
Real-Time Object Pose Estimation with Pose Interpreter Networks

Jimmy Wu1, Bolei Zhou1, Rebecca Russell2, Vincent Kee2, Syler Wagner3, Mitchell Hebert2,
Antonio Torralba1, and David M.S. Johnson3

Abstract— In this work, we introduce pose interpreter net-
works for 6-DoF object pose estimation. In contrast to other
CNN-based approaches to pose estimation that require ex-
pensively annotated object pose data, our pose interpreter
network is trained entirely on synthetic pose data. We use object
masks as an intermediate representation to bridge real and
synthetic. We show that when combined with a segmentation
model trained on RGB images, our synthetically trained pose
interpreter network is able to generalize to real data. Our end-
to-end system for object pose estimation runs in real-time (20
Hz) on live RGB data, without using depth information or ICP
refinement.

I. INTRODUCTION

Object pose estimation is an important task relevant to
many applications in robotics, such as robotic object manip-
ulation and warehouse automation. In the past, 6-DoF object
pose estimation has been tackled using template matching
between 3D models and images [1], which uses local features
such as SIFT [2] to recover the pose of highly textured
objects. Recently, there has been growing interest in object
manipulation as a result of the Amazon Picking Challenge
[3], leading to the introduction of a number of different
approaches for 6-DoF object pose estimation, specifically in
the competition setting [4], [5], [6], [7], [8]. Many of these
approaches, along with other recent works such as PoseCNN
[9], SSD-6D [10], and BB8 [11], use deep convolutional
neural networks (CNNs) to provide real-time, accurate pose
estimation of known objects in cluttered scenes.

CNN-based pose estimation techniques enable significant
improvements in the accuracy of object detection and pose
estimation. However, these approaches usually require a large
amount of training data containing objects of interest anno-
tated with precise 6-DoF poses. Object poses are expensive to
annotate and were often hand annotated in the past [4], [12].
More recently, automatic annotation methods have been pro-
posed using motion capture [13] or 3D scene reconstruction
[14], [15], but these methods still require significant human
labor and are not able to generate significant variability
in pose since objects must remain stationary during data
capture.

1JW, BZ, and AT are with the MIT Computer Science and Artificial
Intelligence Laboratory, Cambridge, MA, USA

2RR, VK, MH are with the Charles Stark Draper Laboratory, Cambridge,
MA, USA

3SW and DMSJ are with Dexai Robotics, Boston, MA, USA
Corresponding authors: Jimmy Wu jimmywu@alum.mit.edu and

David M.S. Johnson dave@dexai.com
Datasets, code, and pretrained models are available at https://

github.com/jimmyyhwu/pose-interpreter-networks

Fig. 1: Our end-to-end network takes in an RGB image and
outputs 6-DoF object poses for all recognized objects in the
image.

To address this issue, we propose a novel pose estimation
approach that leverages synthetic pose data. Our approach
decouples the object pose estimation task into two cascaded
components: a segmentation network and a pose interpreter
network. Given an RGB image, the segmentation network
first generates object segmentation masks, which are then
fed into the pose interpreter network for pose estimation.

Pose interpreter networks perform 6-DoF object pose
estimation on object segmentation masks and are trained
entirely using synthetic pose data, thus obviating the need
for expensive annotation of object poses. Using a rendering
engine, we cheaply acquire large quantities of synthetic
object segmentation masks and their 6-DoF pose ground
truth, covering the full space of object poses. After training,
our pose interpreter networks are able to estimate object
pose accurately given only the segmentation mask of the
object. The overall object pose estimation pipeline including
segmentation runs in real-time with no postprocessing steps
such as ICP refinement or smoothing.

The main contributions of this work are: (1) an end-to-
end approach for real-time 6-DoF object pose estimation
from RGB images, (2) a pose interpreter network for 6-DoF
pose estimation in both real and synthetic images, which
we train entirely on synthetic data, and (3) a novel loss
function for regressing 6-DoF object pose. In the following
sections, we discuss related work in Section II, describe
our technical approach in Section III, present experimental
results in Section IV, and conclude in Section V.

II. RELATED WORK

Prior work in object pose estimation from RGB images in-
clude template matching approaches [16], [17], [18], [19] and
parts-based models [20], [21], which work well for highly
textured objects. Feature-based methods match features in
images with corresponding parts of 3D models [2], [22], [1],

https://github.com/jimmyyhwu/pose-interpreter-networks
https://github.com/jimmyyhwu/pose-interpreter-networks

RGB image segmentation masks

Segmentation Network
trained on real RGB data

Pose Interpreter Network
trained entirely on synthetic data

6-DoF object poses

instance masks

oil bottle

fluid bottle

funnel

blue funnel

Fig. 2: Full end-to-end architecture for object pose estimation on RGB images. We use a segmentation network to
extract instance masks labeled with object class, which serve as input to the pose interpreter network. The pose interpreter
network operates on single object instances of known object classes and is trained entirely on synthetic object masks. The
system makes one forward pass through the segmentation network for each image. Then, for each object instance, it makes
one forward pass through the pose interpreter network to predict the object’s pose. During evaluation, the two component
networks are combined into a single end-to-end neural network.

[23]. For RGB-D data, pose estimation has traditionally used
variants of the iterative closest point (ICP) algorithm [24],
[25]. More recent works have used feature matching on 3D
data [26], [27], [28], [29], [30] or probabilistic methods [31],
[32].

With the recent successes of object recognition [33], [34],
object detection [35], [36], and segmentation [37], [38] in
2D images, many works have extended or incorporated these
methods in 6-DoF pose estimation [39], [40], [10], [11],
including end-to-end systems for robotic manipulation [13],
[4], [41]. In contrast to these approaches, which often require
expensively obtaining lots of annotated training data, we
focus on the use of cheaply acquired synthetic data to train
our pose interpreter network, and show that it generalizes
well to real RGB images.

Perhaps most closely related to our work is PoseCNN
[9], a well-known CNN for 6-DoF object pose estimation.
We emphasize that our pose interpreter network is trained
entirely on synthetic data, whereas PoseCNN uses a large
annotated pose dataset augmented with synthetic images.
Additionally, our system runs in real-time and uses neural
network forward passes to directly output pose estimates,
without any further postprocessing.

Our work, which use CNNs for regression, is also related
to [42] and [43], known for successfully demonstrating
camera pose regression with CNNs. Additionally, the use
of rendering software to cheaply acquire large quantities
of synthetic training images for training deep networks has
been proposed by several previous works [44], [45], [46]. In
particular, [45] also uses an intermediate representation to
bridge synthetic data and real data for 3D object structure
recovery.

III. TECHNICAL APPROACH

Our approach to object pose estimation consists of a
two step process. We first use a segmentation network to

generate object instance masks. The masks are then passed
individually through the pose interpreter network, which
outputs a 6-DoF pose estimate for each object. While we
train the segmentation model on real RGB images, our pose
interpreter network is trained entirely on synthetic data. We
first describe our segmentation network in Section III-A.
Then, we describe the pose interpreter network in Sections
III-B through III-D.

A. Segmentation Network

We use a dilated residual network (DRN) [38] trained for
semantic segmentation as the first component of our end-
to-end system. The network takes in real RGB images and
outputs segmentation labels, which are converted into binary
instance masks with associated object classes and fed into
the subsequent pose estimation network.

In contrast to regular residual networks [47], which use
subsampling to increase receptive field size at the cost
of spatial acuity, DRNs use dilated convolutions, which
preserve spatial resolution while maintaining high receptive
fields. As a result, these networks are particularly well suited
for dense prediction tasks such as semantic segmentation.
Compared to other architectures for semantic segmentation
such as SegNet [48] or DeepLab [49], we observed that
DRNs trained on our RGB image dataset generated higher
fidelity segmentations with fewer false positives.

While our segmentation training data is not synthetically
generated, we note that compared to CNNs for pose estima-
tion, CNNs for segmentation can use cheaper data acquisition
techniques and much more aggressive data augmentation. We
also note that our use of a semantic segmentation model
for instance segmentation assumes that there is at most one
instance of every object class. However, our system can be
adapted to handle multiple instances by simply swapping
out the semantic segmentation component with an instance
segmentation model such as Mask R-CNN [50].

B. Object Pose Representation

We represent the pose of an object by its position p =
(x, y, z) and orientation q = (q0, qx, qy, qz), which are
translations and rotations relative to the camera coordinate
frame. Any given rotation can have multiple equivalent
forms, and we found it crucial to enforce that only a single
unique form is valid. For example, the axis-angle rotation
(ω, θ) is equivalent to (−ω,−θ), a rotation of −θ about
the axis −ω. These two forms resolve to a unique form
in unit quaternion. The rotation (ω, θ) is also equivalent to
(−ω, 2π − θ), which resolves to −q in unit quaternion. We
resolved this equivalence of q and−q, known as double cover
[51], by requiring that the real component of the quaternion
q0 be nonnegative, equivalent to constraining the rotation
angle θ to be in the range (−π, π).

C. Pose Interpreter Network

The pose interpreter network operates on single object
instances of known object classes, and is trained entirely
on synthetic data. The network follows a simple CNN
architecture consisting of a ResNet-18 [47] feature extractor
followed by a multilayer perceptron, as illustrated in Fig.
2. We removed the global average pooling layer from the
feature extractor to preserve spatial information in the feature
maps.

The multilayer perception is composed of one fully con-
nected layer with 256 nodes, followed by two parallel
branches corresponding to position and orientation, respec-
tively. Each branch consists of another single fully connected
layer, with a separate set of outputs for each object class. We
train our pose interpreter network with five object classes,
so the position branch has 15 outputs, while the orientation
branch has 20.

The quaternion orientation outputs are normalized to unit
magnitude. We found this normalization to be crucial, as
it is difficult to directly regress unit quaternion values. By
normalizing the outputs, we are instead having our network
predict the relative weights of the four quaternion compo-
nents.

D. Point Cloud L1 Loss for Pose Prediction

We propose a new loss function for object pose prediction,
the Point Cloud L1 Loss. We compare the proposed loss with
several baseline loss functions and show our experimental
results in Section IV-D.

The simplest baseline is L1 loss on the target and output
poses, with a weighting constant α to balance the position
and orientation terms:

L1 = |p̂− p|+ α |q̂− q| (1)

We also consider a modified version of L1 in which we
replaced the orientation loss with one proposed by Xiang
et al. in PoseCNN [9], which approximates the minimum
distance between the target and predicted orientations:

L2 = |p̂− p|+ α (1− 〈q̂,q〉) (2)

Next, we propose a new loss function, denoted L3 be-
low, that operates entirely in the 3D space rather than the
quaternion space. Using the 3D models of objects in our
synthetic dataset, we generate point clouds representing each
object. Given a target pose and output pose for an object, we
transform the object’s point cloud using both the target and
output poses and compare the two transformed point clouds.
We compute an L1 loss between pairs of corresponding
points as follows:

L3 =

m∑
i=1

∣∣∣H(p̂, q̂)x(i) −H(p,q)x(i)
∣∣∣ (3)

where each x(i) is one of m points in the object point cloud,
and the function H transforms an object pose (p,q) into the
equivalent transformation matrix. This loss function directly
compares points clouds in 3D space and does not require
tuning an additional hyperparameter α, as in L1 and L2, to
balance the position and orientation loss components.

As discussed in Section III-B, we require that the first
component q0 of unit quaternion orientations be nonnegative.
In practice, we found that adding an additional term to pe-
nalize predictions with negative q0 helped with convergence.
Thus, we favor the use of loss L4 below, a variant of our
proposed loss L3.

L4 = max(−q0, 0) +
m∑
i=1

∣∣∣H(p̂, q̂)x(i) −H(p,q)x(i)
∣∣∣ (4)

IV. EXPERIMENTS

We present our experimental results in the following
sections. Section IV-A describes in detail the two datasets
we used. Section IV-B describes the performance of our
segmentation network, which serves as the first component
of our end-to-end system. Sections IV-C, IV-D, and IV-E
describe the results of our experiments with the pose inter-
preter network on synthetic data. In Sections IV-F and IV-G,
we combine the segmentation network and pose interpreter
network into our full end-to-end system and evaluate its
performance on real RGB data. Finally, in Sections IV-H
and IV-I, we discuss limitations of our approach as well as
experiments to address some of those limitations.

A. Datasets

As shown in Fig. 2, we use separate datasets for training
the segmentation network and the pose interpreter network.
The segmentation network is trained on real RGB images,
while the pose interpreter network is trained entirely on
synthetic data. We describe each of the two datasets in detail
below.

Oil Change Dataset. We use an extension of the dataset
used in the SegICP system [13], which we will refer to as
the Oil Change dataset. The dataset consists of indoor scenes
with 10 categories of densely annotated objects relevant to
an automotive oil change, such as oil bottles, funnels, and
engines. Images were captured with one of three sensor types
(Microsoft Kinect1, Microsoft Kinect2, or Asus Xtion Pro

Fig. 3: We use a synthetic image dataset of five object classes
to train our pose interpreter network. The dataset contains
both synthetic object images (top two rows) and synthetic
mask images (bottom two rows).

Live) and were automatically annotated with object poses
and pixelwise instance masks using either the motion capture
setup described in [13] or the LabelFusion [15] pipeline.

In total, there are 7,879 images used for training and
another held out 1,950 test images used for evaluation. For
our segmentation model, we used the full training and testing
splits. For evaluating our end-to-end system, we used a
subset of the testing images corresponding to one of the
Kinect1 cameras. This is because unlike in most 2D image
recognition tasks, the task of recovering 3D pose from a 2D
image depends on the intrinsics of the camera with which
the image was taken, so we cannot use images from several
different cameras. As a result, we focus on our most portable
Kinect1 camera for our end-to-end system. The subset we
used for evaluating the end-to-end system consisted of 229
test images with 683 object instances from 5 categories.
These same 5 object categories were used for our synthetic
image dataset, described in further detail below.

Synthetic Image Dataset. We train and evaluate our pose
interpreter network entirely on a synthesized dataset of object
images and mask images, examples of which are shown in
Fig. 3. We load 3D model files for five object categories
from the Oil Change dataset and use the Blender rendering
software to render the objects in random poses. As previously
discussed, we focus on one Kinect1 camera for evaluating
our end-to-end system. In order to ensure compatibility with
the evaluation images, we calibrated our camera and used
the same camera intrinsics in the rendering pipeline.

While it is possible to render images on the fly during
neural network training, we found that the rendering time far
exceeded the network training step time. We thus rendered
and saved a total of 3.2 million training images and 3,200
testing images, evenly spanning the five object classes. We
note that much less training data is actually needed, and
in Section IV-E, we investigate the effect of training data
quantity on the performance of the pose interpreter network.

TABLE I: Performance of the pose interpreter network
trained and evaluated on synthetic data.

model type pos. error (cm) ori. error (deg)
object 1.12 8.93
mask 1.43 14.83

B. Semantic Segmentation with DRN

Our segmentation model is a DRN-D-22 trained on the
Oil Change dataset with batch size 16, learning rate 0.001,
momentum 0.99, and weight decay 0.0001. The dataset
was annotated with 11 classes, corresponding to the 10
object classes and an additional background class. We trained
for 900 epochs and used aggressive data augmentation to
improve generalization, including random scaling, random
rotations, random cropping, and gamma jittering. On the Oil
Change test images, our final model achieves a pixelwise
accuracy of 99.82% and a mean IoU of 0.9650 across the
10 object classes.

C. Pose Interpreter Network

As described in Section IV-A and Fig. 3, we used a
synthetic dataset containing both object images and mask
images. We use the synthetic object images for further
experiments with the pose interpreter network. The synthetic
mask images are used to train the pose interpreter network
for use in our full end-to-end system.

In Table I, we show the performance of our pose inter-
preter network after training and evaluating on the synthetic
dataset for both object images and mask images. We use
a batch size of 32, weight decay of 0.0001, and train for
21 epochs with an initial learning rate of 0.01, which we
decay by a factor of 10 after 7 epochs and 14 epochs. A
single network is trained to handle all five object classes
with separate output heads per class. By design, the network
operates on instance masks of known object class, so for
each training example we are able to select the appropriate
outputs to compute the loss on.

As one might expect, the model trained on synthetic mask
images does not perform as well as the model trained on
synthetic object images, as there is less information and
more ambiguity when given only a binary mask of an
object. However, the model trained on synthetic mask images
can be directly used on real RGB data when combined
with a segmentation model. We describe the results of this
combination applied to real RGB data in Section IV-F.

D. Pose Prediction Loss Functions

We considered four loss functions and evaluated them on
a subset of the synthetic dataset consisting of synthetic blue
funnel object images. We used an initial learning rate of 0.01
for all four training runs, which was decayed after observing
the validation performance plateau (10 epochs for L1, 30
epochs for L2, and 15 epochs for L3 and L4). The weighting
term α was set to 1 for L1 and L2. We show in Table II the
best performance for each network after 30 epochs (45 for
L2 due to slower convergence).

TABLE II: Performance of pose interpreter network trained
with various loss functions on synthetic blue funnel object
images. The loss functions are described in Section III-D.

loss function pos. error (cm) ori. error (deg)
L1 0.75 5.79
L2 1.38 13.76
L3 0.58 6.25
L4 0.50 6.01

TABLE III: Performance of pose interpreter network trained
on synthetic object images from the blue funnel object class.
We vary the number of training images used to see the effect
on performance.

images pos. error (cm) ori. error (deg)
12,800 3.16 104.6
25,600 1.86 48.15
51,200 1.50 11.85

102,400 1.06 10.99
640,000 1.33 11.02

We observed that the network trained using L1 attains
comparable performance to the point cloud loss functions L3

and L4. However, the weighting term α for L1 must be tuned
to balance the position and orientation errors. Lowering the
position error by adjusting the weighting term would raise the
orientation error, and vice versa. By contrast, our proposed
point cloud loss function naturally balances the position and
orientation errors by computing the loss in the 3D point
space, so there is no weighting term to tune.

E. Synthetic Training Data Quantity

We used 3.2 million training images to train our pose
interpreter network. Here we investigate whether comparable
performance can be attained with fewer training images, and
whether the training scales well with more object classes. We
run two sets of experiments using subsets of our synthetic
dataset, the first on synthetic object images of a single object
class (blue funnel) as shown in Table III, and the second on
synthetic object images of all five object classes as shown
in Table IV. We used a learning rate of 0.01 with no decay
for all experiments, and show the best performance attained
after an equal number of training iterations (400k for single
object class, 700k for five object classes).

The results in Table III indicate that when training the
pose interpreter network on a single object class, using more
than 100k training images does not yield further gains. When
training the pose interpreter network on multiple object
classes instead, the results in Table IV indicate that 25k
images is the cutoff point. We interpret this as evidence that
the network is learning some shared knowledge between the
different object classes, as only 25k images per class are
needed rather than 100k. Although more training images and
training iterations are required for multiple object classes, the
required quantities are far from proportional to the number
of classes.

TABLE IV: Performance of pose interpreter network trained
on synthetic object images from all five object classes. We
vary the number of training images used per object class.

images / class pos. error (cm) ori. error (deg)
6,400 4.91 82.45

12,800 3.36 27.06
25,600 3.21 22.86
51,200 2.94 25.16
640,000 2.96 24.26

TABLE V: End-to-end performance of our object pose
estimation system on real RGB images. We also show the
performance for SegICP evaluated on the same test images.

ours SegICP
pos. error (cm) mean 3.76 2.09

median 3.23 1.32
ori. error (deg) mean 19.64 68.93

median 6.17 55.63
success (%) 71.01 42.08

F. Object Pose Estimation on Real RGB Images

We evaluate our end-to-end object pose estimation system
on real RGB images from the Oil Change dataset test split.
The end-to-end system is composed of a DRN segmentation
model followed by a object mask pose interpreter network.
As described in Section IV-A, we evaluate only on the
images taken with a specific Kinect1 sensor, consisting of
229 images with 683 total object instances.

We show the performance of our end-to-end system eval-
uated on our Oil Change dataset in Table V. Following the
convention used in [4] and [13], a successful pose estimate
is defined as < 5 cm position error and < 15◦ orientation
error. Histograms of the position and orientation errors in
Fig. 4 show the distribution of errors relative to the success
cutoffs, marked in red.

We also show in Table V a comparison with SegICP,
which reported a success rate of 77% in [13]. However,
that success rate was evaluated on an older version of our
dataset. For a fair comparison, we evaluated the performance
of SegICP on the updated test set, which proved to be
more challenging than the set used in the SegICP paper.
The current test set includes many object instances that
lie in close proximity to other objects. This means that
mistakes in the segmentation can result in the inclusion
of erroneous points from neighboring objects, leading to
poor ICP performance in SegICP. Furthermore, although
SegICP attains better position errors than our system, we
would like to emphasize that SegICP uses ICP to iteratively
refine predictions, whereas our system outputs a one-shot
prediction per object with no postprocessing or refinement.

G. Object Pose Estimation on Live RGB Data

In order to verify that our approach does not suffer
from overfitting or dataset bias, we tested the efficacy of
our approach on live RGB data. Our experimental setup
used an Ubuntu 16 workstation equipped with a dedicated

0 5 10 15 20 25 30 35 40
position error (cm)

0.0

0.1

0.2

0.3
fra

ct
io

n
of

 in
st

an
ce

s

0 20 40 60 80 100 120 140 160 180
orientation error (degrees)

0.00

0.02

0.04

0.06

0.08

fra
ct

io
n

of
 in

st
an

ce
s

Fig. 4: Histograms showing position errors and orientation errors of our end-to-end pose estimation system on real RGB
data. The success criterion of < 5 cm position error and < 15◦ orientation error is indicated by the dotted red lines. Our
system attains a success rate of 71.01%.

Nvidia Titan Xp graphics card. A ROS node processes live
images from our Kinect1 and runs them through trained
PyTorch models to generate 6-DoF pose predictions for each
recognized object. We benchmark the processing time per
frame by averaging over 50 consecutive frames. The DRN
forward pass takes 28.9 ms on 640×480 RGB images. The
pose interpreter network inputs 320×240 binary instance
masks and requires a 3.6 ms forward pass per detected object
instance. Visualization adds an additional overhead of about
10 ms. Overall, the end-to-end system takes about 32–47 ms
per frame depending on the number of objects in the image.
In the accompanying video supplement, we demonstrate our
system performing pose estimation in real-time on live data.

H. Limitations
The main limitations of our approach are sensitivities to

both occlusion and segmentation failures. Our pose inter-
preter network is trained entirely on synthetic data, and thus
only generalizes well when input object masks resemble the
rendered masks seen during training. Hence, the performance
of our end-to-end system is closely tied to the quality of the
segmentation model.

We quantitatively evaluate the effect of occlusions on the
performance of the object mask pose interpreter network by
introducing circular occlusions of various sizes centered at
points on mask boundaries, as shown in Fig. 5. We show in
Fig. 6 how the position and orientation errors of the network
relate to the amount of occlusion introduced. The occlusion
amount measures the fraction of the original mask area that
has been artificially occluded. The results (trained without
occlusion) indicate high sensitivity to occlusion, particularly
for orientation prediction at low occlusion amounts. In Sec-
tion IV-I, we investigate whether training with artificially
occluded mask images improves the robustness of the pose
interpreter network.

Another limitation of our approach is the lack of additional
information such as texture, color, or depth in our binary
mask representation, which presents difficulties in situations
where such information is needed to resolve ambiguities
in the mask representation. However, extending to other
domains such as depth would require either more realistic

Fig. 5: Some examples of the artificially occluded mask
images we generated. These images were used to quantify the
pose interpreter network’s sensitivity to occlusions. We also
ran experiments, as described in Section IV-I, using occluded
images as training data.

0.0 0.2 0.4 0.6 0.8 1.0
occlusion amount

0

20

40

60

80

m
ea

n
po

sit
io

n
er

ro
r (

cm
)

trained without occlusion
trained with occlusion

0.0 0.2 0.4 0.6 0.8 1.0
occlusion amount

0

25

50

75

100

125

m
ea

n
or

ie
nt

at
io

n
er

ro
r (

de
g)

trained without occlusion
trained with occlusion

Fig. 6: We artificially introduce circular occlusions of various
sizes, as shown in Fig. 5, and quantify how the performance
of the object mask pose interpreter network varies with the
amount of occlusion. We then train a model with occluded
mask images, as detailed in Section IV-I, and compare
the resulting performance with the baseline model trained
without occlusion.

rendering or domain adaptation techniques. Here, we would
like to emphasize that our object mask representation enables
us to directly apply our pose interpreter network to real RGB
data without any domain adaptation.

I. Training with Occlusion

As discussed in Section IV-H, our model is not robust
to occlusions, particularly for orientation prediction. We
investigate here whether we can improve the robustness
of object mask pose interpreter networks by training on
occluded mask images. Using the same occlusion scheme as
in Section IV-H, we artificially occlude mask images during
training and evaluate the resulting performance.

0 5 10 15 20 25 30 35 40
position error (cm)

0.0

0.1

0.2

0.3
fra

ct
io

n
of

 in
st

an
ce

s trained without occlusion
trained with occlusion

0 20 40 60 80 100 120 140 160 180
orientation error (degrees)

0.00

0.02

0.04

0.06

0.08

fra
ct

io
n

of
 in

st
an

ce
s trained without occlusion

trained with occlusion

Fig. 7: Histograms showing position errors and orientation
errors of the end-to-end system when the pose interpreter
network is trained with and without occlusion. The end-to-
end system is evaluated on real RGB data. For the model
trained with occlusion, note that the orientation errors are
much more concentrated in the low error region.

We show in Figs. 6 and 7 comparisons between the
baseline mask model and a model trained with circular
occlusions of maximum radius 24. Fig. 6 indicates that the
pose interpreter network is more robust when trained with oc-
clusion, especially for orientation prediction at low occlusion
amounts. In Fig. 7, we show that when applied to the end-
to-end system and evaluated on real RGB images, training
with occlusion does not show meaningful improvement in
position prediction, but does markedly improve orientation
prediction, allowing the system to successfully address many
examples that previously gave high orientation errors.

We note that introducing occlusions that cover too much of
the original object mask will destroy the information present
in the mask, so we experimented with different settings of
the maximum occlusion radius. As shown in Table VI, we
found 24 pixels to be optimal, and confirmed that training
with occlusions that were too large resulted in worsened
performance. We additionally found that larger occlusions
generally resulted in longer training times since the task
was more difficult. While 21 epochs was sufficient for the
baseline model, we trained models with larger occlusions for
over 100 epochs.

V. CONCLUSION

In this work, we present pose interpreter networks for real-
time 6-DoF object pose estimation. Pose interpreter networks
are trained entirely using cheaply rendered synthetic data,

TABLE VI: Performance of our end-to-end model when the
pose interpreter network is trained with occlusion. We vary
the maximum radius of the circular occlusions.

max occ. radius pos. error (cm) ori. error (deg) success (%)
mean median mean median

baseline 3.76 3.23 19.64 6.17 71.01
12 pixels 3.94 3.46 15.79 5.89 75.40
16 pixels 3.90 3.30 15.79 5.67 73.06
24 pixels 3.76 3.31 11.55 5.90 77.89
32 pixels 4.00 3.67 13.69 6.92 72.18
48 pixels 2.84 2.32 16.88 7.05 74.38
64 pixels 4.22 3.88 19.69 7.78 59.74

allowing us to avoid expensive annotation of large pose
datasets. We use pose interpreter networks as part of an end-
to-end system for pose estimation in real RGB images. The
system consists of two steps: (1) a segmentation network to
generate object instance masks, and (2) a pose interpreter
network which takes in instance masks and outputs pose
estimates. We use the object mask as a context-independent
intermediate representation that allows the pose interpreter
network, trained only on synthetic data, to also work on real
data. Our end-to-end system runs in real-time on live RGB
data, and does not use any filtering or postprocessing to refine
its pose estimates.

ACKNOWLEDGEMENT

We thank Lucas Manuelli, Russ Tedrake, Leslie Pack
Kaelbling, Tomás Lozano-Pérez, and Scott Kuindersma for
their insight and feedback.

REFERENCES

[1] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce, “3d object
modeling and recognition using local affine-invariant image descriptors
and multi-view spatial constraints,” International Journal of Computer
Vision, vol. 66, no. 3, pp. 231–259, 2006.

[2] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Computer vision, 1999. The proceedings of the seventh IEEE
international conference on, vol. 2. Ieee, 1999, pp. 1150–1157.

[3] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser,
K. Okada, A. Rodriguez, J. M. Romano, and P. R. Wurman, “Analysis
and observations from the first amazon picking challenge,” IEEE
Transactions on Automation Science and Engineering, 2016.

[4] A. Zeng, K.-T. Yu, S. Song, D. Suo, E. Walker Jr, A. Rodriguez,
and J. Xiao, “Multi-view self-supervised deep learning for 6d pose
estimation in the amazon picking challenge,” 2017.

[5] C. Hernandez, M. Bharatheesha, W. Ko, H. Gaiser, J. Tan, K. van
Deurzen, M. de Vries, B. Van Mil, J. van Egmond, R. Burger et al.,
“Team delfts robot winner of the amazon picking challenge 2016,” in
Robot World Cup. Springer, 2016, pp. 613–624.

[6] R. Jonschkowski, C. Eppner, S. Höfer, R. Martı́n-Martı́n, and
O. Brock, “Probabilistic multi-class segmentation for the amazon
picking challenge,” in Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on. IEEE, 2016, pp. 1–7.

[7] M. Schwarz, A. Milan, C. Lenz, A. Munoz, A. S. Periyasamy,
M. Schreiber, S. Schüller, and S. Behnke, “Nimbro picking: Versatile
part handling for warehouse automation,” in Robotics and Automation
(ICRA), 2017 IEEE International Conference on. IEEE, 2017, pp.
3032–3039.

[8] M. Schwarz, A. Milan, A. S. Periyasamy, and S. Behnke, “Rgb-d
object detection and semantic segmentation for autonomous manipu-
lation in clutter,” The International Journal of Robotics Research, p.
0278364917713117, 2016.

[9] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” arXiv preprint arXiv:1711.00199, 2017.

[10] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “Ssd-6d:
Making rgb-based 3d detection and 6d pose estimation great again,”
in The IEEE International Conference on Computer Vision (ICCV),
Oct 2017.

[11] M. Rad and V. Lepetit, “Bb8: A scalable, accurate, robust to partial
occlusion method for predicting the 3d poses of challenging objects
without using depth,” in The IEEE International Conference on
Computer Vision (ICCV), Oct 2017.

[12] C. Rennie, R. Shome, K. E. Bekris, and A. F. De Souza, “A dataset
for improved rgbd-based object detection and pose estimation for
warehouse pick-and-place,” IEEE Robotics and Automation Letters,
vol. 1, no. 2, pp. 1179–1185, 2016.

[13] J. M. Wong, V. Kee, T. Le, S. Wagner, G. L. Mariottini, A. Schneider,
L. Hamilton, R. Chipalkatty, M. Hebert, D. M. S. Johnson, J. Wu,
B. Zhou, and A. Torralba, “Segicp: Integrated deep semantic segmenta-
tion and pose estimation,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Sept 2017, pp. 5784–5789.

[14] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-
view rgb-d object dataset,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on. IEEE, 2011, pp. 1817–1824.

[15] P. Marion, P. R. Florence, L. Manuelli, and R. Tedrake, “A pipeline for
generating ground truth labels for real rgbd data of cluttered scenes,”
arXiv preprint arXiv:1707.04796, 2017.

[16] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,
and N. Navab, “Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes,” in Asian conference
on computer vision. Springer, 2012, pp. 548–562.

[17] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua,
and V. Lepetit, “Gradient response maps for real-time detection
of textureless objects,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 34, no. 5, pp. 876–888, 2012.

[18] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Com-
paring images using the hausdorff distance,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 15, no. 9, pp. 850–
863, 1993.

[19] D. G. Lowe, “Local feature view clustering for 3d object recognition,”
in Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on, vol. 1.
IEEE, 2001, pp. I–I.

[20] S. Savarese and L. Fei-Fei, “3d generic object categorization, local-
ization and pose estimation,” in Computer Vision, 2007. ICCV 2007.
IEEE 11th International Conference on. IEEE, 2007, pp. 1–8.

[21] J. J. Lim, A. Khosla, and A. Torralba, “Fpm: Fine pose parts-based
model with 3d cad models,” in European Conference on Computer
Vision. Springer, 2014, pp. 478–493.

[22] A. Collet, M. Martinez, and S. S. Srinivasa, “The moped framework:
Object recognition and pose estimation for manipulation,” The Inter-
national Journal of Robotics Research, vol. 30, no. 10, pp. 1284–1306,
2011.

[23] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis, “6-
dof object pose from semantic keypoints,” in Robotics and Automation
(ICRA), 2017 IEEE International Conference on. IEEE, 2017, pp.
2011–2018.

[24] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in
Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611.
International Society for Optics and Photonics, 1992, pp. 586–607.

[25] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algo-
rithm,” in 3-D Digital Imaging and Modeling, 2001. Proceedings.
Third International Conference on. IEEE, 2001, pp. 145–152.

[26] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and
C. Rother, “Learning 6d object pose estimation using 3d object
coordinates,” in European conference on computer vision. Springer,
2014, pp. 536–551.

[27] P. Wohlhart and V. Lepetit, “Learning descriptors for object recogni-
tion and 3d pose estimation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 3109–3118.

[28] W. Kehl, F. Milletari, F. Tombari, S. Ilic, and N. Navab, “Deep learning
of local rgb-d patches for 3d object detection and 6d pose estimation,”
in European Conference on Computer Vision. Springer, 2016, pp.
205–220.

[29] A. Doumanoglou, V. Balntas, R. Kouskouridas, and T.-K. Kim,
“Siamese regression networks with efficient mid-level feature extrac-
tion for 3d object pose estimation,” arXiv preprint arXiv:1607.02257,
2016.

[30] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser,
“3dmatch: Learning local geometric descriptors from rgb-d reconstruc-
tions,” in CVPR, 2017.

[31] A. Krull, E. Brachmann, F. Michel, M. Ying Yang, S. Gumhold, and
C. Rother, “Learning analysis-by-synthesis for 6d pose estimation in
rgb-d images,” in The IEEE International Conference on Computer
Vision (ICCV), December 2015.

[32] E. Brachmann, F. Michel, A. Krull, M. Ying Yang, S. Gumhold,
and c. Rother, “Uncertainty-driven 6d pose estimation of objects and
scenes from a single rgb image,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[35] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[36] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, “Ssd: Single shot multibox detector,” in European
conference on computer vision. Springer, 2016, pp. 21–37.

[37] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[38] F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” in
Computer Vision and Pattern Recognition (CVPR), 2017.

[39] S. Gupta, P. Arbeláez, R. Girshick, and J. Malik, “Aligning 3d models
to rgb-d images of cluttered scenes,” in Computer Vision and Pattern
Recognition (CVPR), 2015 IEEE Conference on. IEEE, 2015, pp.
4731–4740.

[40] A. Bansal, B. Russell, and A. Gupta, “Marr Revisited: 2D-3D model
alignment via surface normal prediction,” in CVPR, 2016.

[41] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza,
D. Ma, O. Taylor, M. Liu, E. Romo, N. Fazeli, F. Alet, N. C. Dafle,
R. Holladay, I. Morona, P. Q. Nair, D. Green, I. Taylor, W. Liu,
T. Funkhouser, and A. Rodriguez, “Robotic pick-and-place of novel
objects in clutter with multi-affordance grasping and cross-domain
image matching,” 2018.

[42] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional
network for real-time 6-dof camera relocalization,” in Computer Vision
(ICCV), 2015 IEEE International Conference on. IEEE, 2015, pp.
2938–2946.

[43] A. Kendall and R. Cipolla, “Geometric loss functions for camera pose
regression with deep learning,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[44] H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for cnn: Viewpoint
estimation in images using cnns trained with rendered 3d model
views,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 2686–2694.

[45] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Torralba, and
W. T. Freeman, “Single image 3d interpreter network,” in European
Conference on Computer Vision. Springer, 2016, pp. 365–382.

[46] J. Wu, Y. Wang, T. Xue, X. Sun, W. T. Freeman, and J. B. Tenenbaum,
“MarrNet: 3D Shape Reconstruction via 2.5D Sketches,” in Advances
In Neural Information Processing Systems, 2017.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[48] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
2017.

[49] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs.” IEEE transactions on
pattern analysis and machine intelligence, 2017.

[50] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Computer Vision (ICCV), 2017 IEEE International Conference on.
IEEE, 2017, pp. 2980–2988.

[51] S. L. Altmann, Rotations, quaternions, and double groups. Courier
Corporation, 2005.

	Introduction
	Related Work
	Technical Approach
	Segmentation Network
	Object Pose Representation
	Pose Interpreter Network
	Point Cloud L1 Loss for Pose Prediction

	Experiments
	Datasets
	Semantic Segmentation with DRN
	Pose Interpreter Network
	Pose Prediction Loss Functions
	Synthetic Training Data Quantity
	Object Pose Estimation on Real RGB Images
	Object Pose Estimation on Live RGB Data
	Limitations
	Training with Occlusion

	Conclusion
	References

