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Abstract

Canonicalization, a popular method for generating invariant or equivariant function classes
from arbitrary function sets, involves initial data projection onto a reduced input space subset,
followed by applying any learning method to the projected dataset. Despite recent research on
the expressive power and continuity of functions represented by canonicalization, its generaliza-
tion capabilities remain less explored. This paper addresses this gap by theoretically examining
the generalization benefits and sample complexity of canonicalization, comparing them with
group averaging, another popular technique for creating invariant or equivariant function
classes. Our findings reveal two distinct regimes where canonicalization may outperform or
underperform compared to group averaging, with precise quantification of this phase transition
in terms of sample size and group action characteristics. To the best of our knowledge, this
study represents the first theoretical exploration of such behavior, offering insights into the
relative effectiveness of canonicalization and group averaging under varying conditions.

1 Introduction

The goal of learning with invariances is to leverage known symmetries present in data to build
models that are inherently invariant. Such symmetries frequently arise in various machine learning
applications, particularly in the natural sciences (see, e.g., [2, 16, 42]). Examples include Euclidean
symmetries and equivariances [38], among others. These forms of invariance are collectively
addressed within the broader framework of geometric deep learning [9].

Several approaches are available for embedding invariances into machine learning models,
including designing models with built-in invariance tailored to specific applications. Notable
examples include Graph Neural Networks (GNNs) for graph data [36, 44], Convolutional Neural
Networks (CNNs) for image data [22, 21], and PointNet for point clouds [33, 34]. These methods
rely on tailoring the network architecture to the particular type of invariance relevant to the
application.

Another common approach to introducing invariances is to use a base function class and
augment it with additional modules to ensure the final representation is invariant with respect to
any group. Techniques in this category include group averaging [28], frame averaging [32], and
canonicalization [18], the latter of which forms the central focus of this paper.

In canonicalization, the data is first mapped onto a lower-dimensional space to reduce redun-
dancies arising from inherent invariances. A model, such as a neural network, is then trained on
this transformed data (see Figure 1). This contrasts with group averaging, where the model is
trained such that its output, averaged over all group transformations of the data, is plausible.

*Email: {bzt, stefje}@mit.edu.

1



Given the empirical success of these methods for learning under invariance, there has been sig-
nificant interest in understanding their theoretical foundations, particularly in terms of expressive
power and benefits like sample complexity and generalization bounds. For example, it has been
shown that group averaging enables strong generalization, allowing models to learn effectively
with much smaller sample sizes compared to cases without invariance. However, much less is
known about the theoretical properties of canonicalization.

In this paper, we aim to address the gap in understanding the generalization properties of
canonicalization by studying it compared to group averaging, which serves as a baseline. This
joint analysis reveals the strengths of both approaches and provides a theoretical basis for their
comparison. Specifically, we seek to answer the following question:

Under what conditions do canonicalized models generalize well, and when do they outper-
form group averaging?

To this end, we introduce the concept of alignment. A target function is said to be aligned with a
canonicalization scheme if it can be well-approximated by end-to-end canonicalized representations
derived from ”simple” base functions. This idea is inspired by algorithmic alignment [45], which
was developed to explain the generalization capabilities of Graph Neural Networks (GNNs) by
demonstrating that they produce functions aligned with dynamic programming-like distributed
algorithms on graphs. Furthermore, prior work has shown that learned canonicalization can
be highly effective in various applications [18]. This paper provides a theoretical foundation
for understanding how learned canonicalization may outperform group averaging when the
canonicalization is more aligned with the downstream task.

In particular, we identify a phase transition when comparing the generalization performance of
canonicalization and group averaging (Figure 2). Specifically, if the number of samples available to
the learning algorithm is below a critical threshold, denoted as Ncritical, group averaging exhibits
superior performance. Conversely, when the number of samples exceeds Ncritical, canonicalization
has the potential to outperform group averaging, provided the canonicalized model is well-aligned
with the target function (Definition 2). The improvement offered by canonicalization in such cases
can grow arbitrarily large as the alignment with the target task increases. Furthermore, we derive a
complete characterization of Ncritical as a function of the properties of the group and the underlying
function space.

To the best of our knowledge, this is the first theoretical investigation into this behavior, offering
new insights into the comparative effectiveness of canonicalization and group averaging under
different conditions.

In summary, this paper makes the following contributions:

• We analyze the generalization bounds and sample complexity advantages of learning with
canonicalized models.

• We conduct a comparative theoretical study with group averaging to identify when canoni-
calization can outperform group averaging in terms of sample complexity.

• We introduce the notion of alignment for canonicalized models and demonstrate that the
superiority of canonicalization or group averaging depends on whether the target task aligns
with the canonicalization scheme. To our knowledge, this is the first detailed exploration of
this behavior for both canonicalization and group averaging.
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2 Related Work

Euclidean symmetry and equivariance have garnered significant recent interest in machine learning
applications [38, 9], although their study dates back to earlier works [17, 3]. These concepts have
led to numerous approaches for incorporating symmetry into machine learning models, including
techniques such as group averaging [28], frame averaging [32], canonicalization [18, 25, 30], and
random projections [11]. It is worth noting that canonicalization can face challenges related to
discontinuities and stability issues [12].

Moreover, the study of invariances extends beyond learning; recent works have explored learn-
ing invariances in neural networks [5], measuring invariances [15], and optimization approaches
that account for invariances [41]; see also [8, 10]. Specific applications of canonicalization, particu-
larly for sign and basis invariances, have also been recently proposed [23, 24], with related work on
Laplacian-based approaches [26].

Consequently, the generalization capabilities of invariant classifiers have attracted significant
attention in recent years [39]. For learning with kernels [37], several studies have explored group
averaging to develop kernel methods for handling invariances, investigating its generalization
error [40, 6, 13, 27].

For equivariance, numerous approaches have also been proposed, such as parameter sharing
[35], with various works examining its generalization properties [31, 4, 14]. Incorporating equiv-
ariances in sampling for generative models has likewise been shown to be beneficial [7, 20, 29].
Furthermore, recent work has explored the complexity of learning under invariances for gradient-
based algorithms [19].

3 Problem Statement

We consider a classical learning setup with a dataset of n labeled examples, S =
{
(xi, yi) : i ∈ [n]

}
,

where the inputs xi, i ∈ [n], are i.i.d. samples from a uniform distribution over the manifold input
space X ⊆ Rd. The labels are generated by an unknown continuous target function f⋆, such that
yi = f⋆(xi) + ϵi, where the noise terms ϵi, for i ∈ [n], are independent, zero-mean random variables
with variance bounded by σ2. The objective is to learn f⋆ from the data.

Empirical Risk Minimization (ERM) provides an estimator for this problem through the follow-
ing optimization program:

min
f∈F

1

n

∑
i∈[n]

ℓ(f(xi), yi), (1)

where ℓ(·, ·) denotes the squared loss, and F represents the function class from which f is selected.

3.1 Learning with Invariances

In the context of learning with invariances, the optimal target function f⋆ is invariant under the
continuous action of a group G on the input space X . This means that for all x ∈ X and g ∈ G,
the functional equation f⋆(gx) = f⋆(x) holds. Here, gx denotes the transformation of the element
x ∈ X under the action of the group element g ∈ G. For simplicity, we assume throughout this
paper that G is finite.

Note that the invariance of f⋆ does not necessarily imply that the ERM solution is an invariant
estimator. To leverage these invariances in the learning process, various methods can be employed,
such as group averaging, canonicalization, data augmentation, and frame averaging. In this paper,
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x ∈ X π f ∈ F f(π(x))

Figure 1: Canonicalization for creating invariant function classes.

we focus on the first two methods and provide a brief review of these approaches in the following
subsections.

3.2 Group Averaging

Group averaging is a method for obtaining invariant functions from a set of base functions F . The
idea is that given an arbitrary function f ∈ F , the function R(f), defined as

R(f) :=
1

|G|
∑
g∈G

f(gx), (2)

is invariant with respect to the group G. Here, R(·) is sometimes referred to as the Reynolds
operator corresponding to the group G. Given a function space F , let us denote the space of
functions represented via group averaging as FGA which is formally defined as follows:

FGA :=
{
R(f) : f ∈ F

}
. (3)

3.3 Canonicalization

Canonicalization provides an alternative approach to constructing invariant function classes. Let
X/G denote the quotient space of the action of G on X , formally defined as X/G := {[x] : x ∈ X},
where [x] := {gx : g ∈ G} represents the orbits of the group. We assume X/G is embedded in
the input space X , meaning X/G ⊆ X . The embedding (or projection) map π : X → X/G maps
elements from the input space to their representation in the canonicalized space X/G.

Figure 1 illustrates how canonicalized function classes are constructed from a set of base
functions f ∈ F . In canonicalized models, any x ∈ X is first mapped to the canonicalized (or
quotient) space through the projection function π. The projected data π(x) is then passed to a base
function f ∈ F , yielding the final output f(π(x)). The set of all canonicalized functions is defined
as:

FCAN :=
{
f(π(x)) : f ∈ F

}
. (4)

3.4 Setup and Assumptions

As discussed, in learning with invariances, we begin with a base function class F and then employ
a method to construct invariant function classes, such as group averaging FGA or canonicalization
FCAN. We then formulate the problem as an empirical risk minimization (ERM) over the new
invariant function class to achieve an invariant estimator.

It is well known that both function classes FGA and FCAN are universally expressive: under
mild conditions on the set base functions F , both function spaces can approximate any invariant and
continuous function. However, universal expressiveness is not sufficient to ensure learnability. While
expressiveness concerns to the ability of the new function class to approximate any continuous
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function, learnability concerns whether an algorithm (such as ERM) can learn the target function
with appropriate sample and computational complexity while maintaining a small generalization
error.

In this paper, we study the sample efficiency of canonicalization by comparing it with group
averaging. We explicitly ask:

Which invariant function class (FGA or FCAN) requires a lower number of samples to gener-
alize? Which one is more sample efficient?

We aim to provide a meaningful answer to this question in the next section.
Assumptions. In this paper, we focus of finite subgroups G of the orthogonal group O(d) acting on
the input space Sd−1 := {x ∈ Rd : ∥x∥2 = 1}. Note that our goal is to learn an appropriate base
function f ∈ F such that, after applying the necessary transformations (either group averaging or
canonicalization), we obtain a highly accurate estimator of f⋆. Therefore, we assume that learning a
base function f ∈ F is feasible. To formalize this, we avoid overly complex functions in the base
space by defining the set of base functions as polynomials of x ∈ Sd−1 with degree at most k ∈ N:

Fk :=
{
f ∈ L2(Sd−1) : f is a polynomial of degree at most k

}
. (5)

The parameter k ∈ N controls the complexity of the base space (i.e., the number of parameters to
learn). For small k, the focus is on low-dimensional (i.e., smoother and simpler) functions, which
are generally easier to learn. Let the invariant function classes for the base space Fk be denoted as
Fk
CAN and Fk

GA.
Target function complexity. We also need to control the complexity of the target function f⋆ ∈

L2(Sd−1). To achieve this, we adopt a common assumption from the literature, namely that
f⋆ ∈ Hs(Sd−1), where Hs(Sd−1) represents the Sobolev space with parameter s ≥ 0. Formally, this
space is defined as:

Hs(Sd−1) :=
{
f ∈ L2(Sd−1) : f has square-integrable derivatives (on the sphere) up to order s

}
.

It is well known that to obtain continuous functions, one must assume s > (d − 1)/2, which we
adopt in this work. Additionally, larger values of s correspond to the integrability of higher-order
derivatives, leading to smoother functions.

On the restrictiveness of assumptions. In this paper, we restrict our focus to the sphere and finite
matrix group actions for simplicity. While the setup can be extended to a more general framework,
we prioritize simplicity here. The choice of using low-degree polynomials for the base space
is closely related to Sobolev kernels, which are commonly employed in machine learning and
statistics. To obtain precise convergence rates for the generalization error (or excess population
risk), we focus on low-degree functions, leveraging results from the theory of kernel convergence.

4 Main Results

In this section, we study generalization bounds for the problem of learning under invariances via
canonicalization, as discussed in the previous section. We begin by studying and comparing the
expressive powers of canonicalization and group averaging.
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4.1 Warm-Up: Exploring Expressive Power

Here, we compare the expressive power of FCAN and FGA, with particular interest in cases where
the class of base functions is not universally expressive (e.g., low-degree polynomials). Intuitively,
we aim to use the next theorem to understand the expressive power for learnable functions, which
constitute a significantly smaller subset of the base function class. Furthermore, the following result
also provides better insights before we present the main generalization bound of the paper.

Theorem 1 (Expressive power of canonicalization). Consider an arbitrary vector space of base functions
F , and assume it is closed under the group action, i.e., f(gx) ∈ F for each f ∈ F and g ∈ G. Then, it
follows that FCAN ⊇ FGA.

We present the proof of Theorem 1 in Appendix B.
The above result indicates that if the set of learnable functions satisfies mild conditions (i.e., being
a vector space and closed under the group action), then canonicalization is always superior to
group averaging in terms of approximation error. This implies that canonicalized models serve as
better approximators of the target function. However, from basic learning theory, we know that
while larger function classes correspond to smaller bias, they also incur larger variance. Specifically,
if f⋆ ∈ FGA (or is close to lying within that space), then canonicalized models introduce more
complexity into the learning task. In such cases, one might expect that

Generalization Error of FGA ≪ Generalization Error of FCAN. (6)

Conversely, if the canonicalized model aligns with the target function—meaning that f⋆ ∈ FCAN

(or is close to lying within it), but f⋆ /∈ FGA—then one should expect that, for large sample sizes,
the canonicalized model generalizes better due to its lower approximation error:

Generalization Error of FCAN ≪ Generalization Error of FGA. (7)

This highlights a dichotomy regarding whether canonicalization outperforms group averaging
in terms of generalization and sample complexity. We will formalize this observation in the next
subsection.

For the remainder of this subsection, we formally define the concept of alignment through a
more concrete mathematical formulation in the context of approximation theory.

Definition 2 (Alignment). A G-invariant target function f⋆ ∈ L2(Sd−1) is said to be β-aligned with
the canonicalized models Fk

CAN if and only if

min
f∈Fk

CAN

∥f − f⋆∥L2(Sd−1) ≤ Ck−β, (8)

for all k ∈ N, where C is an absolute constant that does not depend on k.

Observe that a larger value of β corresponds to greater alignment with canonicalized functions.
Indeed, as β → ∞, the function becomes nearly aligned with canonicalized models even for finite
k. For Sobolev target functions f⋆ ∈ Hs(Sd−1), alignment is only non-trivial when β > s.

Proposition 3. Any G-invariant function f⋆ ∈ Hs(Sd−1) is β-aligned with β = s.

The proof of Proposition 3 is provided in Appendix C. According to this result, in the remainder
of the paper, we will always consider cases where β ≥ s > (d− 1)/2.

To conclude this subsection, we provide an example to demonstrate that the inequality in
Theorem 1 is strict, meaning that there exist cases where FCAN ⊋ FGA.
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Example 4. Consider the space of linear functions defined as

F1 =

∑
i∈[d]

aixi
∣∣ ∀i ∈ [d] : ai ∈ R

 . (9)

Let Pd denote the group of all permutation matrices (i.e., the symmetric group) acting on x ∈ Sd−1.
We have

R(f)(x) =
1

d!

∑
σ∈Pd

f(σx) =
∑
i∈[d]

axi, (10)

where a = 1
d

∑
i∈[d] ai. In other words, F1

GA is a one-dimensional function class consisting solely of
linear functions of the form a

∑
i∈[d] xi for some a ∈ R.

Now, let us consider canonicalized functions with respect to P via the sort mapping: π(x) :=(
xmin, . . . , xmax

)T. In this case, if we specifically consider functions restricted to Sd−1/Pd, then F1
CAN

can represent any linear function
∑

i∈[d] aixi on the quotient space. In contrast, group averaging is
only able to represent functions of the form a

∑
i∈[d] xi, even when restricted to the quotient space.

For a concrete example, consider the function f(x) = mini∈[d] xi. This function belongs to F1
CAN

but is not in F1
GA because it is not linear on Sd−1. This demonstrates that F1

CAN ⊋ F1
GA. The same

situation holds for any k ∈ N.

Remark 5. As vector spaces, note that dim(F1
CAN) = d while dim(F1

GA) = 1. In other words, the gap
between the two vector spaces can be arbitrarily large.

4.2 Generalization and Sample Complexity

In this section, we present the primary result of this paper, presented in the following theorem.

Theorem 6 (Generalization bounds for canonicalization). Consider the problem of learning under
invariances with a dataset S =

{
(xi, yi) : i ∈ [n]

}
⊆

(
Sd−1 × R

)n, consisting of n i.i.d. (labeled) samples,
where yi = f⋆(xi) + ϵi and the independent noise terms ϵi are zero-mean with variance bounded by σ2 for
all i ∈ [n]. Let f̂CAN and f̂GA denote the Empirical Risk Minimization (ERM) estimators derived from the
invariant function classes Fk

CAN and Fk
GA, respectively:

f̂CAN = argmin
f∈Fk

CAN

1

n

∑
i∈[n]

ℓ(f(xi), yi), (11)

f̂GA = argmin
f∈Fk

GA

1

n

∑
i∈[n]

ℓ(f(xi), yi), (12)

where ℓ(·, ·) denotes the squared loss. Additionally, we assume the following conditions:

• The optimal target function f⋆ belongs to the Sobolev space Hs(Sd−1) with s > d−1
2 .

• The function f⋆ is β-aligned with the canonicalization scheme for FCAN, where β ≥ s.
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Figure 2: When n ≫ Ncritical, canonicalization demonstrates superior performance over group
averaging in terms of generalization error or sample complexity. In this scenario, the optimal target
function f⋆ aligns with the canonicalization scheme (β > s). Conversely, when n ≪ Ncritical, group
averaging is preferred as it provides a smoother approach to constructing invariant functions.

Under these assumptions, we obtain the following bounds with high probability1:

∥∥∥f̂CAN − f⋆
∥∥∥2
L2(Sd−1)

≲
k∑

ℓ=0

dim(Yd,ℓ)
σ2

n
+ k−2β, (13)

∥∥∥f̂GA − f⋆
∥∥∥2
L2(Sd−1)

≲
k∑

ℓ=0

dim(Y G
d,ℓ)

σ2

n
+ k−2s, (14)

where Yd,ℓ denotes the space of spherical harmonics of degree ℓ over d variables, and Y G
d,ℓ ⊆ Yd,ℓ denotes its

projection onto the space of G-invariant polynomials.

The proof of Theorem 6 can be found in Appendix D, and a comprehensive review of the theory
of spherical harmonics is provided in Appendix A.

The generalization curves obtained for group averaging and canonicalization are illustrated in
Figure 2. Let us interpret the upper bound in Theorem 6. First, note that according to Appendix A,
we have the following bounds:

k∑
ℓ=0

dim(Yd,ℓ) =
2kd−1

(d− 1)!
(1 + ok(1)),

k∑
ℓ=0

dim(Yd,ℓ) =
2kd−1

|G|(d− 1)!
(1 + ok(1)), (15)

where ok(1) → 0 as k → ∞. This leads to the following corollary.

1In this paper, all high-probability arguments hold with at least 90% probability.
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Corollary 7. Define the critical sample complexity Ncritical as:

Ncritical :=
σ2k2s+d−1

(d− 1)!(1− |G|−1)(1− k2(s−β))
. (16)

Then, we have

n ≪ Ncritical =⇒
∥∥∥f̂GA − f⋆

∥∥∥2
L2(Sd−1)

≪
∥∥∥f̂CAN − f⋆

∥∥∥2
L2(Sd−1)

(17)

n ≫ Ncritical =⇒
∥∥∥f̂CAN − f⋆

∥∥∥2
L2(Sd−1)

≪
∥∥∥f̂GA − f⋆

∥∥∥2
L2(Sd−1)

. (18)

The proof of Corollary 7 can be found in Appendix E.
To intuitively understand this phenomenon, note that when n ≪ Ncritical, we can disregard the
second term in the upper bound and focus solely on the first term, which is the dominating
term. This first term quantifies the generalization error for the functions generated from FCAN

or FGA without any bias. Since FGA represents a relatively smaller vector space (as established
in Theorem 1), we conclude that group averaging is superior in these situations (i.e., it has lower
variance).

Another way to interpret this regime is to recognize that group averaging provides a smoother
approach to achieving invariant functions. In contrast, canonicalization involves composing base
functions with the canonicalization (or projection) map π, which can be discontinuous or non-
smooth (see Section 2 for references).

On the other hand, when n ≫ Ncritical, the first term in the upper bound becomes negligible,
allowing us to compare only the second term. If β > s, we can conclude that canonicalization
outperforms group averaging in terms of generalization error. Intuitively, this corresponds to cases
where the canonicalization scheme is aligned with the optimal target function (i.e., β > s). This
leads to the following conclusion:

Canonicalization outperforms group averaging when the sample size is sufficiently large.
In such cases, the marginal gain of canonicalization depends on the degree to which the
optimal target function is aligned with the canonicalization scheme.

It is important to note that the alignment condition can be achieved either through an inductive
bias or through learned canonicalization schemes. In both scenarios, our theory suggests that
canonicalization is superior, a conclusion that is strongly supported by observations from previous
tasks, such as those involving graph neural networks in machine learning.

Remark 8. The upper bound established in Theorem 6 is tight in a minimax sense, and we include a
proof of its optimality within the proof of Theorem 6. To attain this bound, one can utilize kernel
regression within the space of (spherical) polynomials of degree at most k. This approach allows
for achieving the upper bound by employing quadratic optimization to determine the optimal
coefficients of the polynomial within the ERM objective. We provide a brief review of this in the
proof of Theorem 6 as well.

Remark 9. It is important to note that the dependence of Ncritical on the group size |G| and the
alignment parameter β is limited and negligible. In other words, the threshold at which the phase
transition occurs does not significantly depend on the group size or the level of alignment. However,
improved alignment—strongly influenced by the parameter β, the group, and the canonicalization
scheme—enhances the benefits of canonicalization in the large sample size regime.
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Figure 3: Generalization behavior of canonicalization compared to group averaging.

5 Experiments

We present proof-of-concept experiments in this section. The primary focus of this paper is to
understand the generalization behavior of canonicalization and its comparison to group averaging.
However, we aim to demonstrate that even in simple settings, alignment plays a crucial role in
performance.

Consider a linear model built on top of polynomial features of degree at most k = 3 over d = 3

dimensional uniform data from the cube [−1, 1]3. We seek a permutation-invariant estimator f̂ ,
either via group averaging or canonicalization, obtained through the least squares method.

The optimal target function, however, is assumed to be:

f⋆(x) = (1− α)
(
x1 + 2x2 + 3x3

)
+ α

(
max(x1, x2, x3)− 20min(x1, x2, x3)

)
, (19)

where α ∈ [0, 1] is a hyperparameter. Note that as α → 0, f⋆(x) becomes a linear but non-
invariant function, making it difficult for both methods to learn. In this scenario, group averaging
performs better, as it at least interpolates a smooth function rather than dealing with the non-
smooth combination of max /min. This case lacks alignment, and we expect group averaging to
outperform canonicalization.

On the other hand, as α → 1, we have f⋆(x) = max(x1, x2, x3)−20min(x1, x2, x3). This function
is better aligned with canonicalization rather than group averaging. The reason is clear: it is already
expressed in terms of max /min functions, which are easier for canonicalization to manage. In
other words, the function is more aligned with canonicalization.

These intuitions are consistent with the results we present in Figure 3. In this figure, we run
experiments based on the above setting with n = 100 training and test samples, and noise level
σ = 1. The results clearly show how alignment influences the distinct performance between group
averaging and canonicalization.
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6 Conclusion

In this paper, we investigate generalization bounds for canonicalization as a method for constructing
invariant function classes. As a baseline, we compare it with group averaging, a widely used
approach for generating invariant functions. Our findings reveal two distinct regimes where
canonicalization either outperforms or underperforms group averaging, in terms of the convergence
of generalization error (i.e., sample complexity). Specifically, in the low-sample regime, group
averaging proves superior due to its smoother effect on the base function class. However, in
the high-sample regime, canonicalization performs better, as it leverages the canonicalization (or
projection) map to achieve more accurate model approximations. This highlights the importance of
aligning the canonicalization process with the target task, which we demonstrate to be crucial for
building models with strong generalization capabilities. These results align with previous work in
machine learning, particularly in areas like graph neural networks, where algorithmic alignment
has been shown to enhance generalization.
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A Background on Spherical Harmonics

In this section, we review the theory of spherical harmonics, which provides a solid mathematical
framework for understanding harmonic analysis on the sphere. This framework will be crucial for
the proofs presented later in the paper.

Let Sd−1 := {x ∈ Rd : ∥x∥2 = 1} denote the unit sphere embedded in Rd. For any continuous
function f ∈ C(Sd−1), we define its radial extension on Rd \ {0} as follows:

f̃(x) := f

(
x

∥x∥2

)
.

This extension allows us to analyze the behavior of f not just on the sphere but also in the whole
space Rd.

The spherical Laplacian, denoted by ∆Sd−1 , is defined as:

∆Sd−1f := ∆f̃ ,

where ∆ :=
∑d

i=1 ∂
2
i represents the Euclidean Laplacian operator acting in Rd. The operator ∆Sd−1

plays a pivotal role in spherical harmonic analysis.
A significant property of the spherical Laplacian ∆Sd−1 is that it is a self-adjoint operator

on L2(Sd−1). This self-adjointness ensures that the eigenvalues are real, and the eigenfunctions
corresponding to these eigenvalues are orthogonal in the L2 sense.

To explore the spectral properties of ∆Sd−1 , we consider the vector space Vλ consisting of
solutions to the following partial differential equation (PDE):

∆Sd−1ϕ+ λϕ = 0,

defined on the unit sphere. A remarkable result is that the dimension of this vector space is finite:

dim(Vλ) < ∞ for all λ ∈ R.

Moreover, the dimension of Vλ is non-zero if and only if λ takes the specific form:

λ = ℓ(ℓ+ d− 2)

for some non-negative integer ℓ. This indicates that the eigenvalues of ∆Sd−1 are discrete and
non-negative, forming a countable set.

The corresponding eigenfunctions associated with these eigenvalues constitute an orthonormal
basis for the space L2(Sd−1). These eigenfunctions, known as spherical harmonics, are crucial in
various applications, including solving partial differential equations, performing expansions in
spherical coordinates, and analyzing functions on the sphere.

The space Vλ denotes the set of spherical harmonics corresponding to the eigenvalue λ =
ℓ(ℓ+ d− 2). We let ϕℓ,ℓ′ with ℓ′ ∈ [dim(Vλ)] represent an orthogonal basis of this space. In order to
compute the dimension of Vλ, we refer to the established theory of spherical harmonics.

We know that the space Vλ can be expressed as:

Vλ =
{
h(x) : h is a homogeneous harmonic polynomial of degree ℓ with λ = ℓ(ℓ+ d− 2)

}
,

where a harmonic polynomial h : Rd → R is defined as a polynomial that satisfies the condition
∆h = 0, with ∆ being the Laplacian operator.
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Let Pℓ(Rd) denote the ring of homogeneous polynomials of degree ℓ in d variables. It can be
shown that for any non-negative integer ℓ, the relationship between the space of homogeneous
polynomials and the space of spherical harmonics can be expressed as:

Pℓ(Rd) = Vℓ(ℓ+d−2)

⊕
r2Pℓ−2(Rd), (20)

where r2 := x21 + x22 + . . .+ x2d is the radial polynomial. This decomposition reveals that the space
of homogeneous polynomials can be broken down into the direct sum of spherical harmonics
and a subspace generated by the radial component multiplied by lower-degree homogeneous
polynomials.

Utilizing standard combinatorial arguments, we can derive the following corollary regarding
the dimension of the space of spherical harmonics.

Corollary 10. Let Yd,ℓ denote the vector space of spherical harmonics of degree ℓ. Specifically, we define Yd,ℓ
as Vℓ(ℓ+d−2). Then, the dimension of this space can be computed as:

dim(Yd,ℓ) =

(
ℓ+ d− 1

d− 1

)
−
(
ℓ+ d− 3

d− 1

)
. (21)

This result provides a clear count of the dimensions of spherical harmonics in d-dimensional
space, illustrating the rich structure of these functions. Moreover, it allows us to derive the
dimension of spherical harmonics of degree at most k ∈ N in the following lemma.

Lemma 11. We have the following asymptotic bounds for the dimension of spherical harmonics:

k∑
ℓ=0

dim(Yd,ℓ) =
2kd−1

(d− 1)!
(1 + ok(1)), (22)

where ok(1) → 0 as k → ∞.

Proof. To establish this result, we begin by computing the sum of dimensions for spherical harmon-
ics of degrees from 0 to k:

k∑
ℓ=0

dim(Yd,ℓ) =
k∑

ℓ=0

((
ℓ+ d− 1

d− 1

)
−
(
ℓ+ d− 3

d− 1

))
(23)

=

(
k + d− 1

d− 1

)
+

(
k + d− 2

d− 1

)
. (24)

Thus, for large values of k,

k∑
ℓ=0

dim(Yd,ℓ) =

(
k + d− 1

d− 1

)
+

(
k + d− 2

d− 1

)
(25)

=
kd−1

(d− 1)!
(1 + ok(1)) +

kd−1

(d− 1)!
(1 + ok(1)) (26)

=
2kd−1

(d− 1)!
(1 + ok(1)). (27)

This completes the proof.
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Let us now compute the dimension of the vector space of spherical harmonics Y G
d,ℓ that remain

invariant under the action of a subgroup G of the orthogonal matrices acting on Sd−1. According
to the spectral theorems for invariant functions [40], we can derive the following result:

k∑
ℓ=0

dim(Y G
d,ℓ) =

(1 + ok(1))

|G|

k∑
ℓ=0

dim(Yd,ℓ) =
2kd−1

|G|(d− 1)!
(1 + ok(1)). (28)

Spherical harmonics also play a crucial role in our analysis of polynomial regressions throughout
this paper. Specifically, the direct sum

⊕k
ℓ=0 Yd,ℓ corresponds precisely to the space of polynomials

of degree at most k when we restrict our attention to the unit sphere.
We conclude this section by introducing the space of Sobolev functions Hs(Sd−1) in the context

of spherical harmonics. Let f ∈ L2(Sd−1) be a square-integrable function. From the properties
associated with spherical harmonics, we know that f can be expressed as an infinite series:

f(x) =

∞∑
ℓ=0

dim(Yd,ℓ)∑
ℓ′=1

fℓ,ℓ′ϕℓ,ℓ′(x), (29)

where ϕℓ,ℓ′(x), with ℓ = 0, 1, . . . and ℓ′ ∈ [dim(Vλ)], form an orthonormal basis for both spherical
harmonics and L2(Sd−1). Indeed, these functions are homogeneous polynomials of degree ℓ as ℓ′

varies.
Since f ∈ L2(Sd−1), we can infer that

∞∑
ℓ=0

dim(Yd,ℓ)∑
ℓ′=1

f2
ℓ,ℓ′ = ∥f∥2L2(Sd−1) < ∞. (30)

The concept of Sobolev spaces involves placing restrictions on this space by imposing conditions
on the rate at which the tail of the above series vanishes. For any non-negative s, we define

Hs(Sd−1) :=
{
f ∈ L2(Sd−1) : ∥f∥2Hs(Sd−1)

:= ∥f∥2L2(Sd−1) (31)

+

∞∑
ℓ=0

dim(Yd,ℓ)∑
ℓ′=1

ℓs(ℓ+ d− 2)sf2
ℓ,ℓ′ < ∞

}
. (32)

One can prove that this new formulation is equivalent to the definition of Sobolev spaces
presented in the main body of the paper.

B Proof of Theorem 1

Proof. Let F be an arbitrary vector space closed under the group action. We want to prove that
FCAN ⊇ FGA. To this end, fix an arbitrary f ∈ F and note that R(f) ∈ FGA. Our goal is to show
that R(f) ∈ FCAN and this completes the proof.

Note that for each g ∈ G, according to the closeness of F under group action, we have f(gx) ∈ F .
Moreover, since F is a vector space, and thus being closed under taking summations, we have that

1

|G|
∑
g∈G

f(gx) ∈ F =⇒ R(f)(x) ∈ F . (33)
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Now let f̃ := R(f)(x). Then, according to the definition, we have that

R(f)(x) ∈ F =⇒ R(f)(π(x)) ∈ FCAN. (34)

However, R(f)(x) ∈ FGA is G-invariant, thus we have

R(f)(x) = R(f)(π(x)), (35)

for all x, which means that

R(f)(π(x)) ∈ FCAN =⇒ R(f)(x) ∈ FCAN, (36)

and this completes the proof.

C Proof of Proposition 3

Proof. Let f⋆ ∈ Hs(Sd−1) be a G-invariant function. To prove that f⋆ is β-aligned with the canoni-
calized models Fk

CAN with β = s, we need to show that

min
f∈Fk

CAN

∥f − f⋆∥L2(Sd−1) ≤ Ck−s, (37)

for all k ∈ N, where C is an absolute constant that does not depend on k.
We begin by using Theorem 1, which implies that Fk

CAN ⊇ Fk
GA for each k ∈ N. The condition

in Theorem 1 holds here because Fk, the space of harmonic polynomials of degree at most k, is a
vector space that is closed under group action.

Thus, we have

min
f∈Fk

CAN

∥f − f⋆∥L2(Sd−1) ≤ min
f∈Fk

GA

∥f − f⋆∥L2(Sd−1), (38)

for each k ∈ N. Therefore, the proof is complete if we show that

min
f∈Fk

GA

∥f − f⋆∥L2(Sd−1) ≤ Ck−s, (39)

for each k ∈ N.
Let Πk denote the orthogonal projection operator that projects square-integrable functions

f ∈ L2(Sd−1) to homogeneous harmonic polynomials (i.e., spherical harmonics) of degree at most
k ∈ N. We claim that Πkf

⋆ ∈ Fk
GA and that∥∥Πkf

⋆ − f⋆
∥∥2
L2(Sd−1)

≤ C2k−2s

for a constant C, which completes the proof.
First, since the Reynolds operator R commutes with Πk, we have

R(Πkf
⋆) = Πk(R(f⋆)) = Πkf

⋆, (40)

where we use R(f⋆) = f⋆ since f⋆ is G-invariant. This shows that Πkf
⋆ ∈ Fk

GA by definition.
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Next, we show that
∥∥Πkf

⋆ − f⋆
∥∥2
L2(Sd−1)

≤ C2k−2s. Let

f⋆(x) =

∞∑
ℓ=0

dim(Yd,ℓ)∑
ℓ′=1

f⋆
ℓ,ℓ′ϕℓ,ℓ′(x),

where ϕℓ,ℓ′(x) (for ℓ = 0, 1, . . . and ℓ′ ∈ [dim(Yd,ℓ)]) form an orthonormal basis for both spherical
harmonics and L2(Sd−1). Then we have

∥∥Πkf
⋆ − f⋆

∥∥2
L2(Sd−1)

=

∞∑
ℓ=k+1

dim(Yd,ℓ)∑
ℓ′=1

f2
ℓ,ℓ′ .

Define µℓ := ℓs(ℓ+ d− 2)s for each ℓ ∈ N. We obtain

∥∥Πkf
⋆ − f⋆

∥∥2
L2(Sd−1)

=

∞∑
ℓ=k+1

dim(Yd,ℓ)∑
ℓ′=1

(f⋆
ℓ,ℓ′)

2 (41)

=

∞∑
ℓ=k+1

dim(Yd,ℓ)∑
ℓ′=1

µ−1
ℓ µℓ(f

⋆
ℓ,ℓ′)

2 (42)

≤ µ−1
k

∞∑
ℓ=k+1

dim(Yd,ℓ)∑
ℓ′=1

µℓ(f
⋆
ℓ,ℓ′)

2 (43)

= k−s(k + d− 2)−s
∞∑

ℓ=k+1

dim(Yd,ℓ)∑
ℓ′=1

µℓ(f
⋆
ℓ,ℓ′)

2. (44)

Since µℓ is increasing in ℓ, it follows that

∥∥Πkf
⋆ − f⋆

∥∥2
L2(Sd−1)

≤ k−s(k + d− 2)−s
∞∑

ℓ=k+1

dim(Yd,ℓ)∑
ℓ′=1

µℓ(f
⋆
ℓ,ℓ′)

2 (45)

≤ k−2s
∞∑

ℓ=k+1

dim(Yd,ℓ)∑
ℓ′=1

µℓ(f
⋆
ℓ,ℓ′)

2 (46)

≤ k−2s
∞∑
ℓ=0

dim(Yd,ℓ)∑
ℓ′=1

µℓ(f
⋆
ℓ,ℓ′)

2 (47)

≤ k−2s∥f⋆∥2Hs(Sd−1). (48)

This completes the proof.

D Proof of Theorem 6

Proof. Consider a dataset S =
{
(xi, yi) : i ∈ [n]

}
⊆

(
Sd−1 × R

)n, consisting of n i.i.d. labeled
samples, where yi = f⋆(xi) + ϵi and the independent noise terms ϵi are zero-mean with variance
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bounded by σ2 for all i ∈ [n]. Let

f̂CAN = argmin
f∈Fk

CAN

1

n

∑
i∈[n]

ℓ(f(xi), yi), (49)

f̂GA = argmin
f∈Fk

GA

1

n

∑
i∈[n]

ℓ(f(xi), yi), (50)

where ℓ(·, ·) denotes the squared loss. We aim to prove that for sufficiently large k ∈ N, with high
probability:

∥∥∥f̂CAN − f⋆
∥∥∥2
L2(Sd−1)

≲
k∑

ℓ=0

dim(Yd,ℓ)
σ2

n
+ k−2β, (51)

∥∥∥f̂GA − f⋆
∥∥∥2
L2(Sd−1)

≲
k∑

ℓ=0

dim(Y G
d,ℓ)

σ2

n
+ k−2s. (52)

First, we focus on group averaging. We need to introduce some notation, assuming the back-
ground provided in Appendix A. For any estimator, we have

f(x) =
k∑

ℓ=0

dim(Y G
d,ℓ)∑

ℓ′=1

fℓ,ℓ′ϕ
G
ℓ,ℓ′(x),

where ϕG
ℓ,ℓ′(x) denotes a basis for G-invariant spherical harmonics. We can rewrite the empirical

risk minimization (ERM) loss function as follows:

1

n

∑
i∈[n]

ℓ(f(xi), yi) =
1

n

n∑
i=1

 k∑
ℓ=0

dim(Y G
d,ℓ)∑

ℓ′=1

fℓ,ℓ′ϕ
G
ℓ,ℓ′(xi)− yi


2

. (53)

For simplicity in notation, we flatten our indices to t := (ℓ, ℓ′) ∈ [p], where p :=
∑k

ℓ=0 dim(Y G
d,ℓ).

This avoids unnecessary dependence on previous notation for multiplicities.
Next, we introduce the feature matrix Φ =

(
ϕG
t (xi)

)
n×p

∈ Rn×p. With a slight abuse of notation,
we use f to denote both a candidate estimator and its spherical coefficients. The ERM objective is:

1

n

∑
i∈[n]

ℓ(f(xi), yi) =
1

n
∥Φf − y∥22, f :=

(
ft
)
t∈[p] ∈ Rp. (54)

According to the closed-form solution of the above least-squares objective, we obtain the following
ERM estimator:

f̂ = Σ−1Φ⊤y, Σ := Φ⊤Φ, (55)

assuming Σ is invertible, which is equivalent to n ≥ p in our case.
With a slight abuse of notation, we also use f⋆ to denote the optimal target function and its

optimal spherical coefficients. Replacing this into the population risk, we obtain:∥∥f̂GA − f⋆
∥∥2
L2(Sd−1)

= ∥f̂ − f⋆∥22 ≤ 2∥f̂ −Πkf
⋆∥22 + 2∥f⋆

>k∥22, (56)
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where Πk denotes the orthogonal projection operator onto the space of spherical harmonics of
degree at most k. We will treat the two terms on the right-hand side of the above inequality
separately.

Let us first focus on the first term. Let f⋆
k := Πkf

⋆ and note that f⋆ = f⋆
k + f⋆

<k. Moreover,
y = Φf⋆

k + δ + ϵ, where δi := f⋆
<k(xi) for any i ∈ [n].

To obtain upper bounds on the first term, we utilize the derivation of f̂ and write:

∥f̂ −Πkf
⋆∥22 = ∥Σ−1Φ⊤y − f⋆

k∥22 (57)

= ∥Σ−1Φ⊤Φf⋆
k +Σ−1Φ⊤δ +Σ−1Φ⊤ϵ− f⋆

k∥22 (58)
(a)
= ∥Σ−1Φ⊤δ +Σ−1Φ⊤ϵ∥22 (59)

≤ 2∥Σ−1Φ⊤δ∥22 + 2∥Σ−1Φ⊤ϵ∥22, (60)

where (a) follows from the definition of Σ.
We note that

Eϵ[∥Σ−1Φ⊤ϵ∥22] = σ2tr(ΦΣ−1Σ−1Φ⊤) (61)

= σ2tr(Φ⊤ΦΣ−1Σ−1) (62)

= σ2tr(Σ−1), (63)

where in the last step, we used the definition of Σ. By a straightforward application of the matrix
Bernstein inequality [1, Proposition 3.12], we obtain that nΣ−1 ⪯ I/4 with high probability if
n ≳ p log(p). Using Markov’s inequality, this leads us to

∥Σ−1Φ⊤ϵ∥22 ≲
σ2p

n
, with probability at least 99%. (64)

Next, we derive upper bounds on ∥Σ−1Φ⊤δ∥22. Note that

Ex[∥Σ−1Φ⊤δ∥22] = E[tr(δ⊤ΦΣ−1Σ−1Φ⊤δ)] (65)

= E[tr(δδ⊤ΦΣ−1Σ−1Φ⊤)] (66)

≤ E[∥δδ⊤∥F ∥ΦΣ−1Σ−1Φ⊤∥F ] (67)

≤ E[∥δδ⊤∥F tr(ΦΣ−1Σ−1Φ⊤)], (68)

where ∥ · ∥F denotes the Frobenius norm. Note that ∥δδ⊤∥F = ∥δ∥22. Moreover, tr(ΦΣ−1Σ−1Φ⊤) =
tr(Σ−1). Thus, we have

Ex[∥Σ−1Φ⊤δ∥22] ≤ E[∥δ∥22 tr(Σ−1)]. (69)

Similar to the previous case, we know that with high probability, nΣ−1 ⪯ I/4 if n ≳ p log(p). Also,

E[
1

n
∥δ∥22] = E[

1

n

n∑
i=1

f⋆
<k(xi)

2] = ∥f⋆
<k∥22. (70)

This allows us to conclude that:

∥Σ−1Φ⊤δ∥22 ≲ ∥f⋆
<k∥22, with probability at least 99%. (71)
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We are now ready to combine all the above high-probability arguments to get:

∥∥f̂GA − f⋆
∥∥2
L2(Sd−1)

≲
σ2p

n
+ ∥f⋆

<k∥22, with probability at least 99%. (72)

Now let us compute ∥f⋆
<k∥22. Similar to the proof of Proposition 3, we obtain

∥f⋆
<k∥22 ≤ k−2s∥f⋆∥2Hs(Sd−1). (73)

Therefore, we have

∥∥f̂GA − f⋆
∥∥2
L2(Sd−1)

≲
σ2p

n
+ k−2s, with probability at least 90%, (74)

which completes the proof.
Remark 12. The proof for Fk

CAN is also similar, so we avoid repeating the arguments. The only
difference is that we explore all harmonic polynomials of degree at most k, instead of G-invariants,
which corresponds to having larger first term above. But, the second, term corresponding to
the approximation error is improved, as we use the alignment hypothesis instead of the Sobolev
condition.
Remark 13. All these bounds are optimal in minimax sense according to standard bounds in the
literature [1, 43]. As the main focus of this paper is not on serving optimal bounds and solely on
understanding achievable rates for canonicalization, we avoid rewriting optimality proofs here to
keep the paper concise.

E Proof of Corollary 7

Proof. To derive a formula for the critical sample complexity Ncritical, we note that we have already
shown the following using Lemma 11 to hold with high probability:∥∥∥f̂CAN − f⋆

∥∥∥2
L2(Sd−1)

≲
2kd−1

(d− 1)!

σ2

n
+ k−2β, (75)∥∥∥f̂GA − f⋆

∥∥∥2
L2(Sd−1)

≲
2kd−1

(d− 1)!

σ2

|G|n
+ k−2s. (76)

Therefore, to obtain the phase transition, we solve

2kd−1

(d− 1)!

σ2

Ncritical
+ k−2β =

2kd−1

(d− 1)!

σ2

|G|Ncritical
+ k−2s. (77)

This leads to

Ncritical =
σ2k2s+d−1

(d− 1)!(1− |G|−1)(1− k2s−2β)
. (78)

The proof is thus complete.
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