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Abstract

In learning with invariances (or symmetries), canonicalization is a widely used technique
that projects data onto a smaller subset of the input space to reduce associated redundancies.
The transformed dataset is then processed through a function from a designated function class to
obtain the final invariant representation. Although canonicalization is often simple and flexible,
both theoretical and empirical evidence suggests that the projection map can be discontinuous
and unstable, which poses challenges for machine learning applications. However, the overall
end-to-end representation can still remain continuous. Focusing on the importance of end-to-
end regularity rather than the projection mapping itself, this paper explores the continuity and
regularity of canonicalized models from a theoretical perspective. In a broad setting of input
spaces and group actions, we establish necessary and sufficient conditions for the continuity or
regularity of canonicalized models of any order, thereby characterizing the minimal conditions
required for stability. To our knowledge, this represents the first comprehensive investigation
into the end-to-end regularity of canonicalized models, offering critical insights into their design
and application, as well as guidance for enhancing stability in practical settings.

1 Introduction

Learning with invariances, or symmetries, has long been a key focus within the machine learning
community [10, 1, 5, 20]. The ability to incorporate known symmetries into learning algorithms
can lead to models that are both more efficient and more interpretable. This approach has gained
further prominence with applications in scientific domains such as physics [4, 3, 26, 9]. These
advancements have spurred interest in developing neural networks and other machine learning
architectures that can directly utilize inherent symmetries in data [25, 6].

Despite the growing number of applications, there is currently no universally accepted frame-
work for learning with general invariances. Existing techniques include widely-used methods
such as data augmentation, as well as group averaging approaches [18], frame averaging [22], and
canonicalization [12], each of which attempts to integrate invariance into models in different ways.
In this paper, we focus on the concept of canonicalization.

Canonicalization is a method for constructing invariant function classes that first projects data
onto a substantially smaller subset of the input space, aiming to eliminate redundancies induced by
symmetries. An arbitrary function is then applied to form the final representation. Figure Figure 1
illustrates this method. In this paper, the class of functions used to build the canonicalized models
is referred to as the class of base functions.

The simplest instance of canonicalization is sorting. A method for constructing permutation-
invariant functions over arrays of real numbers is to first sort the array (i.e., canonicalize it) and
then apply an arbitrary learning algorithm (i.e., find an appropriate base function) to learn from
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the canonicalized data. Although finding permutation-invariant functions by averaging over
all invariances is prohibitive, canonicalization offers a straightforward approach to constructing
invariant function classes by simply applying the sorting function, which can be executed in
nearly linear time. This example illustrates the power of canonicalization in achieving invariant
representations with low complexity.

However, it has recently been observed that canonicalized models suffer from the problem
of continuity: the projection used to remove invariances from the data is often not continuous.
Indeed, recent findings indicate that, for many problems, it is impossible to find canonicalized
models via continuous projections [8]. Given that continuity is the first design principle in machine
learning architecture, this issue undermines the computational benefits of canonicalization and
poses challenges for utilizing these models across various types of invariances. This challenge
extends beyond continuity; it also applies to differentiability and, more generally, higher-order
regularities.

It is important to note that the representations obtained through canonicalization can still
exhibit end-to-end continuity or differentiability, even if the projection step itself is discontinuous.
This leads to a crucial question: what are the minimal conditions necessary to ensure that the
end-to-end representation remains continuous (or differentiable)? Is achieving this difficult, or can
it be accomplished through simple regularizations applied to the training of base functions? This
question is particularly relevant to evaluating the effectiveness of canonicalization, as it pertains to
the continuity of the entire architecture and the complexity involved in identifying base functions
that ensure overall model regularity.

In this paper, we seek to address the aforementioned question through a rigorous examination
of the regularity of end-to-end representations derived from canonicalization. Our primary con-
tribution is a comprehensive characterization of the necessary and sufficient conditions for base
functions to ensure continuity in end-to-end canonicalization, while imposing minimal assump-
tions on the problem setup. Additionally, we apply these findings to various examples, ranging
from permutation invariance to sign invariance. We find that, in all cases, the conditions needed to
achieve continuity (or differentiability) of the end-to-end representation are prohibitively complex,
often requiring exponentially many constraints to be satisfied or necessitating the resolution of a
similar learning under invariance problem to achieve regularity. Thus, this work complements
existing research on the difficulties and impossibilities associated with achieving regularity in
canonicalization, focusing specifically on the regularity of end-to-end representations.

In summary, this paper presents the following contributions:

• We provide a comprehensive study of the end-to-end continuity and differentiability of canon-
icalized models, with minimal assumptions. Specifically, we establish necessary and sufficient
conditions on the class of base functions to ensure that the canonicalized representation is
always continuous or differentiable.

• Due to the generality of our results, we can apply them to various settings, ranging from
sorting and permutation invariance to sign invariances. We present several tight results
demonstrating how continuity and differentiability issues can significantly restrict canonical-
ized function classes.

2 Related Work

The problem of learning under invariances has been an important topic of research in machine
learning, spanning from the early stages of the field [10] to more recent contributions [5, 20, 1].
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The applications encompass both Euclidean geometry [25] and broader studies in geometric deep
learning [6].

Many learning architectures have been proposed for specific types of symmetries, such as
PointNet for point clouds [23, 24]. Additionally, methods for constructing general invariant
function classes include group averaging [18], frame averaging [22, 15, 2], and canonicalization
[16, 12, 19], among others [7, 14, 21].

The continuity problem of canonicalization and frame averaging is recently studied in [8, 17];
for more, see [11]. The hardness of learning under invariance has also recently been explored [13].

3 Problem Statement

This section is divided into two subsections. The first covers preliminaries and definitions, and
the second explains the problem of continuity, smoothness, and regularization of canonicalized
models.

3.1 Preliminaries

Consider a dataset of n labeled samples S = {(xi, yi) : i ∈ [n]} ⊆ (X × R)n, where X is a complete
locally compact metric space representing the input space. Here, [n] := {1, 2, . . . , n}. The primary
objective here is to find a target function f : X → R, from a class of functions F , that minimizes, for
example, the empirical risk

∑
i∈[n] ℓ(f(xi), yi), where ℓ(., .) denotes a differentiable loss function.

Moreover, the data is generated according to the model yi = f⋆(xi)+ ϵi, for all i ∈ [n]. Here, f⋆ ∈ F
represents the (unknown) optimal target function, and ϵi, for i ∈ [n], are independent noise terms.

In this paper, we study the problem of learning under invariances (or symmetries). Specifically,
consider an L-Lipschitz action of a topological group G on X , meaning that each group element
corresponds to an L-Lipschitz bijection on X . Moreover, assume that the optimal target function
is invariant under this group action, meaning f⋆(x) = f⋆(gx) for all g ∈ G and x ∈ X . Here, gx
represents the action of the group element g on x, and for technical reasons, we assume that the
map θ : G × X → X defined by θ(g, x) = gx is continuous, where G × X is equipped with the
product topology.

However, the class of target functions F is not always G-invariant in practice. For instance, F
might be represented using deep neural networks or kernel methods, which can include functions
that are not invariant. To address this, various approaches have been developed to create invariant
function spaces from a more general function space F (i.e., the class of base functions) in the
context of learning with invariances. This includes techniques such as feature averaging [22] and
canonicalization [16], with the latter being the primary focus of this paper.

The idea of canonicalization is first to project data on the quotient space of the group action
and then apply an arbitrary base function f ∈ F . In particular, define the quotient space X/G :=
{[x] : x ∈ X}, where [x] := {gx : g ∈ G} denotes the orbit of a point x ∈ X . Then, consider the
projection map π : X → X/G and assume that X/G is identified as a subset1 of X so we might
assume X/G ⊆ X . For technical reasons, throughout this paper, we assume that at least one of the
following conditions holds:

• The group G is compact.

1Although the quotient space can be studied as an abstract topological space, this paper focuses on a more concrete
setting where it is embedded into a subset of the input space X through a surjection.
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x ∈ X π f ∈ F f(π(x))

Figure 1: Canonicalized models.

• The set X/G (the quotient of X by the action of G) is precompact, meaning its closure is
compact in X . Additionally, for every element x in X , the orbit of x under G, denoted by [x],
is a closed set in X .

The conditions ensure that the mathematical structures we work with have well-behaved topologi-
cal properties, which are essential for achieving the main results of the paper. The canonicalization
scheme, denoted as (π,X/G), proposes using target functions of the form f ◦ π(x).

Definition 1. The class of canonicalized target functions Fcan is defined as:

Fcan :=
{
f ◦ π : X → R | f ∈ F

}
, (1)

where f ◦ π denotes the composition of the two functions.

Figure 1 illustrates the canonicalization method used for constructing invariant function classes.
Note that any fcan ∈ Fcan is G-invariant: fcan(gx) = f(π(gx)) = f(π(x)) = fcan(x) for all x.

3.2 Continuity, Smoothness, and Regularization

Given the projection map π : X → X/G and noting that X is a topological space, one can deduce
(using general topology) that X/G is a topological space (with the quotient topology) and π is a
continuous function between the two spaces. However, when X/G is embedded as a subset of X ,
the function π can be discontinuous! More precisely, when X/G is identified as a subset of X , as
we always do in this paper, the mapping π : X → X/G is not necessarily continuous (with respect
to the topology of X ). Here is an example2:

Example 1 (Discontinuous canonicalization). Consider the action of the set of integers G = Z on
X = R via shifting. The quotient space can be simply embedded into the input space, e.g., X/G =
[0, 1). However, the projection map π : R → [0, 1), given by π(x) = x− [x], is clearly not continuous
(with respect to R topology), as one can see limx→1− π(x) = 1 ̸= π(1) = 0. Consequently, even for
a continuous base function such as f(x) = x, the final end-to-end function is f(π(x)) = x − [x],
which is discontinuous on X = R.

We note that in designing machine learning architectures, it is always desirable to have con-
tinuous functions and, in general, be able to regularize the loss function up to a specified order of
derivatives. To do that, we first need to make sure that the class of canonicalized functions Fcan

only includes continuous functions, or in general, it only includes functions having derivatives up
to a specified order. Thus, we ask the following question:

What are the minimum requirements for the class of base functions F to ensure that the
end-to-end representation of canonicalized functions f ◦ π ∈ Fcan is always continuous (or
continuously differentiable up to a given order k)?

2For more examples, see [8].
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Note that the conditions imposed on F should be minimal. For instance, overly broad conditions
could be trivially satisfied by degenerate function classes, such as the set of constant functions on X .
Additionally, we are seeking to impose constraints on the class of base functions while assuming
that the canonicalization scheme (π,X/G) is fixed.

The following examples motivate the need for specific constraints to obtain continuous/smooth
canonicalized functions and show having continuous/smooth base functions f ∈ F is not enough.

Example 2 (Continuity conditions). Consider the same setup as in Example 1 and observe that for
f(π(x)) = f(x− [x]) to be continuous on R, it is necessary to assume that f is continuous on [0, 1]
and further satisfies f(0) = f(1). The continuity of f is required by considering generic points in
the quotient space, while the condition f(0) = f(1) arises from examining the behavior at integer
points.

Example 3 (Differentiability conditions). Consider reflecting across the origin with X = R. Note
that the projection π(x) = |x| maps onto the quotient space X/G = [0,∞). Any continuous function
f : R → R results in a continuous canonicalized function f(π(x)) = f(|x|). However, even if f
is differentiable on R, the canonicalized function f(π(x)) = f(|x|) may not be differentiable. For
instance, with f(x) = x, the function f(π(x)) = |x| is not differentiable at the origin. To ensure
differentiability at the origin, one must check:

lim
x→0+

f(|x|)
x

= f ′(0), (2)

lim
x→0−

f(|x|)
x

= lim
x→0−

f(−x)

x
= −f ′(0), (3)

which implies that f ′(0) must be zero.

Example 4 (Smoothness conditions). Consider the same setup as in Example 3. How can we
ensure second-order differentiability? Let us assume that f is twice differentiable and note that the
first-order derivative of the canonicalized function f(|x|) is3 sign(x)f ′(|x|) which is continuous if
f ′(0) = 0. Now observe that

lim
x→0+

sign(x)f ′(|x|)
x

= lim
x→0−

sign(x)f ′(|x|)
x

= f ′′(0).

In other words, the canonicalized function f(|x|) is twice differentiable for free, and we don’t need
any additional conditions to achieve second-order differentiability. More generally, one can simply
show that to obtain k-th order differentiability, we need the following conditions:

∀ℓ = 1, 2, . . . ,
[k
2

]
: f (2ℓ−1)(0) = 0, (4)

in addition to f being differentiable up to order k.

Driven by the examples discussed, this paper provides a comprehensive characterization of the
necessary and sufficient conditions for obtaining continuous and smooth canonicalized function
classes with arbitrary differentiability orders.

4 Main Results

To present the main results, we need to introduce a few definitions in the following subsection.
3Define sign(x) = x/|x| for x ̸= 0 and sign(0) = 0.
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4.1 Preliminaries

Let B(x; ϵ) ⊆ X denote the (open) ball around x ∈ X with radius ϵ. Let Π(x; ϵ) denote the image of
B(x; ϵ) under the mapping π, defined as

Π(x; ϵ) :=
{
π(ξ) : ξ ∈ B(x; ϵ)

}
⊆ X/G. (5)

Let us emphasize that, unless specified otherwise, in this paper, the notation X/G will denote the
embedded version of the quotient space with respect to the topology of X .

Let Π(x; ϵ) denote the closure of Π(x; ϵ) in X . Note that Π(x; ϵ) may not be a closed set. For
example, in Example 1, we have Π(0; 1) = [0, 1) which is not closed in X = R.

The (topological) boundary of the quotient space in X is defined as ∂(X/G) := X/G \ (X/G)◦,
where X/G and (X/G)◦ denote the closure and the interior of the quotient space with respect to
the topology of X , respectively.

Next, we define the equivalence class of any point x ∈ X .

Definition 2 (Equivalence classes). For any x ∈ X , define

Π(x) :=
⋂
ϵ>0

Π(x; ϵ). (6)

Note that according to the above definition, one has π(x) ∈ Π(x). Therefore, the equivalence
classes of points are always non-empty. Moreover, it is an invariant set under the group action, and
oftentimes, π(x) is the only element of this set:

Proposition 1. The following statements hold:

• For any x ∈ X and g ∈ G, one has Π(gx) = Π(x).

• If x ∈ (X/G)◦, then Π(x) = {x}.

• For any x ∈ X , one has Π(x) ⊆ [x].

• If X/G is closed in X , then Π(x) = {x} for any x ∈ X/G.

• Π(x) ⊆ X is compact, for any x ∈ X .

We present the proof of Proposition 1 in Appendix A. To examine the continuity of canonicalized
functions, we need to analyze the set of points x ∈ X that have a non-trivial equivalence class,
referred to as critical points.

Definition 3 (Critical points). The set of critical point Π◦ ⊆ X is defined as follows:

Π◦ :=
{
x ∈ X/G ⊆ X : Π(x) ̸= {x}

}
. (7)

Observe that Π◦ ⊆ ∂(X/G), according its definition and Proposition 1. Intuitively, for any
critical point x ∈ X/G, there are other points such as x̂ ∈ X such that the image of sequences
converging to x (under the quotient map) can converge to them.
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4.2 Continuity Conditions

We observed in Example 2 that achieving continuity may demand non-trivial assumptions on
base functions. Next, we use the concept of critical points to establish the necessary and sufficient
conditions for the continuity of canonicalized functions. The main result of this subsection is the
following theorem.

Theorem 1 (Continuous canonicalized functions). Consider a canonicalized function class Fcan derived
from a set of continuous base functions F . The class Fcan contains only continuous functions if and only if
for any base function f ∈ F the following condition holds:

∀x̂ ∈ Π(x) : f(x̂) = f(x), (8)

for every critical point x ∈ Π◦.

We present the proof of Theorem 1 in Appendix B.
Remark 2. According to the above theorem, having continuous base functions F alone is insufficient
to ensure continuity. However, if each base function f ∈ F produces the same values at the
equivalence classes of critical points, then the resulting function space consists only of continuous
functions. Notably, this represents the minimal condition required for continuity, as stated by the
theorem. We examine the results of Theorem 1 in several applications in Section 5.

4.3 Smoothness Conditions

Example 3 shows that achieving higher-order differentiability requires more conditions than
continuity. Here, we establish necessary and sufficient conditions for the continuous differentiability
of canonicalized functions up to a given order k. First, let us introduce some notation.

Notation. Throughout this subsection, G denotes a finite matrix group4 acting faithfully5

on X , and for any g ∈ G, let D(g) ∈ Rd×d denote its matrix representation, so gx = D(g)x

for any x ∈ X , and assume that D(g)T = D(g). Let ∇kf : X → Rdk denote the k-th order
tensor representing the k-th order derivatives of a function f : X → R. We treat this object as
a vector in this paper. Finally, remember that for any x̂ ∈ Π(x), we have x̂ ∈ [x]. Let us define
Ξ(x) :=

{
(g, x̂) ∈ G×Π(x) : x̂ = gx

}
.

Theorem 3 (Smooth canonicalized functions). Consider a canonicalized function class Fcan derived from
a set of k-th order continuously differentiable base functions F . The class Fcan contains only k-th order
continuously differentiable functions if and only if for any base function f ∈ F , the following condition
holds:

∀(g, x̂) ∈ Ξ(x) : ∇ℓf(x) = D(g)⊗ℓ∇ℓf(x̂), (9)

for all 0 ≤ ℓ ≤ k and any point x ∈ ∂(X/G), where D(g)⊗ℓ denotes the ℓ-times tensor product of the matrix
D(g) with itself.

We present the proof of Theorem 3 in Appendix C.
Remark 4. The theorem above describes the minimal conditions required, formulated as several
linear constraints on the boundary points of the quotient space, to guarantee that the canonicalized
function class is continuously differentiable up to the k-th order. We examine the results of
Theorem 3 in several applications in Section 5.

4The results in this subsection can also be extended to infinite groups, but for clarity and simplicity, we focus on
smoothness for finite groups.

5A group action is considered faithful if the only group element that acts trivially on the space is the identity element.

7



Remark 5. To ensure continuity, we previously conditioned the values of the base function on the
critical points. However, to achieve k-th order differentiability, restricting only the critical points
is insufficient. Specifically, we need to impose conditions on all boundary points x ∈ ∂(X/G) to
achieve smoothness. We will further explain this distinction in the next section.

Remark 6. Note that our results regarding the differentiability of canonicalized functions are
obtained in a general setting of metric spaces and Lipschitz group actions. However, to define
and achieve smoothness, we require more structure than just metric spaces. Specifically, we
consider embedded input spaces X ⊆ Rd and finite matrix group actions, both for the clarity of the
paper’s presentation and due to their numerous applications. Nonetheless, these results can also
be extended to infinite non-linear group actions using similar techniques, provided the appropriate
conditions are met.

5 Examples and Applications

In this section, we evaluate the main results through several examples and applications.

5.1 Sort

Consider the action of the permutation group G = Sd on vectors x ∈ X = Rd defined by σx :=(
xσ1 , xσ2 , . . . , xσd

)T for any σ ∈ Sd. The most natural canonicalization scheme on this space is the
sort function: π(x) :=

(
xmin, . . . , xmax

)T. The quotient space is then given by:

X/G =
{
x ∈ Rd | ∀i ∈ [d− 1] : xi+1 ≥ xi

}
.

Moreover, the boundary of the quotient space can be expressed as:

∂(X/G) =
{
x ∈ X/G | ∃i ∈ [d− 1] : xi+1 = xi

}
.

Since X/G is closed in X , by Proposition 1, there are no critical points in this case. Indeed, the sort
function is continuous, and Π(x) = {x} for x ∈ X/G.

Now, consider continuous (first-order) differentiability. According to Theorem 3, we need the
following condition to hold for any base function f ∈ F and any x ∈ ∂(X/G):

∇f(x) = D(g)∇f(x) for any g ∈ Gx, (10)

where Gx := {g ∈ G : gx = x} is the stabilizer of the group action at the point x. Rearranging this
condition, it follows that:

∀i, j ∈ [d] : xi = xj =⇒ ∂if(x) = ∂jf(x), (11)

for any x ∈ ∂(X/G). Since the elements of ∂(X/G) are sorted, this condition is equivalent to:

∀i ∈ [d− 1] : xi+1 = xi =⇒ ∂i+1f(x) = ∂if(x), (12)

for any x ∈ ∂(X/G). This provides the necessary and sufficient conditions for the continuous
(first-order) differentiability of the canonicalized model.

Let us further evaluate this result to a few cases.
Linear functions. A linear function f : Rd → R can be written as f(x) =

∑d
i=1 aixi. Note that we

have ∂if(x) = ai for each i ∈ [d]. Thus, in order to use linear functions to achieve differentiable
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end-to-end canonicalization, one needs to have ai+1 = ai for any i ∈ [d− 1]. In other words, the
function must be of the form f(x) = a

∑d
i=1 xi. This shows that, differentiability condition can

reduce the dimension of the space of functions drastically; here from d to one. Moreover, note
that in this case such f(x) are already invariant, thus for linear functions there is no difference in
canonicalization or fully invariant learning on whole space if we require differentiability.

Quadratic functions. Now let us consider the space of quadratic polynomials f(x) = 1
2x

TAx+bTx
for x ∈ Rd, and parameters b ∈ Rd and A ∈ Rd×d. For simplicity, that A is a symmetric matrix.

Then, we have

∂if(x) = bi + aiixi +
1

2

∑
j ̸=i

aijxj .

Therefore, to satisfy the differentiability conditions, we need to have bi = b for all i ∈ [d] and

aij =


a if i = j,

2a if |i− j| = 1,

c otherwise.

Here, a, b, c ∈ R are three parameters. In this case, the function f(x) is not permutation invariance,
as opposed to linear functions. However, we still lose a lot of flexibility by forcing to choose among
just three parameters instead of the general case with O(d2) parameters.

Dot-product kernels. A dot-product kernel is of the form f
(
⟨x̃, x⟩

)
, x̃, x ∈ Rd, for an appropriate

function f . For example, the Gaussian kernel is a dot-product kernel. To see if kernel feature
functions f

(
⟨x̃, .⟩

)
satisfy the condition, note

∂if(x) = x̃if
(
⟨x̃, x⟩

)
,

thus demanding x̃ ∈ Rd being a scalar multiple of the all-ones vectors. In other words, dot-product
kernels produce only differentiable canonicalized models, if and only if they are evaluated over
scalar multiples of the all-ones vector, an assumption that can barely happen.

5.2 Rotation

Consider the unit circle
S1 =

{(
cos(θ), sin(θ)

)
∈ R2 : θ ∈ R

}
as the input space. The group of rotations by integer multiples of 2π

|G| radians about the origin

acts on the input space. The critical points of the canonicalization scheme π(θ) ∈
[
0, 2π/|G|

)
are

θ = 0 and θ = 2π/|G|. According to Theorem 1, the canonicalized functions are continuous if
f(0) = f(2π/|G|) for any base function f ∈ F .

5.3 Tori

The flat torus Td is defined as the quotient of Rd modulo the action of integer translations Zd, i.e.,
Td = Rd/Zd. Consider the canonicalization scheme

π(x) =
(
x1 − [x1], x2 − [x2], . . . , xd − [xd]

)
∈ [0, 1)d,

where x = (x1, x2, . . . , xd) ∈ Rd. The critical points of this scheme are any x ∈ [0, 1]d such that
xi = 1 for some i ∈ [d]. The necessary conditions for minima to ensure continuity are given
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by f(x̃) = f(x) for any critical point x, where x̃ differs from x only by having a number of its
coordinates flipped from one to zero. Even the discretized version of this requires exponentially
many functional equations to hold, which is prohibitive.

5.4 Permutation Invariance

Consider sets of size n consisting of points in Rd, also known as point clouds. Any point cloud can
be represented as an element x ∈ Rd×n, which is invariant under permutations of its columns. A
natural canonicalization scheme for this space is given by lexicographic sorting: one first sorts the
columns of x based on the elements in the first row, as in Section 5.1. For columns that are identical
in the first row, the sorting continues based on the second row, and so on.

To achieve continuity, by Theorem 1, we must have f(x̃) = f(x) for any x̃ and x whose columns
are permutations of each other and which satisfy the following condition:

x11 ≤ x12 ≤ . . . ≤ x1n and x̃11 ≤ x̃12 ≤ . . . x̃1n.

A simple count shows that this requires exponentially many conditions on n, which is prohibitive.

5.5 Sign-Invariance

Consider the action of the two-element group G on Rd, which flips the sign of all coordinates:
v 7→ −v for any v ∈ Rd. Such symmetries commonly arise when learning with spectral data (i.e.,
eigenvectors). A canonicalization scheme for sign invariance is π(v) = ±v, where the sign is chosen
such that the first non-zero coordinate of π(v) is positive.

The critical points of this scheme are vectors v ∈ Rd such that 0 = v1 = v2 = · · · = vi < vi+1

for some i ∈ [d − 1], or v = 0. For such v, we must have f(v) = f(−v). In other words, this
shows that continuously learning canonicalized eigenvectors v ∈ Rd is equivalent to learning
vectors v ∈ Rd−1 with sign invariance. This example demonstrates that sign canonicalization may
be of limited use when continuity of the end-to-end representation is required, as the continuity
condition necessitates solving an almost identical sign-invariance problem.

6 Conclusion

In this paper, we investigate the continuity and smoothness of canonicalized models. We present a
thorough analysis of the problem and identify the minimal conditions required for base functions
to satisfy these properties. Our theoretical results offer insight into the feasibility of enforcing these
conditions through regularization. We provide examples demonstrating the feasibility of smooth
sorting for arrays and point clouds with permutation invariance. Additionally, we show that for
canonicalized models of sign invariance, the conditions are nearly equivalent to achieving full sign
invariance, indicating that regularization is only marginally applicable in this case.
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A Proof of Proposition 1

Proof. We prove the four parts of the proposition below.

Part 1. Fix any x ∈ X and g ∈ G, and assume that x̂ ∈ Π(x). We need to show that x̂ ∈ Π(gx), and
this completes the proof. Note that, according to the definition, x̂ ∈ Π(x; ϵ) for all ϵ > 0. Thus, for
a fixed ϵ, there exists a sequence ξi ∈ X , i ∈ N, such that dist(ξi, x) < ϵ and π(ξi) → x̂. Therefore,
for the sequence gξi, i ∈ N, one has dist(gξi, gx) ≤ Ldist(ξi, x) < Lϵ, since the mapping ξ 7→ gξ is
L-Lipschitz by assumption.

Furthermore, observe that π(gξi) = π(ξi) → x̂. Therefore, we conclude that x̂ ∈ Π(gx;Lϵ). This
holds for any ϵ, and thus, by definition, x̂ ∈ Π(gx), which completes the proof.

Part 2. Now, we prove the second part of the proposition. If x ∈ (X/G)◦, then there exists positive
ϵ0 such that B(x; ϵ0) ⊂ X/G. However, this means that Π(x; ϵ0) = B(x; ϵ0) since the mapping π acts
trivially on the quotient space. Therefore, according to the definition, we have

Π(x) =
⋂
ϵ>0

Π(x; ϵ) =
⋂

ϵ0>ϵ>0

B(x; ϵ) = {x}, (13)

and this completes the proof.

Part 3. Fix an arbitrary x ∈ X and let x̂ ∈ Π(x). Note that, according to the definition, for any ϵ,
there exists a sequence ξi,ϵ ∈ X , i ∈ N, such that dist(ξi,ϵ, x) < ϵ and π(ξi,ϵ) → x̂. This means that
for any j ∈ N, there exists N(j) ∈ N, such that |π(ξi,1/j)− x̂| ≤ 1/j for any i ≥ N(j). Now consider
the sequence ξi = ξN(i),1/i. Note that ξi → x and π(ξi) → x̂.

But, there exists a sequence gi ∈ G, such that π(ξi) = giξi, so we have giξi → x̂. Let us first
consider the case that G is a compact group. This means that, by passing to a subsequence, there
exists g ∈ G such that gi → g ∈ G, in the topology of G. Thus, for any i,

dist
(
giξi, gx

)
≤ dist

(
giξi, gix

)
+ dist

(
gix, gx

)
(14)

≤ Ldist
(
ξi, x

)
+ dist

(
gix, gx

)
, (15)

where in the last step, we used the Lipschitzness of the group action. Note that dist(ξi, x) → 0 by
assumption, and also, from gi → g, we have dist(gix, gx) → 0. Thus, we conclude that giξi → gx,
and this means that gx = x̂, or x̂ ∈ [x], which completes the proof.

Now consider the case where the group G is not compact. We can use the same argument as in
the case of compact groups, and with the same notation, we only need to show that dist(gix, gx) → 0
for some g ∈ G.

Note that ξi → x and giξi → x̂. Thus, gix → x̂, using the Lipschitzness of the group action:

dist
(
gix, x̂

)
≤ dist

(
gix, giξi

)
+ dist

(
giξi, x̂

)
≤ Ldist

(
x, ξi

)
+ dist

(
giξi, x̂

)
→ 0. (16)

This means that for sufficiently large i ∈ N, gix belongs to a compact set A since X is locally compact.
Note that, according to the assumption, [x] is a closed set, and thus6 [x] ∩ A is compact. Since
gix ∈ [x]∩A for all sufficiently large i, by passing to a subsequence, we conclude that gix → gx ∈ [x]
for some g ∈ G, which completes the proof.

Part 4. Note that X/G is the image of π. Therefore, by the closedness of X/G, we have Π(x) =⋂
ϵ>0Π(x; ϵ) ⊆ X/G for any x ∈ X/G. However, from the previous part of the proposition, we

6The intersection of a closed set and a compact set is compact.
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know that Π(x) ⊆ [x] ∋ x for any x ∈ X/G. Combining these results, we conclude that Π(x) = {x}
for all x ∈ X/G, thus completing the proof.

Part 5. Fix an arbitrary x ∈ X . Note that since the function θ(g, x) = gx is continuous, it maps
compact sets to compact sets. Also, since X is locally compact, for sufficiently small ϵ, the ball
B(x; ϵ) is precompact. If G is a compact group, then the image of G× B(x; ϵ) under θ, denoted by
B, is also precompact. Since Π(x; ϵ) ⊆ B, it follows that Π(x; ϵ) is precompact. Given that Π(x) is
the intersection of infinitely many closed sets and is a subset of a precompact set, it is compact.
This completes the proof.

Now assume that G is not compact. According to the assumption, X/G is precompact, and
note that Π(x; ϵ) ⊆ X/G for all ϵ. Therefore, Π(x; ϵ) is also precompact. Similar to the previous case,
the proof is complete.

B Proof of Theorem 1

Proof. We divide the proof into two parts.

Part 1 ( =⇒ ). Fix an arbitrary point x ∈ X and a function f ∈ F . Consider an arbitrary sequence
ξi ∈ X , i ∈ N, such that ξi → x. To demonstrate the continuity of the canonicalized function at x,
we need to show that f(π(ξi)) → f(π(x)). Without loss of generality, assume that π(x) = x. This is
due to the invariance of the rest of the proof under any group transformation.

By definition, we can assume that there exists a sequence of positive reals ϵi, i ∈ N, such that
ϵi → 0 and ξi ∈ B(x, ϵi) for all i ∈ N. Consequently, π(ξi) ∈ Π(x; ϵi) for all i. We will use the
following lemma.

Lemma 1. Let A1 ⊇ A2 ⊇ . . . be a nested sequence of closed sets in a topological space X , and let
A :=

⋂∞
i=1Ai. Consider an arbitrary sequence ai ∈ X , i ∈ N, and assume that ai ∈ Ai for all i. If

ai → a ∈ X , then a ∈ A.

Proof. Note that aj ∈ Aj ⊆ Ai for each j ≥ i, and since Ai is closed, by taking the limit as j → ∞,
we conclude that a ∈ Ai for each i. This implies that a ∈ A =

⋂∞
i=1Ai.

We apply the above lemma to the closed sets Π(x; ϵi) and the sequence π(ξi) as i → ∞. Suppose
π(ξi) → x̂ ∈ X . By the lemma, x̂ ∈ Π(x) =

⋂
ϵ>0Π(x; ϵ). According to our assumption, f(x̂) = f(x).

Since f ∈ F is continuous on X and π(ξi) → x̂, it follows that f(π(ξi)) → f(x̂) = f(x), thus
completing the proof. Note that if x /∈ Π◦, we obtain a stronger result where x̂ = x, still allowing us
to conclude f(x̂) = f(x). The condition f(x̂) = f(x) is non-trivial only for critical points.

What if the sequence π(ξi) does not converge to any limit in X ? We define

δi := min
x̂∈Π(x)

dist
(
π(ξi), x̂

)
, (17)

for any i. First, observe that δi → 0. If not, there would exist a subsequence ξik , k ∈ N, such that
δik ≥ δ > 0. However, since ξik ∈ B(x; ϵ) for some sufficiently large ϵ, and B(x; ϵ) is a compact
subset of X , there must be a further subsequence ξikℓ , ℓ ∈ N, that converges. By the same argument
as before, ξikℓ → x̂ as ℓ → ∞ for some x̂ ∈ Π(x), which contradicts the assumption that δ is positive.

Thus, as δi → 0, we need to show that f(π(ξi)) → f(x). Note that Π(x) is a closed and
bounded (i.e., compact) set, and by assumption, f is continuous at every x̂ ∈ Π(x). Therefore,
for any x̂ ∈ Π(x) and any γ > 0, there exists ρ(x̂) > 0 such that if dist(π(ξi), x̂) ≤ ρ(x̂), then
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|f(π(ξi))− f(x̂)| ≤ γ. Since f(x̂) = f(x) and Π(x) is compact, we can conclude that for any γ > 0,
there exists ρ > 0 such that if δi = minx̂∈Π(x) dist(π(ξi), x̂) ≤ ρ, then |f(π(ξi))− f(x)| ≤ γ. Hence,
as δi → 0, there exists a sufficiently large N such that |f(π(ξi)) − f(x)| ≤ γ for all i ≥ N . This
demonstrates that f(π(ξi)) → f(x) and completes the proof.

Part 2 ( ⇐= ). Assume now that f(π(x)) is a continuous function on X . Similar to the previous
argument, we can assume without loss of generality that π(x) = x. For any x̂ ∈ Π(x), by definition,
there exists a sequence ξi, i ∈ N, such that ξi → x and π(ξi) → x̂. Given the continuity of the
canonicalized function f(π(x)), we have f(π(ξi)) → f(π(x)) = f(x). Since π(ξi) → x̂ and f is
continuous, it follows that f(π(ξi)) → f(x̂). Therefore, f(x̂) = f(x), which completes the proof.

C Proof of Theorem 3

Proof. We divide the proof into two parts.

Part 1 ( =⇒ ). Fix an arbitrary x ∈ X and a function f ∈ F . We need to show that ∇kfcan(x) exists
continuously on X . Similar to the proof of Theorem 1, this trivially holds if π(x) ∈ (X/G)◦. So
without loss of generality, we assume that π(x) = x and x ∈ ∂(X/G).

We prove the theorem by induction on k ∈ N ∪ {0} and claim that ∇ℓfcan(x) = ∇ℓf(x) for any
ℓ ∈ [k] and any x ∈ X/G. The case k = 0 of the theorem corresponds to the continuity of the
canonicalized model, and it is addressed in Theorem 1. Thus, assume that k ∈ N and the function
∇k−1fcan(x) is defined continuously on X . We claim that ∇kfcan(x) exists for any x ∈ ∂(X/G), and
also ∇kfcan(x) = ∇kf(x). To prove this, according to the definition, we need to show that

lim
ξ→x

∥∥∇k−1fcan(ξ)−∇k−1fcan(x)−
〈
∇kf(x), ξ − x

〉′∥∥∥
2∥∥ξ − x

∥∥
2

= 0, (18)

where

〈
∇kf(x), ξ − x

〉′
:=

d∑
i=1

∇kf(x)i,:(ξ − x)i. (19)

In particular, note that ∇kf(x) ∈ Rdk , (ξ − x) ∈ Rd, and
〈
∇kf(x), ξ − x

〉′ ∈ Rdk−1
. We need to

consider all the scenarios that can happen for the above limit and show that it will always converge
to zero. As the first possible case, assume that as ξ → x, we observe that ξ ∈ ∂(X/G) infinitely
often. Passing to this specific subsequence, we have that∥∥∥∇k−1fcan(ξ)−∇k−1fcan(x)−

〈
∇kf(x), ξ − x

〉′∥∥∥
2

(20)

=
∥∥∥∇k−1f(ξ)−∇k−1f(x)−

〈
∇kf(x), ξ − x

〉′∥∥∥
2
≪

∥∥ξ − x
∥∥
2
, (21)

as ξ → x, where the latter holds from the differentiability of ∇kf at x.
Thus, we can assume that as ξ → x, we never have ξ ∈ ∂(X/G). Consider π(ξ) = D(gξ)ξ.

According to the assumption, the group G is finite, so D(gξ) can take only finitely many values. By
passing to a subsequence, we can assume that D(gξ) = D(g) for some fixed g ∈ G, along the way
that ξ → x. Note that since always ξ /∈ ∂(X/G), we have π(ξ) = D(g)ξ locally around each ξ. This
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is because the mapping ξ → D(g)ξ is continuous. Also, note that according to the definition, we
have D(g)ξ → D(g)x = x̂ for some x̂ ∈ Π(x).

Therefore, we conclude that fcan = f ◦D(g) locally around each ξ. Note that we can compute
derivatives of f̃(x) := f(D(g)x) using the chain rule:

Lemma 2. If f̃(x) := f(D(g)x) for some fixed g ∈ G, then for any x ∈ X and any ℓ ∈ [k],

∇ℓf̃(x) = D(g)⊗ℓ∇ℓf(D(g)x). (22)

The proof of Lemma 2 is presented in Appendix D. Now using the above lemma and the fact
that fcan = f̃ locally around each ξ, we have

∇k−1fcan(ξ)−∇k−1fcan(x)−
〈
∇kf(x), ξ − x

〉′ (23)
(a)
= D(g)⊗(k−1)∇k−1f(D(g)ξ)−∇k−1f(x)−

〈
∇kf(x), ξ − x

〉′ (24)
(b)
= D(g)⊗(k−1)∇k−1f(D(g)ξ)−D(g)⊗(k−1)∇k−1f(x̂)−

〈
∇kf(x), ξ − x

〉′
, (25)

where in above, (a) follows from the assumption that ∇k−1fcan(x) = ∇k−1f(x) (which holds from
the induction hypothesis). Moreover, (b) holds from the assumption in the theorem.

Now we use the following claim:

Claim 1.
〈
∇kf(x), ξ − x

〉′
= D(g)⊗(k−1)

〈
∇kf(x̂), D(g)(ξ − x)

〉′
.

The proof of Claim 1 is presented in Appendix E.
Thus, using the above claim and noting that D(g)x = x̂ and D(g)ξ → x̂, we conclude∥∥∥∇k−1fcan(ξ)−∇k−1fcan(x)−

〈
∇kf(x), ξ − x

〉′∥∥∥
2

(26)

=
∥∥∥D(g)⊗(k−1)

(
∇k−1f(D(g)ξ)−∇k−1f(x̂)−

〈
∇kf(x̂), D(g)ξ − x̂

〉′)∥∥∥
2

(27)

≪
∥∥D(g)⊗(k−1)

∥∥
op

∥∥D(g)ξ − x̂
∥∥
2
≤

∥∥D(g)⊗(k−1)
∥∥
op

∥∥D(g)
∥∥
op

∥∥ξ − x
∥∥
2

(28)

≤
∥∥D(g)

∥∥k
op

∥∥ξ − x
∥∥
2
, (29)

which completes the proof of the claim that ∇kfcan(x) exists for any x ∈ X/G, and also that
∇kfcan(x) = ∇kf(x) for all x ∈ X/G. Note that the last inequality holds from the sub-multiplicity
of the operator norm under tensor products.

Now that we have proved that fcan is differentiable up to order k, we need to show that its k-th
order derivative is also continuous, which completes the proof.

Again, we only need to consider the case that x ∈ ∂(X/G). Let ξ → x be an arbitrary sequence.
Our goal is to prove that

lim
ξ→x

∇kfcan(ξ) = ∇kfcan(x) = ∇kf(x). (30)

If we observe that ξ ∈ X/G infinitely often, then along that specific subsequence, the above
condition holds. This is since ∇kf exists and is continuous on X according to the assumption.

Therefore, assume that ξ /∈ X/G. Note that π(ξ) = D(gξ)ξ and since the group G is finite, by
passing to a subsequence, we can assume that D(gξ) = D(g) for some fixed g ∈ G. Similar to the
proof of the existence of derivatives, we can assume that π(ξ) = D(g)ξ locally around each ξ, and
also that D(g)ξ → D(g)x = x̂ for some x̂ ∈ Π(x).
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Thus, fcan(ξ) = f(D(g)ξ) locally around each ξ. By Lemma 2, we conclude

lim
ξ→x

∇kfcan(ξ) = lim
ξ→x

D(g)⊗k∇kf(D(g)ξ) = lim
ξ→x

D(g)⊗k∇kf(x̂) = ∇kf(x), (31)

where in the last step, we used the assumption in the theorem. The proof is thus complete.

Part 2 ( ⇐= ). Assume that fcan = f ◦ π is continuously differentiable up to order k at any point
x ∈ X . Note that we have fcan(x) = fcan(gx) = fcan(D(g)x) for any g ∈ G.

Now, let x ∈ ∂(X/G) and (g, x̂) ∈ Ξ(x) be arbitrary. According to the definition, and similar to
the proof of Part 3 in there exists a sequence ξi ∈ X , i ∈ N, such that ξi → x and π(ξi) → x̂. Note
that D(g)ξi → D(g)x = x̂ as well. Without loss of generality, we can assume that π(ξ) = D(g)ξ for
any ξ ∈ X being sufficiently close to ξi, for any i ∈ N. This means that we have fcan(ξ) = f(D(g)ξ)
around ξi, for any i ∈ N. Now, let x ∈ ∂(X/G) and (g, x̂) ∈ Ξ(x) be arbitrary. According to the
definition, and similar to the proof of Part 3 in Proposition 1, there exists a sequence ξi ∈ X , i ∈ N,
such that ξi → x and π(ξi) → x̂. Note that D(g)ξi → D(g)x = x̂ as well. Without loss of generality,
we can assume that π(ξ) = D(g)ξ for any ξ ∈ X being sufficiently close to ξi, for any i ∈ N. This
means that we have fcan(ξ) = f(D(g)ξ) around ξi, for any i ∈ N.

Therefore, according to Lemma 2, we have

∇ℓfcan(ξ) = D(g)⊗ℓ∇ℓf(D(g)ξ), (32)

for any ξ sufficiently close to ξi, and any i ∈ N. Specifically, if we choose ξ = ξi, and take the limit
as ξi → x, we conclude that

∇ℓfcan(x) = lim
ξi→x

∇ℓfcan(ξi) = D(g)⊗ℓ lim
ξi→x

∇ℓf(D(g)ξi) = D(g)⊗ℓ∇ℓf(D(g)x) (33)

= D(g)⊗ℓ∇ℓf(x̂), (34)

and this completes the proof.

D Proof of Lemma 2

Proof. Fix g ∈ G and define y := D(g)x ∈ Rd. Let us evaluate derivatives of f(D(g)x). Note that

yi =
d∑

j=1

D(g)ijxj =⇒ ∂yi
∂xj

= D(g)ij , (35)

for any i, j ∈ [d]. This means that

∂

∂xj
=

d∑
i=1

∂yi
∂xj

∂

∂yi
=

d∑
i=1

D(g)ij
∂

∂yi
, (36)

for any j ∈ [d]. Similarly, we can extend this to arbitrary higher-order partial derivatives.

Lemma 3. For any ℓ ∈ [k], and any j1, j2, . . . , jℓ ∈ [d], one has

∂ℓ

∂xj1∂xj2 . . . ∂xjℓ
=

d∑
i1,i2,...,iℓ=1

ℓ∏
t=1

D(g)itjt
∂ℓ

∂yi1∂yi2 . . . ∂yiℓ
. (37)
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The proof of Lemma 3 is presented in Appendix F. Now consider an arbitrary ℓ ∈ [k], and apply
the above differentiation formula to f̃(x) = f(D(g)x) to get

∂ℓf̃

∂xi1∂xi2 . . . ∂xiℓ
=

d∑
i1,i2,...,iℓ=1

ℓ∏
t=1

D(g)itjt
∂ℓf̃

∂yi1∂yi2 . . . ∂yiℓ
, (38)

for any j1, j2, . . . , jℓ ∈ [d]. Now note that D(g)⊗ℓ ∈ Rdℓ×dℓ is a matrix with entries:

D(g)⊗ℓ
i,j =

ℓ∏
t=1

D(g)itjt , (39)

where i = (i1, i2, . . . , iℓ) and j = (j1, j2, . . . , jℓ). This means that, for any x ∈ X and any g ∈ G, if
we use the vector representation of the ℓ-th order derivatives, we get

∇ℓf̃(x) = D(g)⊗ℓ∇ℓf(y) = D(g)⊗ℓ∇ℓf(D(g)x). (40)

The proof is thus complete.

E Proof of Claim 1

Note that both the left-hand side and the right-hand side of the desired identity are vectors in Rdk−1
.

We start from the right-hand side of the claim. For any arbitrary i2, i3, . . . , ik ∈ [d],(
D(g)⊗(k−1)

〈
∇kf(x̂),D(g)(ξ − x)

〉′)
i2,i3,...,ik

(41)

=

d∑
j2,j3,...,jk=1

k∏
t=2

D(g)itjt

d∑
i=1

∇kf(x̂)i,j2,j3,...,jk

d∑
j=1

D(g)ij(ξ − x)j (42)

=

d∑
j=1

(ξ − x)j

d∑
i=1

D(g)ij

d∑
j2,j3,...,jk=1

k∏
t=2

D(g)itjt∇kf(x̂)i,j2,j3,...,jk . (43)

Note that according to the assumption, we have

∇kf(x)j,i2,i3,...,ik =
d∑

i=1

D(g)ji

d∑
j2,j3,...,jk=1

k∏
t=2

D(g)itjt∇kf(x̂)i,j2,j3,...,jk (44)

Thus, since D(g)T = D(g), we conclude that(
D(g)⊗(k−1)

〈
∇kf(x̂),D(g)(ξ − x)

〉′)
i2,i3,...,ik

(45)

=

d∑
j=1

∇kf(x)j,i2,i3,...,ik(ξ − x)j =
(〈

∇kf(x), ξ − x
〉′)

i2,i3,...,ik
, (46)

and this completes the proof.
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F Proof of Lemma 3

Proof. The case ℓ = 1 is already proved in Equation (36). We use induction on ℓ to prove the general
case. Suppose ℓ ≥ 2 and the identity holds up to ℓ− 1. We have

∂ℓ−1

∂xj1∂xj2 . . . ∂xjℓ−1

=
d∑

i1,i2,...,iℓ−1=1

ℓ−1∏
t=1

D(g)itjt
∂ℓ−1

∂yi1∂yi2 . . . ∂yiℓ−1

, (47)

for any j1, j2, . . . , jℓ−1 ∈ [d]. Now for any jℓ ∈ [d], we take partial derivatives from the above
identity, with respect to xjℓ , to get

∂ℓ

∂xj1∂xj2 . . . ∂xjℓ
=

∂

∂xjℓ

( ∂ℓ−1

∂xj1∂xj2 . . . ∂xjℓ−1

)
(48)

=
∂

∂xjℓ

( d∑
i1,i2,...,iℓ−1=1

ℓ−1∏
t=1

D(g)itjt
∂ℓ−1

∂yi1∂yi2 . . . ∂yiℓ−1

)
(49)

=

d∑
i1,i2,...,iℓ−1=1

ℓ−1∏
t=1

D(g)itjt
∂

∂xjℓ

( ∂ℓ−1

∂yi1∂yi2 . . . ∂yiℓ−1

)
. (50)

Note that from the identity for ℓ = 1, we have

∂

∂xjℓ

( ∂ℓ−1

∂yi1∂yi2 . . . ∂yiℓ−1

)
=

d∑
iℓ=1

D(g)iℓjℓ
∂ℓ

∂yi1∂yi2 . . . ∂yiℓ
. (51)

Therefore,

∂ℓ

∂xj1∂xj2 . . . ∂xjℓ
=

d∑
i1,i2,...,iℓ−1=1

ℓ−1∏
t=1

D(g)itjt

d∑
iℓ=1

D(g)iℓjℓ
∂ℓ

∂yi1∂yi2 . . . ∂yiℓ
(52)

=
d∑

i1,i2,...,iℓ=1

ℓ∏
t=1

D(g)itjt
∂ℓ

∂yi1∂yi2 . . . ∂yiℓ
, (53)

and this completes the proof.
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