because of their massive model parameters. Thus, lack of
intepretability prevents CNNs from being used widely in clinical settings and for scientific
exploration of medical phenomena.7,8

Deep learning based cancer detection in 2D mammograms has recently achieved near
human levels of sensitivity and specificity, as evidenced by the large-scale Digital Mammog-
raphy DREAM Challenge.9 Recent computer aided diagnostic systems have also applied
advanced machine learning to a combination of imaging data, patient demographics, and
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medical history with impressive results.8 However, applications such as breast cancer diag-
nosis and treatment heavily depend on a sense of trust between patient and practitioner,
which can be impeded by black-box machine learning diagnosis systems. Thus, automated
image diagnosis provides a compelling opportunity to reevaluate the relationship between
clinicians and neural networks. Can we create networks that explain their decision making?
Instead of producing only a coarse binary classification (e.g. does a scan show presence of
disease or not), we seek to produce relevant and informative descriptions of the predictions
made by a CNN in a format familiar to radiologists. In this paper, we examine the behav-
ior of the internal representations of CNNs trained for breast cancer diagnosis. We invite
several human experts to compare the visual patterns used by these CNNs to the lexicon
used by practicing radiologists. We use the Digital Database for Screening Mammography
(DDSM)10 as our training and testing benchmark.

Contributions

To our knowledge, this work is the first step toward creating neural network systems that in-
teract seamlessly with clinicians. Our principal contributions, listed below, combine to offer
insight and identify commonality between deep neural network pipelines and the workflow
of practicing radiologists. Our contributions are as follows:

• We visualize the internal representations of CNNs trained on mammograms labeled
as cancerous, normal, benign, or benign without callback

• We develop an interface to obtain human expert labels for the visual patterns used by
CNNs in cancer prediction

• We compare the expert-labeled internal representations to the BI-RADS lexicon,11

showing that many interpretable internal CNN units detect meaningful factors used
by radiologists for breast cancer diagnosis

2. METHODS

To gain a richer understanding of which visual primitives CNNs use to predict cancer,
we fine-tuned several strongly performing networks on training images from the Digital
Database for Screening Mammography (DDSM).10 For each fine-tuned network, we then
evaluated the visual primitives detected by the individual units using Network Dissection, a
technique to visualize the favorite patterns detected by each unit.12 Three authors who are
practicing radiologists or experts in this area manually reviewed the unit visualizations and
labeled the phenomena identified by each unit. Finally, we compared the named phenomena
used by the CNN internal units to items in the BI-RADS lexicon.11 Note that we denote the
convolutional filters at each layer as units, as opposed to ’neurons’, to disambiguate them
from the biological entities.

2.1 Dataset

We conduct our experiments with images from the Digital Database for Screening Mammog-
raphy (DDSM), a dataset compiled to facilitate research in computer-aided breast cancer
screening. DDSM consists of 2,500 studies, each including two images of each breast, patient
age, ACR breast density rating, subtlety rating for abnormalities, ACR keyword description
of abnormalities, and information about the imaging modality and resolution. Labels include
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image-wide designations (e.g., cancerous, normal, benign, and benign without callback) and
pixel-wise segmentations of lesions.10

For the experiments in the following sections, we divided the DDSM dataset scans into
80% train, 10% validation, and 10% test partitions. All images belonging to a unique patient
are in the same split, to prevent training and testing on different views of the same breast.

2.2 Network Architectures

We adapted several well-known image classification networks for breast cancer diagnosis as
shown in Table 1. We modified the final fully connected layer of each architecture to have two
classes corresponding to a positive or negative diagnosis. Network weights were initialized
using the corresponding pretrained ImageNet13 networks and fine-tuned on DDSM. We
trained all networks in the PyTorch14 framework using stochastic gradient descent (SGD)
with learning rate 0.0001, momentum 0.9, and weight decay 0.0001.

Architecture AUC
AlexNet15 0.8632
VGG-1616 0.8929

Inception-v34 0.8805
ResNet-1525 0.8757

Table 1: The network architectures used and their performance as the AUC on the validation
set.

Figure 1: GoogleNet Inception-v3 architecture fine-tuned with local image patches and their
labels. Multiple overlapping patches are extracted from each image with a sliding window
and then passed through a CNN with the local patch label determined by the lesion masks
from DDSM. After fine-tuning each network we tested performance on the task of classifying
whether the patch contains a malignant lesion. We show the performance of our various
fine-tuned networks in Table 1.

Figure 1 illustrates how we prepared each mammogram for training and detection. Be-
cause of the memory requirements of processing a high-resolution image with a CNN, we
split the mammograms into patches and process image patches. We applied a sliding window
at 25% the size of a given mammogram with a 50% patch stride. This gave us a set of image
patches for each mammogram, a subset of which may not have contained any cancerous
lesions. The ground truth label for each mammogram patch was computed as positive for
cancer if at least 30% of a cancerous lesion was contained in the image patch or at least
30% of the image patch was covered by a lesion; all other patches were assigned a negative
label. Lesion locations were determined from the lesion segmentation masks of DDSM.
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2.3 Network Dissection

Network Dissection (NetDissect) is a recent method proposed for assessing how well visual
concepts are disentangled within CNNs.12 Network Dissection defines and quantifies the in-
tepretability as a measure of how well individual units align with sets of human-interpretable
concepts.

(a) Illustration of how Network Dissection proceeds for a single instance. Above, one unit is probed
to display the Region of Interest (ROI) in the evaluated image responsible for that unit’s activation
value. ROIs may not line up directly as shown in this figure, please see Bau et al.12 for a complete
description of this process.

(b) Illustration of how Network Dissection proceeds for all units of interest in a given convolutional
layer. All images from a test set are processed in the manner of Fig. 2a. The top activating
test images for each unit are recorded to create a visualization of the unit’s top activated visual
phenomena. Each top activating image is segmented by the upsampled and binarized feature map
of that unit.

Figure 2: Illustration of Network Dissection for identifying the visual phenomena used by a
CNN of interest.

Figure 2 demonstrates at a high level how NetDissect works to interpret the units at a
target layer of a network. We used our validation split of DDSM to create visualizations
for the final convolutional layer units of each evaluated network. For ResNet-152, we also
evaluated the second to last convolutional layer due to its high network depth. Because of the
hierarchical structure of CNNs, the final convolutional layer will contain the most high-level
semantic concepts, whereas the earlier layers will contain mostly low-level gradient features.
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We choose to evaluate the final convolutional layers containing high-level semantic features,
as they are more likely to be aligned with the visual taxonomy used by radiologists. Note
that the NetDissect approach to unit visualization applies only to convolutional network
layers due to their maintenance of spatial information.

Figure 2b shows how we created the unit visualizations for our analysis in Sections 2.4
and 3. We passed all image patches in our validation set through each of our four networks.
For each unit in the target convolution layer being evaluated, we recorded the unit’s maxi-
mum activation value, denoted as the unit’s score, as well as the ROI from the image patch
that caused the measured activation. To visualize each unit (Figs. 3 and 4), we display
the top activating image patches in order sorted by their score for that unit. Each top
activating image is further segmented by the upsampled and binarized feature map of that
unit to highlight the highly activated image region.

2.4 Human Evaluation of Visual Primitives used by CNNs

To further validate the visual primitives discovered by our networks, we created a web-based
survey to solicit input from expert readers. The expert readers consisted of two radiologists
specialized in breast imaging and one medical physicist. A screenshot from the survey tool
is shown in Figure 3. The survey provided a list of 40 to 50 units culled from the final
layer of one of our neural networks. The neural network often had many more units, too
many for exhaustive analysis with three expert readers. Thus, the units that were selected
were composed partly of the top activating patches that all or mostly contained cancer and
partly of a random selection of other patches.

Figure 3: Web-based Survey Tool: This user interface was used to ask the expert readers
about units of interest. The survey asked questions such as: “Do these images show rec-
ognizable phenomena?” and “Please describe each of the phenomena you see. For each
phenomenon please indicate its association with breast cancer.” In the screenshot above,
one expert has labeled the unit’s phenomena as ‘Calcified Vessels’.

The readers were able to see a preview of each unit, which consisted of several image
patches with highlights indicating the regions of interest that caused the unit to activate
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most strongly. From this preview, the readers were able to formulate an initial hypothesis
of what each unit is associated with. The readers could click on any preview to select a
specific unit to focus on, and would then be brought to a second page dedicated specifically
to that unit, showing additional patches as well as the context of the entire mammogram,
as shown in Figure 3. On this page, users could then comment on the unit in a structured
report, indicating if there was any distinct phenomenon associated with the unit, and if so,
its relationship to breast cancer. The web-based survey saved results after each unit and
could be accessed over multiple sessions to avoid reader fatigue.

Some of the units shown had no clear connection with breast cancer and would appear
to be spurious. Still other units presented what appeared to be entangled events, such as
mixtures of mass and calcification, that were associated with malignancy but in a clearly
identifiable way. However, many of the units appeared to show a clean representation of a
single phenomenon known to be associated with breast cancer.

3. RESULTS

We compared the expert-annotated contents of 134 units from four networks to the lexicon
of the BI-RADS taxonomy.7,11 This qualitative evaluation was designed to estimate the
overlap between the standard system used by radiologists to diagnose breast cancer and the
visual primitives used by our trained CNNs.

Direct classification of BI-RADS entities has long been a topic of interest in machine
learning for mammography.19 Our experiments differ from direct classification because our
training set was constructed with simple positive/negative labels instead of detailed BI-
RADS categories. In this work we chose a well-understood medical event, the presence of
cancer in mammograms, to evaluate if unit visualization is a promising avenue for discovering
important visual phenomena in less well-understood applications. Our results, shown in
Fig. 4, show that networks trained to recognize cancer end up using many of the BI-RADS
categories even though the training labels given to the network simply indicated the presence
or absence of cancer.

Units in all networks identify advanced cancers, large benign masses, and several kinds of
obvious calcifications. Encouragingly, many units also identify important associated features
such as spiculation, breast density, architectural distortions, and the state of tissue near the
nipple. Several units in Fig. 4 show that the CNNs use breast density and parenchymal
patterns to make predictions. This network behavior could be used to find a new compu-
tational perspective on the relationship between breast density, tissue characteristics, and
cancer risk, which has been a popular research topic for the last 25 years.20–22

4. CONCLUSION

In this exploratory study, we trained CNNs for classification of diseased tissue in mammo-
grams and investigated the visual concepts used by the internal units of the CNNs. Using
an expert-in-the-loop method, we discovered that many CNN units identify recognizable
medical phenomena used by radiologists. Indeed, Fig. 4 shows significant overlap with the
BI-RADS lexicon. We note however, that some units had no identified connection with
breast cancer, and yet other units identified entangled events. We believe these findings are
an important first step towards interpreting the decisions made by CNNs in classification of
diseased tissue.
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Figure 4: The table above shows some of the labeled units and their interpretations. The first
column lists the general BI-RADS category associated with the units visualized in the last
column. The second column displays the expert annotation of the visual event identified by
each unit, summarized for length. The third column lists the network, convolutional layer,
and the unit’s ID number.
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