On the Learnability of General Reinforcement-learning
Objectives

by
Cambridge Yang

B.S, University of California, Berkeley (2017)
S.M., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2025

© 2025 Cambridge Yang. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,
distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Cambridge Yang
Department of Electrical Engineering and Computer Science
February 28, 2025

Certified by: Michael Carbin
Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

https://creativecommons.org/licenses/by-nc-nd/4.0/

On the Learnability of General Reinforcement-learning Objectives
by
Cambridge Yang

Submitted to the Department of Electrical Engineering and Computer Science
on February 28, 2025 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

ABSTRACT

Reinforcement learning enables agents to learn decision-making policies in unknown en-
vironments to achieve specified objectives. Traditionally, these objectives are expressed
through reward functions, enabling well-established guarantees on learning near-optimal
policies with a high probability — a property known as probably approximately correct
(PAC) -learnability. However, reward functions often serve as imperfect surrogates for true
objectives, leading to reward hacking and undermining these guarantees.

This thesis formalizes the specification and learnability of general reinforcement-learning
objectives beyond rewards, addressing fundamental questions of expressivity and policy
learnability. I examine three increasingly expressive classes of objectives: (1) Linear Tempo-
ral Logic (LTL) objectives, which extend conventional scalar rewards to temporal specifica-
tions of behavior and have garnered recent attention, (2) Computable objectives, encompass-
ing a broad class of structured, algorithmically definable objectives and (3) Non-computable
objectives, representing general objectives beyond the computable class.

For LTL objectives, I prove that only finitary LTL objectives are PAC-learnable, while
infinite-horizon LTL objectives are inherently intractable under the PAC-MDP framework.
Extending this result, I establish a general criterion: an objective is PAC-learnable if it is
continuous and computable. This criterion facilitates the establishment of PAC-learnability
for various existing classes of objectives with unknown PAC-learnability and informs the
design of new, learnable objective specifications. Finally, for non-computable objectives,
I introduce limit PAC-learnability, a practical relaxation where a sequence of computable,
PAC-learnable objectives approximates a non-computable objective. I formalize a universal
representation of non-computable objectives using nested limits of computable functions and
provide sufficient conditions under which limit PAC-learnability holds.

By establishing a theoretical foundation for general RL objectives, this thesis advances our
understanding of which objectives are learnable, how they can be specified, and how agents
can effectively learn policies to optimize them. These results contribute to the broader goal of
designing intelligent agents that align with expressive, formally defined objectives—moving
beyond the limitations of reward-based surrogates.

Thesis supervisor: Michael Carbin
Title: Associate Professor of Electrical Engineering and Computer Science

Acknowledgments

This dissertation would not have been possible without the guidance, support, and encour-
agement of many individuals I am deeply grateful to.

First and foremost, I would like to express my sincere gratitude to my advisor, Michael
Carbin, for his invaluable mentorship, insightful discussions, and unwavering support through-
out my PhD journey. His guidance has been instrumental in shaping my research, my writing,
and my thinking. I greatly appreciate his dedication, thoughtfulness, and effort in managing
the research group I was fortunate to be a part of.

I am also immensely thankful to my thesis committee members, Leslie Kaelbling, Michael
Littman, and Armando Solar-Lezama, for their encouragement, thoughtful feedback, and
inspiring discussions that helped refine and strengthen this research.

A special acknowledgment goes to Michael Littman, whose mentorship and collaboration
have been foundational in this work. This research would not have existed without the col-
laboration we started six years ago, and I am deeply grateful for the insights and inspiration
he has provided along the way.

I would also like to extend my appreciation to all current and past members of our research
group, as well as friends and colleagues who have provided support, insightful discussions,
and a strong sense of community throughout my PhD.

The research presented in this thesis would not have been possible without the sup-
port of the following funding sources: the Office of Naval Research (ONR) under grant
N00014-17-1-2699, the National Science Foundation (NSF) under Award No. 1918839, the
Sloan Foundation and SRC JUMP 2.0, and the Defense Advanced Research Projects Agency
(DARPA) under Award No. HR001118C0059. I gratefully acknowledge their support.

To my family and friends, I am deeply grateful for your love, patience, and encouragement.
Your unwavering belief in me has been a constant source of strength. Above all, I thank Dee
— my partner and now wife — whose love and support have been unshakable. This journey
has been ours together, and I could not have done it without her.

Contents

Acknowledgments

List of Figures
List of Tables

1 Introduction
1.1 The Reward Objective

2

1.1.1 Specification
1.1.2 Guarantee L
1.1.3 Reward Hacking
1.2 Beyond Reward-based Objectives
1.2.1 Example with Logical Specification
1.2.2 Other Specifications in the Literature
1.2.3 Beyond the Literature oL
1.3 Thesis: A Framework for General Objectives
1.3.1 LTL Objectives i
1.3.2 PAC-learnability of Computable Objectives
1.3.3 Towards Learnability of Non-Computable Objectives
1.3.4 Examples Objectives
1.4 Contributions
1.4.1 Linear Temporal Logic Objectives
1.4.2 Computable Objectives
1.4.3 Non-computable Objectives
1.5 Thesis Organization
Preliminaries

2.1 Basic Notations o
2.2 Reinforcement Learning with Rewards

221
2.2.2
223
224
2.2.5

Gridworld Exampleo
Markov Processes
Reward-Based Objectives
Learning Models
Guarantees for Reinforcement Learning Algorithms

11
13

15
15
16
16
17
18
18
20
21
22
23
24
24
24
25
25
27
27
28

3 Foundation for General Reinforcement-learning Objectives 37

3.1 Overview e 37
3.2 Markov Processes 39
3.3 Objectives 40
3.3.1 Environment-specific Objective 40
3.3.2 Environment-generic Objective 41

3.4 Planning with a Generative Model 41
3.5 Reinforcement Learning oL 42
3.6 Probably Approximately Correct in MDPs 42
3.6.1 Learnability of Objectives 43
3.6.2 Established PAC-Learnable Objectives 44

4 Linear Temporal Logic Objectives 47
4.1 Overview e 47
4.1.1 Linear Temporal Logic Objective 47
4.1.2 Infinite-horizon LTL Objective Example 49
4.1.3 Finitary LTL Objective Example 50
4.1.4 Prior Workso 51
4.1.5 Implications for Relevant and Future Work 52

4.2 Linear Temporal Logic Objectives 52
4.2.1 Linear Temporal Logic, 52
4.2.2 MDP with LTL Objectives 53
4.2.3 Infinite Horizons in LTL Objectives 54

4.3 Learnability of LTL Objectives %)
4.3.1 The Main Theorem 56
4.3.2 Consequence of the Theorem 57
4.3.3 Proof of Theorem 4.3.4: Forward Direction 57
4.3.4 Proof Sketch of Theorem 4.3.4: Reverse Direction 60
4.3.5 Proof of Theorem 4.3.4: the Reverse Direction 61

4.4 Empirical Justificationso Lo 62
4.4.1 Methodology 63
442 Results. 63
4.4.3 Results Interpretation oL 64

4.5 Directions Forward oo 64
4.5.1 Use a Finitary Objective 65
4.5.2 Best-effort Guarantee 65
4.5.3 Know More About the Environment 66
4.5.4 Use an LTL-like Objective 66

4.6 Concurrent Work 68
4.7 Proofs 69
4.7.1 Proof of Lemma 4.3.5. L 69
4.7.2 Proof of Proposition 4.7.1 Lo 70
4.7.3 Complete Proof of Lemma 4.3.6 71
4.7.4 Uncommittable Words for non- Finitary Formulas 72

4.8 Chapter Summary 76

5 On the Learnability of Computable Objectives 79

5.1 OVerview 79
5.1.1 Exampleo 80

5.1.2 Continuity and Computability 81
5.1.3 PAC-learnability 83

5.2 Type-2 Computability Theory 84
5.2.1 Ordinary Computability 84
5.2.2 Type-2 Computability 85

5.3 Condition for PAC-Learnability 90
5.3.1 Uniform Continuity 90
5.3.2 Continuity Implies PAC-learnability 91
5.3.3 Computability 93
5.3.4 Computability Implies PAC-learnability 94

5.4 Theorem Applications L 94
5.4.1 Reward Machine oo 95
5.4.2 LTL Surrogate Objectives 95
5.4.3 Geometric Linear Temporal Logic 100

5.5 Proof of Lemma 5.4.5 105
5.6 Summary of Works on LTL Surrogate Objectives 108
5.7 Proof of Lemma 5.3.5 108
5.8 Computing the Modulus-of-Continuity 109
5.9 PAC Reinforcement-Learning Algorithm for Computable Objectives 110
5.10 Proof of Unnecessity 110
5.11 Proof of Computability of Listing 5.6 111
5.12 Chapter Summary 112
6 Non-Computable Objectives 115
6.1 Overview 115
6.1.1 Examples 116

6.1.2 Prior Work 121

6.2 Non-computable Objective oL 123
6.2.1 Representationo o 123

6.2.2 Limit PAC-learable 124

6.3 Condition for Limit PAC-learnability 126
6.3.1 Decomposition of Non-computable Objective 126
6.3.2 Sufficient Condition for Limit PAC-learnability 127

6.4 Examples 128
6.4.1 Single Limit Examples 0. 129
6.4.2 Multi-Limit Examples L 134

6.5 Proofs 139
6.5.1 Proof of Theorem 6.2.1 139
6.5.2 Proof of Proposition 6.3.1 141
6.5.3 Proof of Theorem 6.3.2 141
6.5.4 Proof of Theorem 6.4.1 142
6.5.5 Proof of Theorem 6.4.2 145

6.6 Chapter Summary

7 Discussion
7.1 Advancing Al Safety and Alignment
7.2 Future Worko
7.2.1 Algorithm Efficiency 0oL
7.2.2 Identifying Good Policies in a Compact Policy Class
7.2.3 Towards an Objectives Programming Systsem
7.3 Conclusion

A Pseudocode and Utility Functions
A.1 Standard Data Types Used in Psuedocode
A.2 Programming Utilities o

B Additional Empirical Justification to Section 4.4
B.1 Methodology
B.2 Results.
B.3 Result Interpretation oL
B.4 Empirical Experiment Details 0000

References

10

149
149
150
150
151
151
151

153
153
153

157
157
159
159
159

165

List of Figures

1.1

1.2

1.3
2.1
3.1

4.1
4.2
4.3
4.4
4.5

5.1
5.2

6.1
6.2
6.3

B.1
B.2
B.3
B.3
B.4
B.4

A robot in a gridworld. The robot starts in the upper left corner. The flag is
the goal; the blue tiles are water region.
Probability of reaching the goal without stepping on water as a function of
the reward Tyater. « « « « « o« 0 e e e e e e e
Preview of landscape of objectives’ learnability

Gridworld example environment
Simple reward machine exampleo

Counterexample MDPs Example
The hierarchy of LTL
Counterexample MDPs o
Empirical results for the algorithm Bozkurt et al. [1]
Landscape of objectives’ learnability up to Chapter4

Conditions for PAC-learnability
Landscape of objectives’ learnability up to Chapter 5

Region highlighting non-finitary LTL objectives below the obligation class . .
Region highlighting LTL objectives above the obligation class.
Complete landscape of objectives’ learnability

One of the two environment MDPs used in the experiments.
Gridworld environment MDP from Sadigh et al. [2]
Empirical results of the first LTL-MDP pair (continued on next page)
Empirical results of the first LTL-MDP pair (continued)
Empirical results of the second LTL-MDP pair (continued on next page) . .
Empirical results of the second LTL-MDP pair (continued)

11

131
134
147

157
158
161
162
163

12

List of Tables

1.1
1.2

4.1
B.1

Example objectives in the gridworld Figure 1.1. 22
Example objectives that serve as a guiding thread throughout the thesis. . . 25
Example LTL objectives in various tasks. 48
Non-default hyper-parameters used for each learning-algorithm 159

13

14

Chapter 1
Introduction

Intelligent agents are increasingly prevalent across diverse fields. An intelligent agent is
a system that observes its environment, makes inferences about it, and takes actions to
optimize its objective [3]. They respond to user queries in conversational systems [4], achieve
superhuman performance in games [5], aid in drug discovery by predicting protein structures
6], identify treatments in healthcare [7], schedule tasks in data centers [8], and operate robots
for manufacturing, driving, and household tasks [9].

Reinforcement learning is one well-established technique for constructing an intelligent
agent systems. In reinforcement learning, we situate an autonomous agent in an unknown
environment and specify an objective. The objective for the agent is a specification over
possible trajectories of the overall system — the environment and the agent. Each trajectory
is an infinite sequence of the states of the system, evolving through time. The objective
specifies which trajectories are desirable so that the agent can identify optimal or near-
optimal behaviors with respect to the objective. We want the agent to learn the optimal
behavior for achieving the specified objective by interacting with the environment. At each
step, the agent interacts with the environment by observing the current state of the system,
taking an action based on its policy, and transitioning to the next state. Over repeated

interactions, the agent learns a policy that maximizes the objective.

1.1 The Reward Objective

Suppose a practitioner would like to specify the objective for the robot “reach the goal and
do not step on water.” How should they communicate this objective to the agent and ensure
that the agent learns the intended behavior to achieve the objective?

The prelevant way to specify an objective is via reward functions. A reward function

specifies a scalar value, a reward, for each state of the system. The desired trajectories are

15

those with higher cumulative rewards.

Consider a robot agent in a gridworld environment to concretize this challenge, as shown
in Figure 1.1. The agent starts in the upper left corner, and at every step, it can either
attempt to move to a neighboring tile or stay in place. Each move of the agent is slippery
— the agent has a 0.1 probability of slipping into a cardinal direction when trying to move

to a neighboring tile. The blue tiles are water regions, and the flag is the goal.

1.1.1 Specification

In reinforcement learning, the standard practice to specify this objective is to encode it
as a reward function [10]. A natural choice for the above example is to assign a positive
reward 740, > 0 once the agent reaches the goal and a negative reward ryater < 0 every time
the agent steps on water. The objective the practitioner communicates to the agent is to
maximize the cumulative discounted rewards over time for some discount factor v € [0, 1)
chosen by the practitioner. Then, they employ a reinforcement learning algorithm on the
agent so that using this algorithm, the agent interacts with the environment and learns a
good behavior that maximizes the cumulative discounted rewards.

The reward-function objective is well studied [10]. Due to its versatility, researchers have
adopted the reward-function objective as the de facto standard of objective specification in

reinforcement learning.

1.1.2 Guarantee

Another important aspect of reinforcement learning is obtaining a guarantee on the learned
behavior. Specifically, we aim to specify an objective and let the agent learn a good policy.
Thus, we need some assurance of how close to optimal the learned policy is.

The conventional reward-based reinforcement-learning objectives include infinite-horizon
discounted and finite-horizon cumulative rewards. These objectives have a desirable prop-
erty: There are reinforcement-learning algorithms that learn a near-optimal policy with
high probability with a number of samples depending only on the parameters known by the
algorithm [11]. We call these algorithms probably approzimately correct (PAC), and these
objectives PAC-learnable under reinforcement learning. PAC-learnability is essential: If an
objective is not PAC-learnable, then the hope of ensuring learning a near-optimal policy in
a finite amount of resources is lost, and the objective is effectively intractable to learn under
reinforcement learning.

In the example, the reward function objective given by the cumulative discounted rewards

is PAC-learnable. Therefore, the practioner can employ a reinforcement-learning algorithm

16

w s s
0.5 | H
~ ~ ~ 7= 0.8 oo E
~ == P oy=09 — |
@ 0 ‘ 'JT
-10 -5 -2
T'water

Figure 1.1: A robot in a gridworld. The robot Figure 1.2: Probability of reaching the
starts in the upper left corner. The flag is the goal without stepping on water as a func-
goal; the blue tiles are water region. tion of the reward 7ryaier-

providing a PAC-learnability guarantee, such as RMax [12], and be assured that the agent

will learn a near-optimal policy with high probability with a finite number of samples.

1.1.3 Reward Hacking

However, rewards are often imperfect surrogates to the true objective, causing the reward
hacking phenomenon, where agents exploit rewards and not achieve the true objective.

In the example, for a fixed value of g1, if the reward 7yater is not sufficiently negative,
the agent might exploit the reward function by stepping on water to reach the goal faster.
However, if the reward ryater is too negative, the agent might choose to stay in the starting
white tile, just so that it never risks stepping on water — the agent finds out that the best
way to avoid stepping on water is not to move at all. Figure 1.2 shows the exact probability of
reaching the goal without stepping on water as a function of ryate, in the example gridworld.
We see that on both ends of the spectrum of ryater, the probability of satisfying the true
objective is close to zero. Around the range of ryaer € [—4, —0.5], that probability reaches
the maximum. Even worse, the discount factor v further complicates the matter. Figure 1.2
shows two different discount factors v = 0.8 and v = 0.9, and we see that the range of ryater
that achieves the true objective varies with ~.

A good choice of rewards and discount factors depends on the environment dynamics,
which is unknown in the reinforcement learning setting. Conventional reinforcement learning
left the practitioner with the challenge of choosing the suitable rewards and the discount fac-
tor to ensure that the agent behaves optimally concerning the true objective. This challenge
is insurmountable in practice due to the unknown environment dynamics, making agent

behaviors unpredictable and suboptimal.

17

Motivation for a Framework for General Objectives Fundamentally, the root cause
of reward hacking is because the reward objective, while a valid objective, is not the true
objective “reach the goal and do not step on water.” Instead, the reward objective is a sur-
rogate to the true objective, meaning the practioner have chosen to use the reward objective
as a proxy to the true objective, in the hope that if the agent behaves well with respect to
the reward objective, then the agent also behaves well with respect to the true objective.
However, this hope is not a guarantee, and the mismatch of the behaviors with respect to the
reward objective and the true objective due to the surrogate nature of the reward objective
leads to the problem of reward hacking.

If the practitioner could specify the true objective directly, and if the agent could learn
the optimal behavior with a guarantee with respect to the true objective, then the agent

behavior would be predictably optimal. From this reasoning, three key questions arise:
o How to formally specify the true objectives?

o Which objectives are learnable under the conventional PAC-learnability guarantee in

reinforcement learning?

o What to do for general objectives that are not learnable under the conventional PAC-

learnability guarantee?

1.2 Beyond Reward-based Objectives

Despite the adoption and the desirable PAC-learnability property of reward-based objectives,
they have the key limitation of being a surrogate to the true objective, which leads to reward
hacking. The root cause of this limitation is fundamentally due to the reward function’s being
a surrogate to the true objective, as I have discussed above, and a natural solution to address

this limitation is to specify the true objective directly.

1.2.1 Example with Logical Specification

A way to specify the objective in our example is through logical specification.

1.2.1.1 Specification

Logical specifications define objectives using predicates on the environment, combined with
logical operators such as conjunction (A) and disjunction (V). These predicates express

properties of the environment’s state, and logical formulas express logical conditions that

18

must be met at a given step of the trajectory. For example, in a gridworld environment,
predicates such as goal and water expresses whether an agent has reached the goal or stepped
on water, respectively. The formula —water expresses that the agent should not step on water.

To model temporal aspects of the objective, we introduce modalities that describe how
properties evolve over time. One such formalism is Linear Temporal Logic (LTL) [13] that
incorporates temporal operators such as G (always), F (eventually) and U (until) to specify
objectives over sequences of states. For example, in the gridworld environment, the for-
mula G —water expresses that the agent should never step on water, and the formula F goal
expresses that the agent should eventually reach the goal.

By combining predicates, logical operators, and temporal operators, LTL can express
complex objectives. Our example objective “eventually reach the goal and never step on wa-
ter” is expressible as the LTL formula F goal AG —water, capturing both a future requirement
(goal must be reached) and a safety constraint (water must never be visited).

LTL-based objectives have been widely studied in reinforcement learning [1, 2, 14-17].
Given an LTL formula as an objective, each trajectory of the system either satisfies or violates
the formula. The goal of the optimal policy is to maximize the probability of satisfying the

specified objective.

1.2.1.2 PAC-learnability

The general class of LTL objectives consists of infinite-horizon objectives that require in-
specting infinitely many steps of a trajectory to determine if the trajectory satisfies the
objective. For example, consider the objective F goal (eventually reach the goal). Given an
infinite trajectory, the objective requires inspecting the entire trajectory in the worst case to
determine whether it violates the objective.

Despite the above developments on reinforcement learning with LTL objectives, the
infinite-horizon nature of these objectives presents challenges that have been alluded to—but
not formally treated—in prior work. Henriques et al. [18], Ashok, Kretinsky, and Weininger
[19], and Jiang et al. [20] noted slow learning times for infinite-horizon properties. Littman
et al. [21] provided a specific environment that illustrates the intractability of learning for a
specific infinite-horizon objective, arguing for the use of a discounted variant of LTL.

To my knowledge, the learnability of LTL objectives had not been formally analyzed and

understood until my work [22].

19

1.2.2 Other Specifications in the Literature

In recent years, researchers have introduced various objectives beyond reward-based objec-
tives [1, 16, 21, 23-25].

1.2.2.1 Specification

Various works introduce the specification of a class objectives, for example:

 Littman et al. [21] introduced the Geometric Linear Temporal Logic (GLTL) objective,
which extends LTL by associating each temporal operator with a geometrically distributed
horizon. This objective defines tasks with probabilistic time bounds, enabling RL agents
to optimize policies that satisfy temporal constraints within expected time frames while

accounting for uncertainty in task durations.

« Camacho et al. [23] introduced the Reward Machine objective, which augments stan-
dard reward-based objectives by encoding the reward function as a finite state automaton.
This objective enables history-dependent rewards, allowing agents to optimize behavior based

on structured, temporally extended task specifications rather than instantaneous rewards.

« Bozkurt et al. [1] introduced the Limit-Deterministic Biichi Automaton (LDBA) ob-
jective as a surrogate to LTL objectives. It enforces history-dependent constraints on agent
behavior using LDBAs. This objective incorporates history-dependent discount factors, re-
wards, and an augmented action space, ensuring that agents optimize long-term behaviors

in accordance with LTL specifications.

o Hahn et al. [16] introduced the Omega-Regular objective, which generalizes LTL-based
objectives to omega-regular properties. This objective ensures that RL agents optimize
policies that satisfy complex, infinite-horizon temporal constraints by reducing the problem

to an almost-sure reachability objective in limit-deterministic Biichi automata.

o Giacomo et al. [24] introduced the Finite-Trace Temporal Logic objective, which speci-
fies RL objectives using Linear Temporal Logic over finite traces (LTLf) and Linear Dynamic
Logic over finite traces (LDLf). These objectives enforce constraints on finite-length execu-
tions, enabling agents to optimize policies that adhere to safety, fairness, or other behavioral

constraints over limited time horizons.

o Jothimurugan, Alur, and Bastani [25] introduced the Composable Specification objec-
tive, which provides a modular and reusable way to specify RL objectives. This objective

enables the decomposition of complex control tasks into simpler, composable sub-objectives

20

that can be combined and reused across different tasks, improving learning efficiency and

policy synthesis.

Researchers introduced formal specifications for these objectives. They introduced rein-
forcement-learning algorithms for these objectives and showed that they empirically learn

well-behaving policies with finitely many samples and computational resources.

1.2.2.2 PAC-learnability

Despite the advances in empirical algorithms for these objectives, not all objectives are PAC-
learnable: In particular, as this thesis will cover, my work [22] proved that infinite-horizon
LTL objectives are not PAC-learnable. Therefore, to the end of having assurance on learning
outcomes, I desire to understand the PAC-learnability of general objectives.

Some previous works [14, 18, 19, 26] address the PAC-learnability of particular objectives.
However, these analyses give reinforcement-learning algorithms for particular objectives and
do not generalize to others. Previous work [27] gave a framework of reductions between
objectives whose flavor of generality is most similar to my work; however, they did not give
a condition for when an objective is PAC-learnable. To my knowledge, the PAC-learnability
of the objectives in Bozkurt et al. [1], Sadigh et al. [2], Hahn et al. [16], Hasanbeig et al.
[17], Littman et al. [21], Camacho et al. [23], and Jothimurugan, Alur, and Bastani [25] are
previously not known.

Relevant to model-based reinforcement learning, Bazille et al. [28] showed that it is
impossible to learn the transitions of a Markov chain such that the learned and true mod-
els agree on all first-order behaviors. However, this result does not apply to the general

reinforcement-learning setting.

1.2.3 Beyond the Literature

To my knowledge, prior to my work [29], research had predominantly focused on specific
classes of objectives, such as LTL or reward machines introduced above, without addressing
the challenge of defining general objectives beyond these structured formalisms. This unad-
dressed challenge leaves critical gaps in both specification and learning: Given an arbitrary
objective, for instance, one specified in natural language, it is unclear how to formally specify
that objective if it does not fit into any existing formalism in the literature. Moreover, it is

unclear how to learn optimal behavior for that objective.

21

ol | Reach goal without stepping on water
02 | Do ol within n = 15 steps

03 | Do ol within n ~ Geom() steps

04 | Do ol, then retrace the steps back
05 | Do 04 within n = 30 steps

06 | Repeat o4 forever

Table 1.1: Example objectives in the gridworld Figure 1.1.

1.2.3.1 Specification

To illustrate this gap, consider an example objective in the gridworld “reach the goal without
stepping on water and then retrace the steps back.” This objective is not expressible as an
LTL formula, as LTL does not have a mechanism to specify the retracing behavior.

More generally, Table 1.1 gives six example objectives in the gridworld. The objective
ol is expressible as the LTL formula Fgoal A G —water, as I have discussed above. The
objectives 02 and 05 are also expressible as LTL formulas, albeit the LTL formulas have a
combinatorial size concerning the number of steps n in the objectives. Prior work [25, 30]
introduced specification formalisms that allow expressing objectives the objectives 02 and
05 in a more concise way. The other objectives are not expressible by known specification

formalisms in the literature.

1.2.3.2 PAC-learnability

Since the formal specification of general objectives was not well understood before my work
[29], the PAC-learnability of general objectives beyond reward-based and LTL objectives also
remained open. In particular, I do not know which general objectives are learnable under
the classic definition of PAC-learnability in reinforcement learning. I do not know what to

do when general objectives are not classically PAC-learnable if such objectives exist.

1.3 Thesis: A Framework for General Objectives

To the end of addressing the questions and gaps as outlined above, I revisit the foundation of
reinforcement learning objectives by building a framework for specifying and learning general
reinforcement-learning objectives. I highlight the term “general” to mean all objectives that
are functions of trajectories of the system. In particular, general objectives encompass all
objectives in the literature, including reward-based, LTL, and other objectives satisfying the

general mathematical definition. I investigate the specification and learnability problem of

22

objectives from first principles under this framework. In particular, this dissertation will

address the following research questions:
o How to specify general reinforcement-learning objectives?

o Which general reinforcement-learning objectives are learnable under the classic defini-

tion of PAC-learnability in reinforcement learning?

o What to do when general reinforcement-learning objectives are not classically PAC-
learnable? In particular, how to relax the definition of learnability so that general

reinforcement-learning objectives become learnable in a relaxed sense?

To the end of addressing these questions, this thesis draws from my previous contribu-
tions [22, 29] and my ongoing investigation on learnability of non-computable objectives.
The thesis naturally developes in three stages. In the first stage, I start with a well-studied,
practically relevant class of objectives, namely the LTL objectives, and give my result the
learnability of these objectives. In the second stage, I generalize the result to general objec-
tives, and give a sufficient condition for learnability of any general objective. In the third
stage, I investigate the learnability of non-computable objectives, and propose a relaxed

definition of learnability suitable for non-computable objectives.

1.3.1 LTL Objectives

I leverage the probability correct in MDPs (PAC-MDP) framework [11, 31] to state and prove
a theorem that reinforcement learning for LTL objective is PAC-learnable if and only if the
objective is belongs to a class called finitary, the converse of infinite-horizon objectives. In
particular this theorem implies that infinite-horizon LTL objectives are intractable, meaning
no reinforcement-learning agents can identify a near-optimal behavior for infinite-horizon
LTL objectives with confidence in finite time.

The intuition for this intractability is: Any finite number of interactions with an environ-
ment with unknown transition dynamics is insufficient to identify the environment dynamics
perfectly. Moreover, for an infinite-horizon objective, a behavior’s satisfaction probabil-
ity under the inaccurate environment dynamics can differ arbitrarily from its satisfaction
probability under the true dynamics. Consequently, a learner cannot guarantee with any
confidence that it has identified near-optimal behavior for an infinite-horizon objective.

In my example, the objective 01 is an infinite-horizon LTL objective, and suffers from

this intractability. The objectives 02 and 05 are finitary LTL objectives, and PAC-learnable.

23

1.3.2 PAC-learnability of Computable Objectives

I address the question by giving sufficient conditions for PAC-learnability. Specifically, I an-
alyze PAC-learnability in both the information-theoretic setting, which only considers sam-
ple complexity, and the computation-theoretic setting, which also considers computability. I
prove that, in the information-theoretic setting (resp. computation-theoretic setting), an ob-
jective is PAC-learnable if it is uniformly continuous (resp. computable). These conditions
simplify the process of proving objectives’” PAC-learnability. In particular, my conditions
avoid constraints on environments, policies, or reinforcement-learning algorithms, requiring
reasoning only about the objective itself. I provide example applications of these conditions
to three objectives in the literature whose PAC-learnability was previously unknown and

prove that they are PAC-learnable.

1.3.3 Towards Learnability of Non-Computable Objectives

Lastly, I take the first steps toward policy learning for non-computable objectives by ad-
dressing two fundamental challenges: representation and learnability. To represent non-
computable objectives, I establish a formal framework where they are expressed as nested
limits of computable functions, ensuring a universal and constructive characterization. For
learnability, I introduce a weaker yet meaningful PAC-learnability criterion that requires
learning near-optimal policies for a sequence of PAC-learnable approximations. This crite-
rion ensures that, in the limit, the near-optimal policy for the approximation also becomes
near-optimal for the true non-computable objective. I further develop a sufficient condi-
tion that simplifies proving this weaker PAC-learnability and demonstrate its applicability

through a range of examples.

1.3.4 Examples Objectives

Table 1.2 presents the example objectives that serve as a unifying thread throughout this
thesis. At the beginning of each chapter—Chapters 4 to 6—these objectives illustrate and
motivate key concepts and results. At the end of each chapter, they are revisited to analyze
the implications of the findings. Each chapter makes incremental progress in understanding
their learnability. By the end of Chapter 6, I provide a comprehensive account of these
example objectives’ learnability. Figure 1.3 summarizes this final result, capturing how
different classes of objectives are situated in the learnability landscape. While I defer a full
discussion to later chapters, this figure provides a high-level view of the key distinctions and

theoretical challenges addressed in this thesis.

24

Example Gridworld Objectives

ol Reach goal without stepping on water

02 Do o1 within n = 15 steps w
03 Do o1 within n ~ Geom({:) steps

o4 Do o1, then retrace the steps back

05 Do 04 within n = 30 steps Y
06 Repeat o4 forever

Classic Reinforcement-learning Objectives

cp Cart Pole: Pole always stays upright

mc Mountain Car: Eventually reach the goal

pd Pendulum: Eventually up and balance forever

tx Taxi: Pick and drop passengers sequentially
Classic Reward-based Objectives [32]

gl Discounted cumulative rewards

il Finite-horizon cumulative rewards

lim £ Limit-average rewards

Objectives Beyond Rewards in the Literature

RM Simple Reward Machine [23]

Boz Bozkurt’s surrogate objective for LTL [1]

GLTL | Geometric LTL [21]

Table 1.2: Example objectives that serve as a guiding thread throughout the thesis.

1.4 Contributions

In this thesis, I present my contributions to reinforcement-learning objectives in three parts:

LTL objectives, computable objectives, and non-computable objectives.

1.4.1 Linear Temporal Logic Objectives

I make the following contributions:

o A formalization of reinforcement learning with LTL objectives under the PAC-MDP
framework [31, 33, 34], a standard framework for measuring sample complexity for
reinforcement-learning algorithms; and a formal definition of LTL-PAC-learnable, a

learnability criterion for LTL objectives.

o A statement and proof that: 1. Any infinite-horizon LTL formula is not LTL-PAC-learn-
able. 2. Any finite-horizon LTL formula is LTL-PAC-learnable. To that end, for any
infinite-horizon formula, I give a construction of two special families of MDPs as coun-

terexamples with which I prove that the formula is not LTL-PAC-learnable.

25

Non-computable

LTL

mc pd

cp ol tx

02
Finitary LTL

o5

Figure 1.3: Preview of landscape of objectives’ learnability by the end of the thesis.

o Experiments with current reinforcement-learning algorithms for LTL objectives that

provide empirical support for my theoretical result.

» A categorization of approaches that focus on tractable objectives or weaken LTL-PAC-

learnable guarantees and classification of previous approaches into these categories.

Implications for Relevant and Future Work My results provide a framework for cat-
egorizing approaches that either focus on tractable LTL objectives or weaken an algorithm’s
guarantees. As a result, I interpret various previous approaches as instantiations of the

following categories:

o Work with finite-horizon LTL objectives, the complement of infinite-horizon objectives,
to obtain guarantees on the learned behavior [18]. These objectives, like a A Xa (a is

true for two steps), are decidable within a known finite number of steps.

« Seek a best-effort confidence interval [19]. Specifically, the interval can be trivial in
the worst case, denoting that learned behavior is a maximally poor approximation of

the optimal behavior.

o Make additional assumptions about the environment to obtain guarantees on the
learned behavior [14, 35].

26

o Change the problem by working with LTL-like objectives such as: 1. relaxed LTL
objectives that become exactly LTL in the (unreachable) limit [1, 2, 16, 17] and 2. ob-
jectives that use temporal operators but employ a different semantics [15, 21, 23, 24].

The learnability of these objectives is a potential future research direction.

1.4.2 Computable Objectives

I make the following contributions about reinforcement-learning objectives:

o In the information-theoretic setting, I prove that any uniformly continuous objective
is PAC-learnable.

o In the computation-theoretic setting, I prove that any computable objective is PAC-

learnable.

o I apply the above theorem to three objectives [1, 21, 23] from the literature, whose
PAC-learnability was previously unknown, and show that they are PAC-learnable.

My result makes checking the PAC-learnability of existing objectives easier and guides the

design of new PAC-learnable objectives.

1.4.3 Non-computable Objectives

I make the following contributions about non-computable objectives:

o lintroduce a universal representation for non-computable objectives. In particular, any

non-computable objective is representable by a nested limit of a computable objective.

o [introduce limit PAC-learnability, a relaxed definition of PAC-learnability, that is
suitable for non-computable objectives. In particular, a non-computable objective is
limit PAC-learnable if there is a sequence of PAC-learnable objectives whose optimal

value converges to the optimal value of the non-computable objective.

o I give a condition for when a non-computable objective is limit PAC-learnable. The
condition decomposes limit PAC-learnability to ensure a computable convergence rate

of each layer in the nesting of the nested limit representation non-computable objective.

o [give various examples of non-computable objectives and use the given condition to

show they are limit PAC-learnable.

27

1.5 Thesis Organization

The thesis is organized as follows:
In Chapter 2, I revisit the preliminaries relevant to this thesis, including reward-based

reinforcement learning and the PAC-MDP framework.

In Chapter 3, I introduce the framework for expressing general reinforcement-learning
objectives beyond rewards. I then present the generalization of the PAC-MDP framework
to accommodate these general objectives. At the end of this chapter, I revisit the example
objectives from Table 1.2 to illustrate the framework’s applicability.

In Chapters 4 to 6, I present the core contributions of this thesis:

o In Chapter 4, I present my results on the learnability of LTL objectives.
o In Chapter 5, I present my results on computable objectives.
o In Chapter 6, I present my results on non-computable objectives.

At the end of each chapter in Chapters 4 to 6, I revisit the example objectives from Table 1.2

to contextualize the presented results of the chapter.
Finally, in Chapter 7, I discuss the broader implications of my contributions to Al re-

search, suggest some future directions, and conclude the thesis.

28

Chapter 2
Preliminaries

The thesis uses tools from theoretical reinforcement learning and computability theory. This
chapter provides a brief overview of basic notations and preliminary concepts in reinforcement

learning with rewards to ground the discussion in the subsequent chapters.

2.1 Basic Notations

Unless otherwise specified, I use the following notations throughout the thesis.
For usual mathematical objects, I use the following notations: naturals N, integers Z,
rationals Q, reals R. T use 1{e} to denote the indicator function that outputs 1 if the

condition e is true and 0 otherwise.

Sequences over Finite Set Let X be a finite set. When it is a finite set of symbols,
I call it an alphabet. 1 denote the set of all finite-length sequences over ¥ as ¥* and the
set of all infinite-length sequences over ¥ as . In formal logic and computability theory,
researchers often call sequences over ¥ words or strings. In reinforcement learning, when
represents states-action pairs, researchers often call them trajectories. 1 use the terms word,
stream and trajectory interchangeably, choosing the one that best aligns with the concept
under discussion. In the context of programming, I also call finite-length sequences lists and

infinite-length sequences streams.

Topology and Metric Spaces A topology on a set X is a collection of subsets of X that
satisfy that: the empty set and X are open, arbitrary unions of open sets are open, and finite
intersections of open sets are open. A function f: X — Y is continuous if the preimage of

every open set in Y is open in X.

29

A metric space is a tuple (X, d), where X is a set and d is a metric on X. The metric
d satisfies the non-negativity, symmetry, and triangle inequality properties. A metric space
is complete if every Cauchy sequence in X converges to a limit in X. A metric induces a
topology on X, where a set U C X is open if, for every x € U, there exists an ¢ > 0 such
that the e-ball around x is contained in U.

An open cover of a set X is a collection of open sets whose union contains X. A space

is compact if every open cover has a finite subcover.

Probabilities and Stochastic Processes A probability space is a triple (2, F,P), where:
() is a sample space, F is a g-algebra of events, and P is a probability measure.
In the context of this thesis, I often consider probability spaces over infinite-length words:

) = X, For such spaces, (X%, dsw) is a complete metric space, where dsw is the metric
dse (w1, wy) = 9~ Lprefix (w1,w2)

and Lpyeix (w1, we) is the length of the longest common prefix of wy and wy. The o-algebra
F of X% is the Borel o-algebra over X%, the smallest o-algebra that contains all open sets

in the topology induced by the metric dsw.

2.2 Reinforcement Learning with Rewards

This section reviews reinforcement learning with reward-based objectives to establish a foun-
dation for understanding conventional reinforcement learning settings. It serves as a precur-
sor to the general objectives framework discussed in Chapter 3.

I start with an informal overview of Markov Processes, reward functions, and the stan-
dard reinforcement learning framework. Then, I introduce their formal treatments and
connections to PAC-learnability in the context of reward-based objectives.

To illustrate these concepts, I use the girdworld example in Figure 1.2.

2.2.1 Gridworld Example

Recall the gridworld example from Chapter 1, where we send a robot agent into a gridworld
environment. We intend to let the robot reach the goal without stepping on water. Figure 2.1
repeats the gridworld example for reference. A conventional reinforcement learning setup for
this example includes the following components: An environment is modeled as a Markov
Decision Process (MDP) with a reward function, a reward objective specifying how the

rewards are accumulated over time, and a learning model that determines how the agent

30

24
2
24

<

Figure 2.1: Gridworld example with a robot agent (blue) and water tiles (blue). The goal is
to reach the flag (green) without stepping on water.

interacts with the environment. Then, we employ a reinforcement learning algorithm to
learn a policy that maximizes the reward objective. We would prefer that the algorithm

guarantees the learned policy’s performance.

2.2.2 Markov Processes

Reinforcement learning traditionally assumes an autonomous agent interacts with an envi-
ronment modeled as an MDP. An MDP consists of a set of states S, a set of actions A,
and a transition probability function P: (S x A) — A (S), which maps state-action pairs to
distributions over the next states.

Formally, a Markov decision process with rewards (MDP with rewards) is defined as a
tuple M = (S, A, P, R, so), where:

o S is a finite set of states,
e A is a finite set of actions,

o« P:(SxA)— A(S) is a transition probability function mapping state-action pairs to

distributions over the next states,
e R: S — Risareward function, and
e 59 € S is the initial state.

In the gridworld example, the robot’s state is its coordinates on the grid, and the actions
move up, down, left, or right. The initial state is— the upper left corner of the grid. The
transition probability function models the robot’s movement on the grid: The robot moves
in the intended direction with high probability but may slip to a random neighboring cell.

The reward function R: S — R assigns a numerical value to each state, quantifying the
agent’s immediate performance. For our example, as in Chapter 3, I specified the intended

objective “reach the goal without stepping on water” using the reward function:

31

« A positive reward rg., > 0 when the agent reaches the goal.
o A negative reward 7yater < 0 when the agent steps on water.

A policy 7: ((S x A)* x S) — A(A) maps state-action histories to a distribution over
actions. A policy is Markovian if it depends only on the current state, 7: S — A (A). For the
gridworld example, the Markovian policy specifies the robot’s movement at each coordinate,
while the non-Markovian policy specifies the robot’s movement based on the current and
previous coordinates.

An MDP and a policy induce a discrete-time Markov chain (Markov chain). A Markov
chain is a tuple D = (S, P, sqg), where P: S — A (S) defines the transition probabilities.
The Markov chain induces a probability space over trajectories w € S®. In the gridworld
example, the Markov chain models the behavior of the robot moving on the grid according to
the policy. Intuitively, the robot’s movement forms an infinite-length sequence of coordinates,
a trajectory in the Markov chain, and the Markov chain captures the probability distribution

over the possible trajectories.

2.2.3 Reward-Based Objectives

A reward-based objective assigns an accumulated value of the rewards mapped from the
trajectory. This value reflects the agent’s performance over time and guides the learning
process. Three common reward-based objectives are cumulative discounted rewards, finite-

horizon rewards, and infinite-horizon average reward.

Cumulative Discounted Rewards The cumulative discounted rewards objective is the

~-discounted infinite-horizon sum of rewards:
r(w) =Y 9" R(wli]),
=0

where v € [0,1) is a discount factor, and wli] is the state at step ¢ in the trajectory w. The
value of the objective for the MDP M and a policy 7 starting from a state s € S is is the
expectation of the objective under the probability space induced by the MDP and the policy

starting from state s:
Viie(s) = Euoplr(w)]. (D induced by M with initial state replaced by s and).

When the start state s = sg, I drop the argument s and write Vi, . to denote the value of
the objective under the MDP M and the policy 7 starting from the initial state sy of M.

32

In Chapter 1, I used the cumulative discounted rewards objective to specify the robot’s
objective in the gridworld example. The robot aims to maximize the cumulative discounted
rewards by reaching the goal while avoiding water. The discount factor v controls the trade-
off between immediate and future rewards: a higher v emphasizes long-term rewards, while

a lower v emphasizes immediate rewards.

Finite-Horizon Rewards The finite-horizon cumulative rewards objective is the undis-
counted sum up to a fixed horizon H:

A

K(w) R(s;).

H
1=0
The wvalue of the objective for the MDP M and a policy 7 starting from a state s € S is is
the expectation of the objective under the probability space induced by the MDP and the

policy starting from the initial state sq:
Ve = Euep[k(w)]. (D induced by M and 7).

Infinite-Horizon Average Reward Another reward-based objective is the infinite-hori-

zon average reward. The standard formulation of average reward objective [32] is:

T-1
Vie(D) £ Tim. ;Epl; R(w[z’])]. (2.1)
This formulation evaluates the steady-state behavior of a policy in the Markov chain D in-
duced by the MDP and the policy. Unlike infinite-horizon discounted cumulative rewards, it
balances rewards over an infinite time horizon rather than emphasizing near-term outcomes.
Further, the average reward objective as defined by Equation (2.1) is a function over the
Markov chain D, rather than individual trajectories. The value of the average reward objec-
tive for the MDP M and a policy 7 is the average reward of the Markov chain D induced
by the MDP and the policy starting from the initial state s € S:

Vitave(8) = Vavg(D) (D induced by M with initial state replaced by s and).

When the start state s = s, I drop the argument s and write Vi ... to denote the value of
the objective under the MDP M and the policy 7 starting from the initial state sy of M.

33

2.2.4 Learning Models

I consider two learning models: planning with a generative model and reinforcement learning.
In the planning setting, the agent has access to a generative model of the MDP, enabling it to
sample the next states given any current state and an action. In the reinforcement learning
setting, the agent cannot sample transitions from an arbitrary state but must follow the
environment’s transitions or reset to the initial state.

Our gridworld example applies to both learning models, and the choice is typically made
based on the practical problem setup. In particular, as an example, if we are training
the robot in a simulator that allows simulation from arbitrary states, we would choose to
employ the planning-with-a-generative-model setting to learn an optimal policy by sampling
transitions from the simulator. On the other hand, if the robot is a physical robot deployed
in an unknown physical territory, the reinforcement learning setup must be used to learn the

optimal policy through interaction.

Planning with a Generative Model In the planning-with-a-generative model setting,
the agent accesses a generative model of the MDP. This model allows the agent to sample
transitions by specifying a state and action. The agent uses these samples to learn a policy
that maximizes the reward objective.

A planning algorithm A includes:
« A sampling strategy A% to determine which state-action pairs to sample next, and

o A learning algorithm A" to derive a policy from the sampled transitions.

Reinforcement Learning Reinforcement learning involves direct interaction with the
environment to optimize the reward objective. The agent observes state transitions and
selects actions to maximize cumulative rewards. I view a reinforcement-learning algorithm
as a special kind of planning-with-generative-model algorithm, where the sampling strategy
AS follows the environment’s transitions.

There are two reinforcement learning settings: episodic and non-episodic. They are
distinct in whether the agent can reset the environment to the initial state during learning.
I focus on the episodic setup for this thesis and justify this choice in Chapter 3. I provide a
brief overview of both settings here for completeness.

The agent can reset the environment to the initial state in an episodic setting. The reset
can be voluntary by the agent: The agent has a special reset action that brings the agent to
the initial state; Alternatively, the problem setup can force the reset, such as the fixed finite

time horizon in the finite-horizon cumulative rewards setting. In this setting, the quality of

34

the policy is typically evaluated over episodes, and the value of the objective concerns only
the initial state sy of the MDP,

In the non-episodic setup, the agent must follow the natural transitions of the environ-
ment without resets. Learning proceeds over an infinite time horizon, and the value of the

objective is concerned with each state in the trajectory.

2.2.5 Guarantees for Reinforcement Learning Algorithms

Various kinds of guarantees exist for reinforcement learning algorithms for reward-based
objectives, such as various flavors of probably approximately correct (PAC) in MDP (PAC-
MDP) guarantees and regret-style guarantees. The PAC-MDP guarantees originate from
the supervised learning theory [36] but are adapted to the planning-with-generative model
and reinforcement-learning settings. Throughout this thesis, I consider the reinforcement
learning settings and do not discuss the supervised learning problem. Therefore, throughout
this thesis, when I mention PAC guarantees, I refer to the PAC-MDP guarantees, and there
is no confusion with PAC guarantees in the supervised learning setting.

Three types of guarantees are common in the literature:

« Supervised-learning-style probably approximately correct in MDPs (PAC-MDP) guar-
antee ensures that the learning algorithm learns a policy that achieves near-optimal

performance with high probability in a bounded number of samples.

o Mistake-style PAC-MDP guarantee ensures that the number of mistakes the learning

algorithm makes is bounded.

o Regret-style guarantee ensures that the total error of learning algorithm is bounded.

Various other guarantees exist in the literature, such as uniform PAC-MDP guarantee [37]

and policy certificate guarantee [38], but I do not discuss them here for brevity.

Supervised-Learning-Style PAC-MDP Guarantee In this thesis, I focus on the su-
pervised-learning-style PAC-MDP guarantee and justify this choice in Chapter 3. I thus
review the supervised-learning-style PAC-MDP guarantee for reward-based objectives in
the following. Given an MDP M = (S, A, P, R, s9), a learning algorithm A is PAC-MDP
(supervised-learning-style) if, for any € > 0, 6 > 0, and 0 < 7 < 1, it produces a policy 7
such that:

Proimoas) (V/\“ff) > Vi — E) >1-=0

The literature is also concerned with the learning algorithm’s efficiency so that the learn-

ing algorithm’s sample and computational complexity are polynomial in a set of relevant

35

parameters. Such an efficiency concern is objective dependent. The relevant parameters for
discounted cumulative rewards are the number of states |S|, the number of actions |A|, the

accuracy parameters % and %, the range of rewards R.x — Rumin, and the effective horizon

ﬁ. The relevant parameters for finite-horizon cumulative rewards are the same, except it

uses the horizon H instead of the effective horizon ﬁ There is no PAC guarantee for
average reward without additional assumptions on the MDP [33].

For the gridworld example, the supervised-learning-style PAC-MDP guarantee ensures
that the robot learns a policy that maximizes the cumulative discounted rewards with high
probability in a bounded number of samples. However, note that this guarantee only holds
for the cumulative discounted rewards objective, which is a surrogate for the true objective
of reaching the goal without stepping on water. The guarantee does not directly ensure the
robot’s performance on the true objective.

In the next chapter, I introduce the general objectives framework, extending reward-based
objectives to a broader class of objectives. I discuss the PAC-MDP guarantees for general
objectives in Chapter 3. The general objectives framework generalizes the reward-based

objectives and encompasses them as a special case.

36

Chapter 3

Foundation for (General

Reinforcement-learning Objectives

This section overviews the foundation of general reinforcement-learning objectives laid out
by my previous contributions [22, 29]. I first informally overview background on Markov pro-
cesses, the definition of general objectives, learning models, and objectives’ PAC-learnability.

I then give formal treatments of these concepts.

3.1 Overview

Conventional reward-based objectives are history-independent and Markovian: the reward
at each step depends only on the current state and action. In contrast, general objectives are
functions mapping from infinite-length trajectories to real numbers ranking the trajectories.
To account for the distinction, I extend the framework of conventional reinforcement learning
to accommodate general objectives. The following section gives an example general objective:
the simple reward machine objective [23]. It serves as a first example of a general objective
beyond the conventional reward-based objectives. More examples will follow throughout the

thesis’s progression.

Example: The Simple Reward Machine Specification Simple reward machines gen-
eralize from classic Markovian rewards to non-Markovian rewards. In particular, a simple
reward machine is a kind of deterministic finite automaton. Each automaton transition has
a reward value and a tuple of truth values for a set of propositions about the environment’s
state. The simple reward machine starts from an initial state. As the agent steps through
the environment, a labeling function classifies the environment’s current state to a tuple of

truth values of a set of propositions. The simple reward machine then transits to the next

37

@ ~ ~
-\ A=, 0 -22,0
g |ﬁ|
N
Uy A=, 1 s
X Q
o ~
"0 ~ MR E
T.0 ¢

Figure 3.1: Left: simple reward machine. Right: environment.

states according to the tuple. During each transition, the agent collects a scalar reward
along the transition of the simple reward machine. The overall objective is to maximize the
~v-discounted sum of collected rewards. The formal definition of a simple reward machine

given by Camacho et al. [23] is:

Definition 3.1.1 (Simple Reward Machine). Given a finite set 11 called the propositions, a
simple reward machine over Il is a tuple (U, &y, 0., ug,7y), where U is a finite set of states,
Su: (U x 2N — U is a deterministic state transition function, 6,: (U x U) — Q is a

deterministic reward function, ug is an initial state, and v € Q s a discount factor.

Figure 3.1 shows an example simple reward machine and an accompanying grid environ-
ment. The states of the simple reward machine are {u,us,u3}. The labeling function for
this particular environment maps grid locations (1,0) and (2,0) to “water” (¥) and (3,0) to
“goal” (¥). Each transition of the simple reward machine is labeled by a tuple of truth values
of the two propositions (“water” and “goal”). For example, u; transits to us and produces a
reward of 1 if the environment’s current state is labeled as “goal” but not “water”.

The framework for general objectives closely mirrors the conventional framework for

reward-based objectives reviewed in Chapter 2.

Markov Processes The definition involving MDPs and policies remains the same as the
conventional reward-based objectives, except that I consider MDPs without an explicit re-
ward function. In particular, I consider an autonomous agent situated in an environment
with unknown dynamics modeled as an MDP, defined by a set of states, actions, and a tran-
sition probability function that determines the probability distribution of moving from one
state to another based on an action. It starts from an initial state and, under a policy —
which can be either Markovian, using only the current state information, or non-Markovian,
using a history of states and actions — gives rise to a discrete-time Markov chain (Markov
chain). This chain further induces a probability space over trajectories of states.

In our example, the environment is the gridworld shown in Figure 3.1.

38

Objectives A general reinforcement-learning objective is a function that assigns values to
the samples paths of the induced Markov chain, with higher values indicating more preferable
outcomes. On the high level, I would like the agent to learn a policy that maximizes the
expected value of the objective over the sample paths induced by the environment MDP and
the policy. An objective can be specific to a particular environment or generic, applicable
across various MDPs.

In our example, a simple reward machine R specifies an environment-generic objective

[R]: <2H)w — R given by:

[R](w) = i'yk&n(uk,ukﬂ), Vk > 0. ugy1 = 0y (ug, wlk]).

The set of features F' corresponding to this environment-generic objective is the possible
truth values of the propositions II, that is F' = 2. The labeling function classifies each

environment’s current state and action to these features.

Learning Models The learning models are the same as in the conventional reward-based
objectives. In particular, I consider two learning models: planning with a generative model

and reinforcement learning.

Learnability of Objectives Our goal in specifying an objective is to learn a policy that
performs well with respect to the objective. More importantly, to make the notion of “good
performance” precise, We want to ensure that the learned policy is near-optimal and highly
probable. The PAC-MDP framework formalizes this notion. To that end, I generalize the
PAC-MDP framework from reward-based objectives to general objectives.

In a nutshell, a general objective is PAC-learnable if an algorithm, with high probability,

learns a near-optimal policy for the objective in a finite amount of resources.

3.2 Markov Processes

A Markov decision process (MDP) is a tuple M = (S, A, P, sy), where S and A are finite
sets of states and actions, P: (S x A) — A (S) is a transition probability function that maps
a current state and an action to a distribution over next states, and sy € S is an initial
state. The MDP is sometimes referred to as the environment MDP to distinguish it from
any specific objective.

A policy for an MDP is a function 7: ((S x A)" x S) — A (A) that maps a history of

39

states and actions to a distribution over actions.! If the policy only depends on the current
state, it is called a Markovian policy and can be written as 7: S — A (A).

An MDP and a policy induce a Markov chain. A Markov chain is a tuple D = (S, P, sy),
where S is the set of states, P: S — A(S) is a transition-probability function mapping
states to distributions over next states, and sy € S is an initial state. The Markov chain

induces a probability space over the infinite-length sequences w € S¢.

3.3 Objectives

An objective assigns a value to each infinite-length trajectory of the system. The value
designates the preferredness of each trajectory: the larger the value, the better the trajectory.
The goal of an agent is to learn a policy that maximizes the expected value of the objective

over the random trajectories induced by the system.

3.3.1 Environment-specific Objective

An environment-specific objective for an MDP M = (S, A, P, s¢) is a measurable function
k: S® — R on the probability space of the Markov chain D induced by M and a policy .
I say such an objective is environment-specific since it is associated with MDPs with a fixed
set of states and actions.

The walue of the objective for the MDP M and a policy 7 is the expectation of the
objective under that probability space:

Vit = BEuep[k(w)] (D induced by M and 7).

For example, the cumulative discounted rewards objective [32] with discount v and a reward

function R: S — R is: -
KO (w) £ 340 R(wli]). (3.1)
i=0

I consider only bounded objectives to ensure that the expectation exists and is finite.
The optimal value is the supremum of the values achievable by all policies: Vg, =

sup, Vi .- A policy 7 is e-optimal if its value is e-close to the optimal value: Vi, = > V5, —e.

L X* denotes all finite-length sequences of the elements of X. X% denotes all infinite-length sequences
of the elements of X.

40

3.3.2 Environment-generic Objective

An objective defined above is environment-specific because it is associated with a fixed set of
states and actions of the environment. However, sometimes, I would also like to talk about

objectives in a form decoupled from any MDP. Examples that justify the usefulness include:

e The classical discounted cumulative rewards objective is not bound to any particular
reward function. In particular, it makes sense to talk about the discounted sum in the

objective (Equation (3.1)) with an abstracted reward function R.

o The objective of “reaching the goal state” in a gridworld environment is not bound to

the size of the grid or the allowed actions.

Such decoupling is desirable as it allows specifying objectives independent of environments.

To that end, I define environment-generic objectives. The idea of such objectives is that a
labeling function interfaces between the environment and the environment-generic objective.
The definition decouples an environment-generic objective from environments by requiring
different labeling functions for different environments.

Formally, an environment-generic objective is a measurable function: £: F'¥ — R, where
Fis a set called features. A labeling function maps the MDP’s (current) states and actions to
the features: L: (S x A) — F. Composing ¢ and the element-wise application of £ induces
an environment-specific objective. For example, the discounted cumulative rewards objective
£:QY -5 Risé(w) =32, wli]. For each MDP, the labeling function is a classical reward
function £: (S x A) — Q. 2

The value of ¢ for an MDP M, a policy 7, and a labeling function £ is the value of the

environment-specific objective induced by &, M, 7, and L.

3.4 Planning with a Generative Model

A planning-with-generative-model algorithm [39, 40] has access to a generative model, a
sampler, of an MDP’s transitions but does not have direct access to the underlying probability
values. It can take any state and action and sample a next state. It learns a policy from
those sampled transitions.

Formally, a planning-with-generative-model algorithm A is a tuple (A%, A"), where A5
is a sampling algorithm that drives how the environment is sampled, and A" is a learning

algorithm that learns a policy from the samples obtained by applying the sampling algorithm.

2For simplicity, I let objective specifications use rationals instead of reals so that they admit a finite
representation. Nonetheless, my analyses also generalize to objective specifications that contain reals.

41

In particular, the sampling algorithm A° is a function that maps from a history of
sampled environment transitions ((so,ao,sg) .- - (k. ak, ;) to the next state and action to
sample (s11,ar41) , resulting ins, ; ~ P(- | sgy1,ax41). Tterative application of the sampling
algorithm A5 produces a sequence of sampled environment transitions.

The learning algorithm is a function that maps that sequence of sampled environment
transitions to a non-Markovian policy of the environment MDP. Note that the sampling
algorithm can internally consider alternative policies as part of its decision of what to sample.
Also, note that I deliberately consider non-Markovian policies since the optimal policy for a

general objective is non-Markovian in general.

3.5 Reinforcement Learning

In reinforcement learning, an agent is situated in an environment MDP and only observes
state transitions. We also allow the agent to reset to the initial state as in Fiechter [31].

Some works on reward-based objectives assume a non-episodic setting, where resetting the
environment is not required [33, 41]. This assumption is feasible for the case of reward-based
objectives because the value of discounted or undiscounted reward objectives are definable
starting from any point in the trajectory.

In contrast, this thesis focuses on the episodic setting. This choice is motivated by the
fact that the value of a general objective is only well-defined as the expected value of the
objective function over trajectories originating from the initial state. Consequently, the agent
must gather sufficient knowledge about the environment’s dynamics from the initial state
to optimize the objective. Therefore, a reset mechanism that allows the agent to repeatedly
begin from the initial state is a necessary requirement for addressing the general objectives
considered in this thesis.

Same as in the reward-based objectives case, I view a reinforcement-learning algorithm as
a special kind of planning-with-generative-model algorithm (A%, AY) such that the sampling
algorithm always either follows the next state sampled from the environment or resets to the

initial state of the environment. and only has the choice for the next action.

3.6 Probably Approximately Correct in MDPs

A successful planning-with-generative-model (or reinforcement-learning) algorithm should
learn from the sampled environment transitions and produce an optimal policy for the ob-
jective in the environment MDP. However, since the environment transitions may be stochas-

tic, I cannot expect an algorithm to always produce the optimal policy. Instead, I seek an

42

algorithm that, with high probability, produces a nearly optimal policy. The PAC-MDP
framework [31, 33, 34], which takes inspiration from probably approximately correct (PAC)
learning [36], formalizes this notion. The PAC-MDP framework requires efficiency in both
sampling and algorithmic complexity. In this thesis, I only consider sample efficiency and
thus omit the requirement on algorithmic complexity. Next, I generalize the PAC-MDP
framework from reinforcement-learning with a reward objective to planning-with-generative-

model with a generic objective.

Definition 3.6.1. Given an objective k, a planning-with-generative-model algorithm (A®, AL)
is k-PAC (probably approximately correct for objective k) in an environment MDP M if, with
the sequence of transitions T of length N sampled using the sampling algorithm A®, the learn-
ing algorithm A" outputs a non-Markovian e-optimal policy with probability at least 1 —§ for

any given € >0 and 0 < 0 < 1. That is:
Proim,as), (Vﬁ,LN(T) > Vi — e) >1—06.

We use T~ <M,AS>Nto denote that the probability space is over the set of length-N
transition sequences sampled from the environment M using the sampling algorithm AS.
For brevity, I will drop </\/l, AS>N when it is clear from context and simply write Pt(.) to
denote that the probability space is over the sampled transitions. If N is finite with respect
to the parameters ¢, d, |S|, and |A| and the objective k, then we say the algorithm is xk-PAC.

The algorithms is further sample efficient if the dependence is polynomial:

Definition 3.6.2. Given an objective k, a k-PAC planning-with-generative-model algorithm
is sample efficiently xk-PAC if the number of sampled transitions N is asymptotically polyno-

mial in 1, 3, |S], |A].

Note that I allow the polynomial to have constant coefficients that depends on k.

3.6.1 Learnability of Objectives

A good reinforcement-learning algorithm should provide some form of guarantee that it
learns the good policy that maximizes the given objective. In particular, I let the algorithm

seek a near-optimal policy with high probability.

Definition 3.6.3 (PAC Algorithm for Environment-specific Objective). Given an objective
K, a reinforcement-learning algorithm (A%, AL) is k-PAC (probably approzimately correct for
objective k) in an environment MDP M with N samples if, with the sequence of transitions
T of length N sampled using the sampling algorithm A®, the learning algorithm A outputs

43

an e-optimal policy with probability at least 1 — 0 for any given € > 0 and 0 < § < 1. That

18!

AL(T "
Protasyy (Va2 Vige —€) 2 1-46.

We use T~ <M,.AS>Nto denote that the probability space is over the set of length-NV
transition sequences sampled from the environment M using the sampling algorithm AS.
We will simply write Pr(.) when it is clear from the context.

We will consider two settings: the information-theoretic setting that considers only sam-

ple complexity and the computation-theoretic setting that considers computability.

Definition 3.6.4 (PAC-learnable Environment-specific Objective). In the information-the-
oretic setting (resp. computation-theoretic setting), an environment-specific objective k is
k-PAC-learnable if there exists a function C: (R x R x N x N) — N such that, for all
consistent environment MDPs for k (i.e., the domain of k uses the same set of states and
actions as the MDP), there exists a k-PAC reinforcement-learning algorithm with less than

C(L,1,15|,|A]) samples (resp. computation steps).

My definition focuses on the core tractability issue. Failure to respect my definition
implies that PAC-learning is not achievable with finitely many samples (in the information-
theoretic setting) or not computable (in the computation-theoretic setting). To that end,
I have set the parameters of C' to be the only quantities available to an algorithm un-
der the standard assumptions of reinforcement learning. Specifically, since the transition
dynamics are unknown, they are not parameters of C'. Moreover, while some variants of
PAC-learnability require C' to be a polynomial to capture the notion of learning efficiency, I
have dropped this requirement to focus on the core tractability issue.

We also define the PAC-learnability of environment-generic objectives, for both informa-

tion-theoretic and computation-theoretic settings:

Definition 3.6.5 (PAC-learnable Environment-generic Objective). An environment-generic
objective £ is &-PAC-learnable if for all labeling functions L, the objective k induced by & and
L is k-PAC-learnable.

Note that in the information-theoretic setting, I assume that the objectives x and £ are
given as oracles: they take infinite-length inputs and return infinite-precision output with

no computation overhead.

3.6.2 Established PAC-Learnable Objectives

The standard discounted cumulative rewards objective $°5° v'wli] and the finite-horizon

cumulative rewards objective >-% , w(i] are known to be PAC-learnable. The folklore intuition

44

is that these objectives “effectively terminate” in an expected finite-length horizon, and
rewards farther out of the horizon diminish quickly. Later in Section 5.3, I formalizes this
intuition by connecting it to the standard definition of the objective function’s uniform
continuity and computability. In particular, I will prove that uniformly continuous and

computable objectives are PAC-learnable.

45

46

Chapter 4
Linear Temporal Logic Objectives

In Section 1.1.3, I discussed how reward objectives are surrogates to the true objective, and
the mismatch between the two leads to the undesirable reward hacking problem. Recall
our example objective in the gridworld “eventually reach the goal while avoiding water”,
Figure 1.2 shows the reward hacking problem in this example — a practitioner cannot know
how to assign rewards and the discount factor so that the agent behaves according to the

true objective, without knowing the environment dynamics.

4.1 Overview

As a remedy to the reward hacking problem, researchers have sought to use logical objec-
tives to specify the true objective, and proposed algorithms that attempt to learn behaviors
that maximize the probability of satisfaction with the logical objectives. One such class of

objectives is linear temporal logic (LTL) objectives.

4.1.1 Linear Temporal Logic Objective

LTL is a formal logic used initially to specify behaviors for system verification [13]. An LTL
formula is built from a set of propositions about the state of the environment, logical connec-
tives, and temporal operators such as G (always) and F (eventually). Many reinforcement-
learning tasks are naturally expressible with LTL [21]. For some classic control examples,
we can express: 1) cart-pole as Gup (i.e., the pole always stays up), 2) mountain-car as
F goal (i.e., the car eventually reaches the goal), and 3) pendulum-swing-up as F Gup (i.e.,
the pendulum eventually always stays up). Table 4.1 shows a collection of examples of LTL

objectives in various tasks.

47

Table 4.1: Example LTL objectives in various tasks.

Name Illustration

Description

LTL Formula

=)

10 90
=

Assembly

In a time-critical manufacturing
process, a robotic arm must drop an
item at an exact timestep (e.g., the
second step).

XXdrop

Cart-pole

The cartpole system must maintain
balance by ensuring the pole always
remains upright.

Gup

Mountain-car

The car eventually reach the top of
the hill.

F goal

Pendulum

The pendulum should eventually
stabilize in an upright position and
remain there indefinitely.

FGup

NESE

System Monitor-

The software monitor must perform
health checks infinitely often.

G F check

-)]
lﬁl
Gridworld Example objective in Chapter 1: F goal A G —water
Reach goal while avoiding water
A
i .
Taxi 1 The taxi must first pick up pas- F iFd({ile)u /IilG/\fuel
A senger one, then pick up passenger P P2
* two, while ensuring sufficient fuel
& throughout.

Scheduler Fairness

=
[

The scheduler must schedule pro-
cesses fairly, in the sense that if
a process is enabled indefinitely, it
must also be scheduled infinitely of-
ten. In other words, no single pro-
cess shall take precedence indefi-
nitely.

G (F enabled =
F scheduled)

In our example, the true objective is expressible as the LTL formula F goal A G —water. If

the reward hacking problem.

48

the agent learns a behavior that maximizes the probability of satisfying this formula, then
the agent will eventually reach the goal without stepping on water. Therefore, if the objective
is learnable, meaning we could obtain a guarantee on the agent learning such behavior in a

finite amount of interactions with the environment and computation, then we have avoided

at, 1- p at, 1- p
U)))
a271_p az,p m a2’1_p ai,p 0
Figure 4.1: Two MDPs parameterized by p in range 0 < p < 1. Action a; in the MDP on the
left and action as in the MDP on the right have probability p of transitioning to the state g.
Conversely, action as in the MDP on the left and action a; in the MDP on the right have

probability p of transitioning to the state h. Both actions in both MDPs have probability
1 — p to loop around the start state s.

Researchers have thus used LTL as an alternative objective specification for reinforcement
learning [1, 2, 14-17]. Given an LTL objective specified by an LTL formula, each trajectory
of the system either satisfies or violates that formula. The agent should learn the behavior
that maximizes the probability of satisfying that formula.

This chapter inspects the learnability of LTL objectives — whether we can obtain such a
guarantee. I show that such a guarantee is possible only for a subset of LTL objectives called
finitary and impossible for all other infinite-horizon LTL objectives. The main chapter will
make this subset precise in this chapter and prove the above claim. But first, I illustrate this
distinction of learnability between the two classes of LTL objectives through our gridworld
example in Section 1.3.4

For our gridworld examples, the objective ol “eventually reach the goal without stepping
on water” is not finitary and thus not learnable. The objective 02 “eventually reach the goal
and step on water in at most 15 steps” is finitary and thus learnable. In the following

sections, I will use these two examples to illustrate the learnability of LTL objectives.

4.1.2 Infinite-horizon LTL Objective Example

The general class of LTL objectives consists of infinite-horizon objectives — objectives that
require inspecting infinitely many steps of a trajectory to determine if the trajectory satisfies
the objective. For example, consider a simplification of the objective ol: “eventually reach
the goal”, where I supposed no water exists in the grid world, and therefore dropped the
requirement on not stepping on the water since it is trivially satisfied. Given an infinite
trajectory, the objective requires inspecting the entire infinite trajectory in the worst case to
determine whether it violates the objective since it may never reach the goal. Therefore, the
objective is infinite-horizon. The following example illustrates the intractability of learning
infinite-horizon objectives.

Suppose | send an agent into one of the MDPs in Figure 4.1, and want its behavior to

49

satisfy the objective “eventually reach the goal”, where ¢ is the goal state. This objective is
expressible as the LTL formula F goal. The optimal behavior is always to choose the action
along the transition ¢ — ¢ for both MDPs (i.e., a; for the MDP on the left and ay for
the MDP on the right). This optimal behavior satisfies the objective with probability one.
However, the agent does not know which of the two MDPs it is in. The agent must follow its
sampling algorithm to explore the MDP’s dynamics and use its learning algorithm to learn
this optimal behavior.

If the agent observes neither transition going out of ¢ (i.e., ¢ — g or ¢ — h) during
sampling, it will not be able to distinguish between the two actions. The best it can do
is a 50% chance guess and cannot provide any non-trivial guarantee on the probability of
learning the optimal action.

On the other hand, if the agent observes one of the transitions going out of ¢, it will be
able to determine which action leads to state h, thereby learning always to take that action.
However, the probability of observing any such transition with N interactions is at most
1—(1—p)"N. This is problematic: with any finite N, a value of p always exists such that this
probability is arbitrarily close to 0. In other words, with any finite number of interactions,
without knowing the value of p, the agent cannot guarantee (a non-zero lower bound on) its
chance of learning a policy that satisfies the LTL formula F goal.

Further, the problem is not limited to this formula. For example, suppose the state h has
water, then the objective “never step on water”, expressed as the formula G ~water, has the
same problem in these two MDPs. Therefore, for the full objective o1, if the gridworld is one
of these two MDPs in Figure 4.1, the agent cannot guarantee to learn a behavior that satisfies
the objective. More generally, for any LTL formula describing an infinite-horizon property,
I construct two counterexample MDPs with the same nature as the ones in Figure 4.1, and

prove that it is impossible to guarantee learning the optimal policy.

4.1.3 Finitary LTL Objective Example

The complement of infinite-horizon objectives are finitary objectives — objectives that require
inspecting only a finite number of trajectory steps to determine if the trajectory satisfies
the objective. For example, the objective 02 “eventually reach the goal and step on the
water in at most 15 steps” is finitary since it requires inspecting only the first 15 steps of a
trajectory to determine if the trajectory satisfies the objective. In this chapter, I show that
these objectives are learnable — there are algorithms that guarantee learning a near-optimal
behavior for these objectives with high probability in a finite amount of interactions with

the environment and computation.

20

Consider the example objective 02, and I send an agent into the gridworld of unknown dy-
namics. As mentioned, there are algorithm that guarantee learning a near-optimal behavior
for this objective, which I outline below.

First, I construct a finite-horizon cumulative reward objective equivalent to the given
finitary objective. Specifically, I define a reward function that assigns a 1 if the agent
reaches the goal within at most 15 steps while avoiding stepping on water during this time;
otherwise, it assigns a reward of 0.

Since this reward function depends on the sequence of the first 15 steps, it operates
on an augmented state space that tracks the last 15 steps of the agent’s trajectory. This
transformation results in a new MDP, where each state represents a sequence of 15 states
from the original gridworld MDP.

As I will show in the main chapter, a near-optimal policy for this constructed reward ob-
jective in the new MDP is also near-optimal for the original finitary objective in the original
gridworld MDP. This equivalence allows the use of standard reinforcement learning algo-
rithms designed for finite-horizon cumulative reward settings. For example, a practitioner
can apply the ORLC algorithm from Dann et al. [38], which provides learning guarantees
for finite-horizon objectives. By learning an optimal policy in this new MDP, the agent also

learns a near-optimal strategy for the original finitary objective.

4.1.4 Prior Works

Despite the developments on reinforcement learning with LTL objectives, the infinite-horizon
nature of LTL objectives presents challenges that have been alluded to — but not formally
treated — in prior work. Henriques et al. [18], Ashok, Ktetinsky, and Weininger [19], and
Jiang et al. [20] noted slow learning times for mastering infinite-horizon properties. Littman
et al. [21] provided a specific environment that illustrates the intractability of learning for a
specific infinite-horizon objective, arguing for using a discounted LTL variant.

A similar issue exists for infinite-horizon, average-reward objectives. Specifically, re-
inforcement-learning algorithms are known to lack guarantees on the learned behavior for
infinite-horizon, average-reward objectives without additional assumptions on the MDP [33].

However, no prior work has formally analyzed the learnability of LTL objectives.!

I leverage the PAC-MDP framework [11] to prove that reinforcement learning for infinite-
horizon LTL objectives is intractable. The intuition for this intractability is: Any finite

number of interactions with an environment with unknown transition dynamics is insufficient

IConcurrent to this work, Alur et al. [27] also examines the intractability of LTL objectives. They state
and prove a theorem that is a weaker version of the core theorem of this work. Their work was made public
while this work was under conference review. I discuss their work in Section 4.6.

o1

to identify the environment dynamics perfectly. Moreover, for an infinite-horizon objective,
a behavior’s satisfaction probability under the inaccurate environment dynamics can be
arbitrarily different from the behavior’s satisfaction probability under the true dynamics.
Consequently, a learner cannot confidently guarantee that it has identified near-optimal

behavior for an infinite-horizon objective.

4.1.5 Implications for Relevant and Future Work

My results provide a framework for categorizing approaches that either focus on tractable
LTL objectives or weaken an algorithm’s guarantees. As a result, I interpret several previous

approaches as instantiations of the following categories:

o Work with finite-horizon LTL objectives, the complement of infinite-horizon objectives,
to obtain guarantees on the learned behavior [18]. These objectives, like a A Xa (a is true

for two steps), are decidable within a known finite number of steps.

» Seck a best-effort confidence interval [19]. Specifically, the interval can be trivially large
in the worst case, denoting that learned behavior is a maximally poor approximation of the

optimal behavior.

o Make additional assumptions about the environment to obtain guarantees on the learned
behavior [14, 35].

o Change the problem by working with LTL-like objectives such as: 1. relaxed LTL objec-
tives that become exactly LTL in the (unreachable) limit [1, 2, 16, 17] and 2. objectives that
use temporal operators but employ a different semantics [15, 21, 23, 24]. The learnability of

these objectives is a potential future research direction.

4.2 Linear Temporal Logic Objectives

This section describes LTL and its use in objectives.

4.2.1 Linear Temporal Logic

A linear temporal logic (LTL) formula is built from a finite set of atomic propositions II,
logical connectives -, A, V, temporal next X, and temporal operators G (always), F (even-

tually), and U (until). Equation (4.1) gives the grammar of an LTL formula ¢ over the set

52

of atomic propositions II:

b=a|-0|6nd|6Ve|Xo|Go|Fo|oUg actl (4.1)

LTL is a logic over infinite-length words. Informally, these temporal operators have the

following meanings:

o X¢: the sub-formula ¢ is true in the next time step.
e G¢: the sub-formula ¢ is always true in all future time steps.
o F¢: the sub-formula ¢ is eventually true in some future time steps.

o ¢ U: the sub-formula ¢ is always true until the sub-formula 1 eventually becomes

true, after which ¢ is allowed to become false.

Formally, I write w F ¢ to denote that the infinite word w satisfies ¢. Definition 4.2.1

defines this relation.

Definition 4.2.1 (LTL Semantics).

wEa iff a € wli] aell
wkE —¢ iffwk o
wEONY iffwE ¢ and wE Y
wEOVY iffwE G orwEY
w E X¢ iff w[l:] E ¢
wkEGo iff Vi > 0,wli:] E ¢
wkEF¢ iff 3i > 0,wli:] E ¢
wEoUY iff 3> 0,w[j:] Ev and Vk.0 < k < j = wlk:] F ¢.
The rest of the operators are defined as syntactic sugar in terms of operators in Defi-

nition 4.2.1 as: ¢ Vi = =(mp A), Fp = True U ¢, G = —F =¢. For a more in-depth

introduction of LTL, I refer readers to Baier and Katoen [42].

4.2.2 MDP with LTL Objectives

An LTL objective maximizes the probability of satisfying an LTL formula. I formalize this
notion below.
An LTL specification for an MDP is a tuple (L, ¢), where £: S — 2 is a labeling

function, and ¢ is an LTL formula over atomic propositions II. The labeling function is a

23

Restricted General

Safety Recurrence

Finitary Obligation Reactivity

Guarantee Persistence

Figure 4.2: The hierarchy of LTL

classifier mapping each MDP state to a tuple of truth values of the atomic propositions in
¢. For a sample path w, I use £ (w) to denote the element-wise application of £ on w.

The LTL objective & specified by the LTL specification is the satisfaction of the formula
¢ of a sample path mapped by the labeling function £, that is: x(w) = 1{L(w) F ¢}. The

value of this objective is called the satisfaction probability of &:

Vite = Pup(L(w) F ¢) (D induced by M and 7).

4.2.3 Infinite Horizons in LTL Objectives

An LTL formula describes either a finite-horizon or infinite-horizon property over a infinite-
length word. Manna and Pnueli [43] classified LTL formulas into seven classes, as shown
in Figure 4.2. Each class includes all the classes to the left of that class: For example,
Finitary C Guarantee, but Safety ¢ Guarantee. The Finitary class is the most restricted and
the Reactivity class is the most general.

I describe the key properties of all classes in the LTL hierarchy. Among these classes,

the classes Finitary, Guarantee, and Safety are particularly relevant to this work.

o ¢ € Finitary iff there exists a horizon H such that infinite-length words sharing the same
prefix of length H are either all accepted or all rejected by ¢. For example, the formula

a A\ Xa (that is, a is true for two steps) is in Finitary.

o ¢ € Guarantee iff there exists a language of finite words L (that is, a Boolean function
on finite-length words) such that w F ¢ if L accepts a prefix of w. Informally, a formula
in Guarantee asserts that something eventually happens. For example, the formula Fa

(that is, eventually a is true) is in Guarantee.

o ¢ € Safety iff there exists a language of finite words L such that w F ¢ if L accepts all
prefixes of w. Informally, a formula in Safety asserts that something always happens. For

example, the formula Ga (that is, a is always true) is in Safety.

o4

a1, p

az,p

’ D oe e e .‘ b oe e e —»
az,p
i

Figure 4.3: Counterexample MDPs M; and M, with transitions distinguished by arrow
types (see legend). Both MDPs are parameterized by the parameter p that is in range
0 < p < 1. Unlabeled edges are deterministic (actions a; and ay transition with probability
1). Ellipsis indicates a deterministic chain of states.

e ¢ € Obligation iff ¢ is a logical combination of formulas in Guarantee and Safety. For

example, the formula Fa A Gb is in Obligation.

o ¢ € Persistence iff there exists a language of finite words L such that w F ¢ if L accepts
all but finitely many prefixes of w. Informally, a formula in Persistence asserts that
something happens finitely often. For example, the formula F Ga (that is, a is not true

for only finitely many times, and eventually a stays true forever) is in Persistence.

e ¢ € Recurrence iff there exists a language of finite words L such that w F ¢ if L accepts
infinitely many prefixes of w. Informally, a formula in Recurrence asserts that something
happens infinitely often. For example, the formula GF a (that is, a is true for infinitely

many times) is in Recurrence.

e ¢ € Reactivity iff ¢ is a logical combination of formulas in Recurrence and Persistence.

For example, the formula GFa A FGb is in Reactivity.

Moreover, the set of finitary is the intersection of the set of guarantee formulas and the set
of safety formulas. Any ¢ € Finitary, or equivalently ¢ € Guarantee N Safety, inherently de-
scribes finite-horizon properties. Any ¢ ¢ Finitary, or equivalently ¢ € Guarantee® U Safetyﬂ,
inherently describes infinite-horizon properties. I will show that reinforcement-learning algo-
rithms cannot provide PAC guarantees for LTL objectives specified by formulas that describe

infinite-horizon properties.

4.3 Learnability of LTL Objectives

This section states and outlines the proof to the main result.
By specializing the xk-PAC definitions (Definitions 3.6.1 and 3.6.2) with the definition of
LTL objectives in Section 4.2.2, I obtain the following definitions of LTL-PAC.

25

Definition 4.3.1. Given an LTL objective &, a planning-with-generative-model algorithm
(A5, AL) is LTL-PAC (probably approzimated correct for LTL objective) in an environment
MDP M for the LTL objective £ if, with the sequence of transitions T of length N sampled
using the sampling algorithm A, the learning algorithm AY outputs a non-Markovian e-

optimal policy with a probability of at least 1 — & for all e > 0 and 0 < d < 1. That is,
Proiaas) (V;‘A‘ZT) > Ve — e> >1-4. (4.2)

The probability on the left of the inequality is the LTL-PAC probability of the algorithm
(A5, A").

Definition 4.3.2. Given an LTL objective &, an LTL-PAC planning-with-generative-model
algorithm for & is sample efficiently LTL-PAC if the number of sampled transitions N is

asymptotically polynomial to £, 3, |S|, |A|.

4.3.1 The Main Theorem

With the above definitions, I can now define the PAC learnability of an LTL objective and

state the main theorem.

Definition 4.3.3. An LTL formula ¢ over atomic propositions 11 is LTL-PAC-learnable by
planning-with-generative-model (reinforcement-learning) if there exists a sample efficiently
LTL-PAC planning-with-generative-model (reinforcement-learning) algorithm for all environ-
ment MDPs and all consistent labeling functions L (that is, L maps from the MDP’s states
to 211) for the LTL objective specified by (L,).

Theorem 4.3.4. An LTL formula ¢ is LTL-PAC-learnable by reinforcement-learning (plan-
ning-with-generative-model) if (and only if) ¢ is finitary.

Between the two directions of Theorem 4.3.4, the forward direction, “only if”, is more
important. The forward direction states that for any LTL formula not in Finitary (that is,
infinite-horizon properties), there does not exist a planning-with-generative-model algorithm
— which by definition also excludes any reinforcement-learning algorithm — that is sample
efficiently LTL-PAC for all environments. This result is the core contribution of the paper
— infinite-horizon LTL formulas are not sample efficiently LTL-PAC-learnable.

Alternatively, the reverse direction of Theorem 4.3.4 states that, for any finitary formula
(finite-horizon properties), there exists a reinforcement-learning algorithm—which by defini-
tion is also a planning-with-generative-model algorithm—that is sample efficiently LTL-PAC

for all environments.

26

4.3.2 Consequence of the Theorem

Theorem 4.3.4 implies that: For any non-finitary LTL objective, given any arbitrarily large
finite sample of transitions, the learned policy need not perform near-optimally. This impli-

cation is unacceptable in applications that require strong guarantees of the system’s behavior.

4.3.3 Proof of Theorem 4.3.4: Forward Direction

This section proves the forward direction of Theorem 4.3.4. First, I construct a family of
pairs of MDPs. Then, for the singular case of the LTL formula F gy, I derive a sample com-
plexity lower bound for any LTL-PAC planning-with-generative-model algorithm applied to
my family of MDPs. This lower bound necessarily depends on a specific transition proba-
bility in the MDPs. Finally, I generalize this bound to any non-finitary LTL formula and

conclude the proof.

4.3.3.1 MDP Family

I give two constructions of parameterized counterexample MDPs M; and My shown in
Figure 4.3. The key design behind each pair in the family is that no planning-with-generative-
model algorithm can learn a policy that is simultaneously e-optimal on both MDPs without
observing a number of samples that depends on the probability of a specific transition.

Both MDPs are parameterized by the shape parameters k, [, u, v, m, n, and an unknown
transition probability parameter p. The actions are {a;,as}, and the state space is parti-
tioned into three regions (as shown in Figure 4.3: states qo_; (the grey states), states go. .,
(the line-hatched states), and states hg._, (the white states). All transitions, except ¢ — go
and q; — hg, are the same between M; and M. The effect of this difference between the
two MDPs is that, for M;, i € {1,2}:

o Action a; in M; at the state ¢ will transition to the state gy with probability p, inducing

a run that cycles in the region g, , forever.

o Action az_; (the alternative to a;) in M; at the state ¢, will transition to the state hq

with probability p, inducing a run that cycles in the region h,,. ., forever.

Further, for any policy, a run of the policy on both MDPs must eventually reach gq or

ho with probability 1, and ends in an infinite cycle in either g, ., or A, n.

27

4.3.3.2 Sample Complexity of F g

I next consider the LTL objective £% specified by the LTL formula F gy and the labeling
function £% that labels only the state go as true. A sample path on the MDPs (Figure 4.3)
satisfies this objective iff the path reaches the state go.

Given € > 0 and 0 < 0 < 1, my goal is to derive a lower bound on the number of sampled
environment transitions performed by an algorithm, so that the satisfaction probability of
7, the learned policy, is e-optimal (i.e., Vi co > V/Cl}go — €) with a probability of least 1 — 4.

The key rationale behind the following lemma is that, if a planning-with-generative-model
algorithm has not observed any transition to either gy or hg, the learned policy cannot be
e-optimal in both M; and M.

Lemma 4.3.5. For any planning-with-generative-model algorithm (A%, AL), it must be the

case that: min (¢, () < %, where ¢ = Py Vﬁng > Vi o —€|n(T) = O) and n(T') is

the number of transitions in T that start from q and end in either gy or hy.

The value (; is the LTL-PAC probability of a learned policy on M;, given that the
planning-with-generative-model algorithm did not observe any information that allows the

algorithm to distinguish between M; and M.
Proof. 1 present a proof of Lemma 4.3.5 in Section 4.7.1. O

A planning-with-generative-model algorithm cannot learn an e-optimal policy without
observing a transition to either gy or hy. Thus, I bound the sample complexity of the algo-

rithm from below by the probability that the sampling algorithm observes such a transition:

Lemma 4.3.6. For the LTL objective £9°, the number of samples, N, for an LTL-PAC

planning-with-generative-model algorithm for both My and My (for any instantiation of the
log(26)
log(1-p)

parameters k,l,u,v,m,n) has a lower bound of N >
Below I give a proof sketch of Lemma 4.3.6; I give the complete proof in Section 4.7.3.

Proof Sketch of Lemma 4.3.0. First, I assert that the two inequalities of Equation (4.2) for
both M; and M5 holds true for a planning-with-generative-model algorithm. Next, by
conditioning on n(7) = 0, plugging in the notation of (;, and relaxing both inequalities, I
get (1 — G)Pr(n(T) = 0) <9, for ¢ € {1,2}. Then, since n(7T") = 0 only occurs when all
transitions from ¢; end in g, I have P+(n(T) = 0) > (1 — p)". Combining the inequalities,
I get (1 —min(¢p,¢))(1 —p)Y < 4. Finally, T apply Lemma 4.3.5 to get the desired lower
bound of N > 0&(29) O

log(1-p) "

o8

4.3.3.3 Sample Complexity of Non-finitary Formulas

This section generalizes my lower bound on F gy to all non-finitary LTL formulas. The
key observation is that for any non-finitary LTL formula, I can choose a pair of MDPs,
My and My, from my MDP family. For both MDPs in this pair, finding an e-optimal
policy for F gy is reducible to finding an e-optimal policy for the given formula. By this
reduction, the established lower bound for the case of F g also applies to the case of any

non-finitary formula. Therefore, the sample complexity of learning an e-optimal policy for
log(24)

log(1-p) "

I will use [wy;ws; ... wy,] to denote the concatenation of the finite-length words wy . . . wy,.

any non-finitary formula has a lower bound of

I will use w’ to denote the repetition of the finite-length word w by 4 times, and w® to denote

the infinite repetition of w.

Definition 4.3.7. An accepting (resp. rejecting) infinite-length word [w,; wi’] of ¢ is un-
committable if there exists finite-length words w,., wy such that ¢ rejects (resp. accepts)

[wa; wh; we; wY] for all i € N.

Lemma 4.3.8. If ¢ has an uncommittable word w, there is an instantiation of My (or Ms)
in Figure 4.3 and a labeling function L, such that, for any policy, the satisfaction probabilities
of that policy in My (or Ms) for the LTL objectives specified by (L, ¢) and (L%, F go) are

the same.

Proof. For an uncommittable word w, I first find the finite-length words w,,wy,w.,wy ac-
cording to Definition 4.3.7. I then instantiate M; and M in Figure 4.3 as follows.

o If w is an uncommittable accepting word, I set k, I, u, v, m, n (Figure 4.3) to |w,],
|wa| + |ws|, 0, |wyl, |we| and |we| + |wql, respectively. I then set the labeling function as in
Equation (4.4).

o If w is an uncommittable rejecting word, I set k, I, u, v, m, n (Figure 4.3) to |w,],
|wa| + [ws|, |we|, |we| + |wa|, 0 and |wy|, respectively. T then set the labeling function as in
Equation (4.5).

[wa; wy] [5]1f s=g; [wa; wy] 5] if s=¢;
L(s)= wylj] if s=g; L(s)=1 [we;wdl[j] if s=g;
[we; wa] [5]3f s=h; wlj] if s=h;

(4.4) (4.5)

In words, for an uncommittable accepting word, I label the states qo.; one-by-one by
[wa; wp]; T label the states gq., one-by-one by w, (and set u = 0, which eliminates the
chain of states go.,); I label the states hg_, one-by-one by [w.;wy]. Symmetrically, for an

uncommittable rejecting word, I label the states go_; one-by-one by [w,; wy]; I label the states

29

go..., one-by-one by [w.; wy]; T label the states hg._, one-by-one by w;, (and set m = 0, which
eliminates the chain of states hg).

By the above instantiation, the two objectives specified by (L£,¢) and (L%, F gy) are
equivalent in M7 and M. In particular, any path in M; or M, satisfies the LTL objective
specified by (£, ¢) if and only if the path visits the state gy and therefore also satisfies the
LTL objective specified by (L%, F gq). Therefore, any policy must have the same satisfaction
probability for both objectives. O

Lemma 4.3.9. For ¢ & Finitary, the number of samples for a planning-with-generative-

model algorithm to be LTL-PAC has a lower bound of N > 152%2:2)'

Proof. A corollary of Lemma 4.3.8 is: for any ¢ that has an uncommittable word, I can
construct a pair of MDPs M; and M in the family of pairs of MDPs in Figure 4.3, such
that, in both MDPs, a policy is sample efficiently LTL-PAC for the LTL objective specified
by (£,) if it is sample efficiently LTL-PAC for the LTL objective specified by (£%,F gg).
This property implies that the lower bound in Lemma 4.3.6 for the objective specified by
(L% F go) also applies to the objective specified by (L, ¢), provided that any ¢ & Finitary has

an uncommittable word. In Section 4.7.4, I prove a lemma that any formula ¢ &€ Guarantee

has an uncommittable accepting word, and any formula ¢ ¢ Safety has an uncommittable
rejecting word. Since Finitary is the intersection of Guarantee and Safety, this completes
the proof. n

4.3.3.4 Conclusion

Note that the lower bound lé(;g(gz_‘z)

MDPs. Moreover, for § < %, as p approaches 0, this lower bound goes to infinity. As a

result, the bound does not satisfy the definition of sample efficiently LTL-PAC planning-with-

depends on p, the transition probability in the constructed

generative-model algorithm for the LTL objective (Definition 3.6.2), and thus no algorithm
is sample efficiently LTL-PAC. Therefore, LTL formulas not in Finitary are not LTL-PAC-

learnable. This completes the proof of the forward direction of Theorem 4.3.4.

4.3.4 Proof Sketch of Theorem 4.3.4: Reverse Direction

This section gives a proof sketch to the reverse direction of Theorem 4.3.4. I give a complete
proof in Section 4.3.5.

I prove the reverse direction of Theorem 4.3.4 by reducing the problem of learning a policy
for any finitary formula to the problem of learning a policy for a finite-horizon cumulative
rewards objective. I conclude the reverse direction of the theorem by invoking a known PAC

reinforcement-learning algorithm on the later problem.

60

¢ Reduction to Infinite-horizon Cumulative Rewards. First, given an LTL formula
in Finitary and an environment MDP, I will construct an augmented MDP with rewards
similar to Camacho et al. [23] and Giacomo et al. [24]. T reduce the problem of finding the
optimal non-Markovian policy for satisfying the formula in the original MDP to the problem
of finding the optimal Markovian policy that maximizes the infinite-horizon (undiscounted)

cumulative rewards in this augmented MDP.

 Reduction to Finite-horizon Cumulative Rewards. Next, I reduce the infinite-
horizon cumulative rewards to a finite-horizon cumulative rewards, using the fact that the

formula is finitary.

« Sample Complexity Upper Bound. Lastly, Dann et al. [38] have derived an upper
bound on the sample complexity for a reinforcement-learning algorithm for finite-horizon
MDPs. I thus specialize this known upper bound to my problem setup of the augmented
MDP and conclude that any finitary formula is PAC-learnable.

4.3.5 Proof of Theorem 4.3.4: the Reverse Direction

In this section, I give a proof to the reverse direction of Theorem 4.3.4.

Reduction to Infinite-horizon Cumulative Rewards Given an LTL formula ¢ in
Finitary with atomic propositions II, one can compile ¢ into a DFA M = (5' 21 P, Sacc)
that decides the satisfaction of ¢ [44]. In particular, for a given sample path w of Markov
chain induced by a policy and the environment MDP, £(w) satisfies ¢ if and only if the DFA,
upon consuming L(w), eventually reaches the accept state s,... Here, the DFA has a size
(in the worst case) doubly exponential to the size of the formula: |S| = O(2exp(|¢])) [45].

I then use the following product construction to form an augmented MDP with rewards
M= (g, A P, s, R) Specifically,

« The states and actions are: S =S x S and A = A.

o The transitions follow the transitions in the environment MDP and the DFA simulta-
neously, where the action input of the DFA come from labeling the current state of the
environment MDP. In particular, the transitions in the augmented MDP follows the equa-
tions: P((s,5),a,(s',5)) = P(s,a,s') and § = P(5, L(s)).

e The reward function assigns a reward of one to any transition from a non-accepting state

that reaches s,.. in the DFA, and zero otherwise:
R((s,8),a,(s,8)) = 1{s # Sace N 8 = Sacc}-

61

By construction, each run of the augmented MDP gives a reward of 1 iff the run satisfies
the finitary formula ¢. The expected (undiscounted) infinite-horizon cumulative rewards thus
equals the satisfaction probability of the formula. Therefore, maximizing the infinite-horizon
cumulative rewards in the augmented MDP is equivalent to maximizing the satisfaction

probability of ¢ in the environment MDP.

Reduction to Finite-horizon Cumulative Rewards By the property of LTL hierarchy
[43], for any LTL formula ¢ in Finitary and an infinite-length word w, one can decide if ¢
accepts w by inspecting a length-H prefix of w. Here, H is a constant that is computable
from ¢. In particular, H equals the longest distance from the start state to a terminal state
in my constructed DFA. 2 Thus, since the product construction above does not assign any
reward after the horizon H, the infinite-horizon cumulative rewards is further equivalent to
the finite-horizon (of length H) cumulative rewards. Therefore, finding the optimal policy
for ¢ is equivalent to finding the optimal policy that maximizes the cumulative rewards for
a finite horizon H in the augmented MDP.

Sample Complexity Upper Bound Lastly, Dann et al. [38] gave a reinforcement-learn-
ing algorithm for finite-horizon cumulative rewards called ORLC (optimistic reinforcement
learning with certificates). The ORLC algorithm is sample efficiently PAC 3 and has a sample
complexity of O ((‘SH?Q‘HB + |S‘2‘?|H4) log %) 4 Incorporating the fact that the augmented
MDP has |S| = |S] - O(2exp(|¢|)) number of states, I obtain a sample complexity upper

bound of O ((|S|2€Xp€|2¢”A|H3 + SECex L¢|)2‘A|H4) log %) for the overall reinforcement-learning

algorithm.

Since for any finitary formula, I have constructed a reinforcement-learning algorithm that
is sample efficiently LTL-PAC for all environment MDPs, this concludes my proof that any
finitary formula is LTL-PAC-learnable.

4.4 Empirical Justifications

This section empirically demonstrates my main result, the forward direction of Theorem 4.3.4.

2Note that since ¢ is finitary, the DFA does not have any cycles except at the terminal states [46].

3The ORLC algorithm provides a guarantee called individual policy certificates (IPOC) bound. Dann et
al. [38] showed that this guarantee implies my PAC definition, which they called a supervised-learning style
PAC bound. Therefore, the ORLC algorithm is a PAC reinforcement-learning algorithm for finite-horizon
cumulative rewards by my definition.

4The notation O(.) is the same as O(.), but ignores any log-terms. The bound given by Dann et al. [38]

~ 2 2
is O (% log %) It is a upper bound on the number of episodes. To make the bound consistent with

my lower bound on the number of sampled transitions, I multiply it by an additional H term.

62

Previous work has introduced various reinforcement-learning algorithms for LTL objec-
tives [1, 2, 16, 17]. T ask the research question: Do the sample complexities of these algo-
rithms depend on the transition probabilities of the environment? To answer the question,
we evaluate various algorithms and empirically measure the sample sizes for them to obtain

near-optimal policies with high probability.

4.4.1 Methodology

I consider various recent reinforcement-learning algorithms for LTL objectives [1, 2, 16]. T
consider two pairs of LTL formulas and environment MDPs (LTL-MDP pair). The first pair
is the formula F h and the counterexample MDP as shown in Figure 4.1. The second pair is
adapted from a case study in Sadigh et al. [2]. I focus on the first pair in this section and
defer the complete evaluation to Appendix B.

I run the considered algorithms on each chosen LTL-MDP pair with a range of values for
the parameter p and let the algorithms perform N environment samples. For each algorithm
and each pair of values of p and N, I fix e = 0.1 and repeatedly run the algorithm to obtain
a Monte Carlo estimation of the LTL-PAC probability (left side of Equation (4.2)) for that
setting of p, N and e. I repeat each setting until the estimated standard deviation of the
estimated probability is within 0.01. In the end, for each algorithm and LTL-MDP pair I
obtain 5 x 21 = 105 LTL-PAC probabilities and their estimated standard deviations.

For the first LTL-MDP pair, I vary p by a geometric progression from 107! to 1073 in
5 steps. I vary N by a geometric progression from 10! to 10° in 21 steps. For the second
LTL-MDP pair, I vary p by a geometric progression from 0.9 to 0.6 in 5 steps. I vary N by
a geometric progression from 3540 to 9 x 10 in 21 steps. If an algorithm does not converge
to the desired LTL-PAC probability within 9 x 10* steps, I rerun the experiment with an
extended range of N from 3540 to 1.5 x 105.

4.4.2 Results

Figure 4.4 presents the results for the algorithm in Bozkurt et al. [1] with the setting of
Multi-discount, Q-learning, and the first LTL-MDP pair. On the left, I plot the LTL-PAC
probabilities vs. the number of samples N, one curve for each p. On the right, I plot the
intersections of the curves in the left plot with a horizontal cutoff of 0.9.

As I see from the left plot of Figure 4.4, for each p, the curve starts at 0 and grows to 1
in a sigmoidal shape as the number of samples increases. However, as p decreases, the MDP
becomes harder: As shown on the right plot of Figure 4.4, the number of samples required

to reach the particular LTL-PAC probability of 0.9 grows exponentially. Results for other

63

1.00 -

V- 12500 1 '
S 075 - A ,, 10000 1
g A &+ le-l 9
[/ o 7500 -
&) 050 . /| II :. 3e_2 E
i /) & le-2 © 5000 -
l:l 0-25 1 / / / = 3e-3 H* /
- VY Ay b le3 2500 A
. o aof- e-
000 -1 - —A!{_q*.‘.r..q..-r 0 |
I T T 1171 T 1171 T LN | T T T 17T . . : : :
10! 102 103 104 105 Lo 309 1o2 303 103
#samples b

Figure 4.4: Left: LTL-PAC probabilities vs. number of samples, varying parameters p. Right:
number of samples needed to reach 0.9 LTL-PAC probability vs. parameter p.

algorithms, environments and LTL formulas are similar and lead to the same conclusion.
Figure B.3 presents the complete results for all settings for the first LTL-MDP pair, and
Figure B.4 present the complete results for all settings for the second LTL-MDP pair. These

results are similar and lead to the same analysis as above.

4.4.3 Results Interpretation

Since the transition probabilities (p in this case) are unknown in practice, one can’t know
which curve in the left plot a given environment will follow. Therefore, given any finite
number of samples, these reinforcement-learning algorithms cannot provide guarantees on
the LTL-PAC probability of the learned policy. This result supports Theorem 4.3.4.

4.5 Directions Forward

I have established the intractability of reinforcement learning for infinite-horizon LTL objec-
tives. Specifically, for any infinite-horizon LTL objective, the learned policy need not perform
near-optimally given any finite number of environment interactions. This intractability is
undesirable in applications that require strong guarantees, such as traffic control, robotics,
and autonomous vehicles [47-49].

Going forward, I categorize approaches that either focus on tractable objectives or weaken
the guarantees required by an LTL-PAC algorithm. I obtain the first category from the re-
verse direction of Theorem 4.3.4, and each of the other categories by relaxing a specific
requirement that Theorem 4.3.4 places on an algorithm. Further, I classify previous ap-

proaches into these categories.

64

4.5.1 Use a Finitary Objective

For these succinct specification languages, by the reduction of these languages to finitary
properties and the reverse direction of Theorem 4.3.4, there exist reinforcement-learning
algorithms that give LTL-PAC guarantees.

Researchers have introduced specification languages that express finitary properties and
have applied reinforcement learning to objectives expressed in these languages.

Henriques et al. [18] introduced a variant of LTL called Bounded LTL and used Bounded
LTL objective for reinforcement learning. Every Bounded LTL formula is decidable by a
bounded length prefix of the input word. Moreover, each Bounded LTL formula is equivalent
to an finitary LTL formula. Therefore, I classified this approach as using a Finitary objective.

Jothimurugan, Alur, and Bastani [25] introduced a task specification language over finite-
length words. Further, their definition of an MDP contains an additional finite time horizon
H. Each sample path of the MDP is then a length-H finite-length word and is evaluated by
a formula of the task specification language.® Each formula of the task specification language
with a fixed finite horizon H is equivalent to an LTL formula in the Finitary class. Therefore,
I classified this approach as using a Finitary objective.

One value proposition of these approaches is that they provide succinct specifications
because finitary properties written in LTL directly are verbose. For example, the finitary
property “a holds for 100 steps” is equivalent to an LTL formula with a conjunction of 100

terms: a AXa A---A(X...Xa).
99 times

4.5.2 Best-effort Guarantee

The definition of LTL-PAC (Definition 4.3.1) requires a reinforcement-learning algorithm to
learn a policy with satisfaction probability within e of optimal, for all e > 0. However, it is
possible to relax this quantification over € so that an algorithm only returns a policy with
the best-available € it finds.

For example, Ashok, Kfetinsky, and Weininger [19] introduced a reinforcement-learning
algorithm for LTL objectives in the Guarantee class. Using a specified time budget, the
algorithm returns a policy and an potential error interval e. Notably, it is possible for the

returned € to be 1, a vacuous bound on performance.

®There are two possible interpretations of the finite horizon in Jothimurugan, Alur, and Bastani [25].
The first interpretation is that the environment MDP inherently terminates and produces length-H sample
paths. The second interpretation is that the finite horizon H is part of the specification given by a user of
their approach. I used the second interpretation to classify their approach. The difference between the two
interpretations is only conceptual — if the environment inherently terminates with a fixed finite horizon H,
it would be equivalent to imposing a finite horizon H in the task specification.

65

4.5.3 Know More About the Environment

The definition of LTL-PAC (Definition 4.3.1) requires a reinforcement-learning algorithm
to provide a guarantee for all environments. However, on occasion, one can have prior
information on the transition probabilities of the MDP at hand.

For example, Fu and Topcu [14] introduced a reinforcement-learning algorithm with a
PAC-MDP guarantee that depends on the time horizon until the MDP reaches a steady state.
Given an MDP, this time horizon is generally unknown; however, if one has knowledge of
this time horizon a priori, it constrains the set of MDPs and yields an LTL-PAC guarantee
dependent on this time horizon.

As another example, Brézdil et al. [35] introduced a reinforcement-learning algorithm
that provides an LTL-PAC guarantee provided a declaration of the minimum transition

probability of the MDP. This constraint, again, bounds the space of considered MDPs.

4.5.4 Use an LTL-like Objective

Theorem 4.3.4 only considers LTL objectives. However, one opportunity for obtaining a
PAC guarantee is to change the problem: use an LTL-like specification language that defines

similar temporal operators but assigns them a different, less demanding semantics.

4.5.4.1 LTL Surrogate Objectives

One line of work [1, 2, 16, 17] uses LTL formulas as the objective, but also introduces
one or more hyper-parameters to relax the formula’s semantics. The reinforcement-learn-
ing algorithms in these works learn a policy for the environment MDP given fixed values
of the hyper-parameters. Moreover, as hyper-parameter values approach a limit point, the
learned policy becomes optimal for the hyper-parameter-free LTL formula.® The relation-
ship between these relaxed semantics and the original LTL semantics is analogous to the
relationship between discounted and average-reward infinite-horizon MDPs. Specifically,
the relaxed semantics (resp. discounted MDPs) approaches the LTL semantics (resp. the
average-reward MDPs) in the limit of the hyper-parameter values (resp. discount factors)
as shown by Bozkurt et al. [1] (resp. Puterman [32]).

I classified Bozkurt et al. [1], Sadigh et al. [2], Hahn et al. [16], and Hasanbeig et al. [17] as

using LTL-like objectives, and explained my rationale of these classifications in Section 4.5.

®Hahn et al. [16] and Bozkurt et al. [1] showed that there exists a critical setting of the parameters *
that produces the optimal policy. However, A* depends on the transition probabilities of the MDP and is
therefore consistent with my findings.

66

4.5.4.2 General LTL-like Objectives

Prior approaches [15, 21, 23, 24] also use general LTL-like specifications that do not or are
not known to converge to LTL in a limit. For example, Camacho et al. [23] introduced the
reward-machine objective that uses a finite state automaton to specify a reward function.
As another example, Littman et al. [21] introduced geometric LTL. Geometric LTL attaches
a geometrically distributed horizon to each temporal operator. The learnability of these
general LTL-like objectives is a potential future research direction.

Littman et al. [21] introduced a discounted variant of LTL called Geometric LTL (GLTL).
A temporal operator in a GLTL formula expires within a time window whose length follows a
geometric distribution. For example, a GLTL formula F (1 goal is satisfied if the sample path
reaches the goal within a time horizon H, where H follows Geometric(0.1), the geometric
distribution with the success parameter 0.1. Since GLTL’s semantics is different from LTL’s
semantics, I classified this approach as using an LTL-like objective.

Li, Vasile, and Belta [15] introduced a LTL variant called Truncated-LTL (TLTL). A
TLTL formula, like a Bounded LTL formula [18], is decidable by a bounded-length prefix of
the input. Moreover, TLTL has a qualitative semantics in addition to the standard Boolean
semantics of LTL: the denotation of a TLTL formula maps a sample path of the environment
MDP to a real number that indicates the degree of satisfaction for the TLTL formula. Thus,
I classified this approach as using an LTL-like objective.

Giacomo et al. [24] introduced Restraining Bolts. A Restraining Bolts specification is a set
of pairs (¢;,1;), where each ¢; is an LTLf/LDLf formula, and r; is a scalar reward. An LTLf
formula is visuaully similar to an LTL formula; however, it is interpreted over finite-length
words instead of infinite-length words. LDLf is an extension of LTLf and is also interpreted
over finite-length words. ” Given an environment MDP, the approach checks each finite
length prefix of a sample path of the MDP against each ¢;, and if a prefix satisfies ¢;, the
approach gives the corresponding reward r; to the agent. The objective in Giacomo et al.
[24] is to maximize the discounted cumulative rewards produced by the Restraining Bolts
specification. To the best of my knowledge, this objective is not equivalent to maximizing
the satisfaction of an LTL formula. Nonetheless, a Restraining Bolts specification can be
seen as an LTL-like specification for its use of temporal operators. Therefore, I classified this
approach as using an LTL-like objective.

Camacho et al. [23] introduced reward machine. A reward machine specification is a
deterministic finite automaton equipped with a reward for each transition. The objective

in Camacho et al. [23] is to maximize the discounted cumulative rewards produced by the

"LDL{ is more expressive than LTLf [30]. In particular, LTLf is equally expressive as the star-free subset
of regular languages while LDLf is equally expressive as the full set of regular languages.

67

reward machine specification. Camacho et al. [23] showed that LTL objectives formulas in
the Guarantee or Safety class are reducible to reward machine objectives without discount
factors. However, since the approach maximizes discounted cumulative rewards in practice,
it does not directly optimize for the LTL objectives in the Guarantee or Safety classes.®

Therefore, I classified this approach as using an LTL-like objective.

4.6 Concurrent Work

Concurrent to this work, Alur et al. [27] developed a framework to study reductions between
reinforcement-learning task specifications. They looked at various task specifications, includ-
ing cumulative discounted rewards, infinite-horizon average-rewards, reachability, safety, and
LTL. They thoroughly review previous work concerning reinforcement learning for LTL ob-
jectives, which I also cite. Moreover, Alur et al. [27, Theorem 8] states a seemingly similar

result as the forward direction of Theorem 4.3.4:
There does not exist a PAC-MDP algorithm for the class of safety specifications.

Despite the parallels, there is a crucial difference and two nuances between my work and
theirs, which I discuss in detail below.

Firstly and most importantly, their theorem is equivalent to “there exists a safety spec-
ification that is not PAC-learnable.”, whereas Theorem 4.3.4 works pointwise for each LTL
formula, asserting “all non-finitary specifications are not PAC-learnable.” The proof of their
theorem gives one safety specification and shows that it is not PAC-learnable.” On the other
hand, the proof of the forward direction of Theorem 4.3.4 constructs a counterexample for
each non-finitary formula. This point is crucial since it allows me to precisely carve out the
PAC-learnable subset, namely the finitary formulas, from the LTL hierarchy. Secondly, their
notion of sample complexity is slightly different from mine. In particular, they formulated
a reinforcement learning algorithm as an iterative algorithm. At each step, the iterative
algorithm outputs a policy 7”. Then, their notion of sample complexity is the total number
of non-e-optimal policies produced during an infinitely long run of the learning algorithm:
‘{n | Ve < Vige — e}’ On the other hand, my notion of sample complexity is the num-

ber of samples required until the learning algorithm outputs e-optimal policies. However,

8By their reduction, as the discount factor approach 1 in the limit, the learned policy for the reward
machine becomes the optimal policy for given guarantee or safety LTL objective. Therefore, Camacho et
al. [23] can also be classified as using an LTL surrogate objectives (for the subset of guarantee and safety
objectives. Nonetheless, I classified this approach to the general LTL-like objectives category because reward
machine objectives are more general than LTL objectives.

9Their result is similar to what I showed in Section 4.3.3.2, where I consider the particular guarantee
formula F gg and show that it is not PAC-learnable.

68

this difference is orthogonal to the core issue caused by infinite-horizon LTL formulas. In
particular, I can adapt my theorem and proof to use their notion of sample complexity.

Thirdly, their definition of safety specification is equivalent to a strict subset of the
safety class in the LTL hierarchy that I consider. In particular, their safety specification is
equivalent to LTL formulas of the form G (a; Vas V- --V a,), where each a; € II is an atomic
proposition, with n = 0 degenerating the specification to T (the constant true).

Lastly, they consider only reinforcement-learning algorithms, whereas I consider the
slightly more general planning-with-generative-model algorithms. I believe their theorem

and proof can be modified to accommodate my more general algorithm definition.

4.7 Proofs

4.7.1 Proof of Lemma 4.3.5

To the end of proving Lemma 4.3.5, I first observe the following proposition:

Proposition 4.7.1. For any non-Markovian policy m, the satisfaction probabilities for M,
and My sum to one:

V_/\7T/ll7£90 + V_/\7T/127&'90 — 1
I give a proof of Proposition 4.7.1 in Section 4.7.2.

Proof of Lemma 4.5.5. Note that the optimal satisfaction probabilities in both M; and M,
is one, that is, V/C;,ggo = 1. This is because the policy that always chooses a; in M; guarantees
visitation to the state gy. Therefore, a corollary of Proposition 4.7.1 is that for any policy
7 and any € < %, the policy 7 can only be e-optimal in one of M; and M,. Specifically, I

have:
L{(Vig e = Ve —)} + 1{(Vigen > Vi e —€)} < 1. (4.5)

Consider a specific sequence of transitions T" of length N sampled from either M; or M.
If n(T) = 0, the probability of observing 7" in M equals to the probability of observing T
in M, that is:

Py a8 (T=T [n(T) =0)
= Promaas), (T=T[n(T)=0).

This is because the only differences between M; and Ms are the transitions ¢, — go and

q — ho, and conditioning on n(7T") = 0 effectively eliminates these differences.

69

Therefore, I can write the sum of (; and (, as:

G+ G=) Pr(T=T|n(T)=0)x
vT

L * L o
(VA8 2 Vi e —)1+ (VD 2 Vil —)})

Plugging in Equation (4.5), I get

G+¢<1
This then implies that min(¢, () < %

4.7.2 Proof of Proposition 4.7.1

Proof. 1 first focus on M;. Consider an infinite run 7 = (s, ag, $1, a1, .. .) of the policy 7 on
M. Let 7[:d] denote the partial history up to state s;; let w denote all the states (so, s1,. ..)
in 7. Let E; denote the event that the visited state at step 4 is either gq or ho: w(i] € {go, ho}-

I have:

V/Ch,{gO = P(£ (w) E Fgo)
=Y P(L(w)FFgo|Ei)-P(E)
i=1
Given that F; happens, the previous state w[i — 1] must be ¢. Then, the probability of

satisfying the formula given the event E; is the probability of the learned policy choosing a,

from the state g; after observing the partial history 7[i — 1]:

Ve = f}P(w (li-1) = | B) - P(E). (4.6)
Symmetrically for My I then have:

Viien = 3P (i = 1) = aa | B,) - P(E). (4.7)

For any policy and any given partial history, the probability of choosing a; or a; must

sum to 1, that is:

P(r(rli—1]) =a1 | E;)+P(n(r[i—1]) =ax | E;) =1

70

Therefore, I may add Equation (4.6) and Equation (4.7) to get:
V/(r/tl’ggo + V/(r/t%ggo - Z]_ . P(EZ>
i=1

Finally, since the event E; must happen for some finitary ¢ with probability 1 (i.e., either
go or hg must be reached eventually with probability 1), the expression on the right of the

equation sums to 1. (]

4.7.3 Complete Proof of Lemma 4.3.6

Proof. First, consider M;. I will derive a lower bound for N. I begin by asserting that the
inequality of Equation (4.2) holds true for a reinforcement-learning algorithm A = (A5, A%).
That is:
L *
Pr(Vih = Vi oo —€) 214

I expand the left-hand side by conditioning on n(7") = 0:

)

L *
Pr(Vi e = Vi, e — € | n(T) = 0)Pr(n (T) = 0)+

L *
Pr(Vit e = Vi g — ¢ [n(T) > 0) (1= Pr(n(T) =0))

»

Since PT<VAJ§(E,(5T9)0 >1—€

n(T) > O) < 1, I may relax the inequality to:
(I =C)Pr(n(T) =0) <4,

where I also plugged in my definition of (; (see Lemma 4.3.5). This relaxation optimistically
assumes that a reinforcement-learning algorithm can learn an e-optimal policy by observing
at least one transition to gy or hy.

Since there are at most NV transitions initiating from the state ¢;, and n(7") = 0 only occurs
when all those transitions end up in gz, I have Pt(n (T) = 0) > (1 — p)". Incorporating this
into the inequality I have:

1-G)a-p" <o

Symmetrically, for My I have:
1-¢)A-pY<e

71

Since both inequalities need to hold, I combine them to choose the tighter inequality:

(1—min (¢1,G)) (1 —p)¥ <.

By applying Lemma 4.3.5, I remove the inequality’s dependence on (;, and get the desired

lower bound of loa(26
N> 108(20)
log (1 —p)
which completes the proof of Lemma 4.3.6. [

4.7.4 Uncommittable Words for non-Finitary Formulas

In this section, I prove the following lemma:

Lemma 4.7.2. Any LTL formula ¢ € Guarantee has an uncommittable accepting word. Any

LTL formula ¢ ¢ Safety has an uncommittable rejecting word.

4.7.4.1 Preliminaries

I will review some preliminaries to prepare for my proof of Lemma 4.7.2.
I will use an automaton-based argument for my proof of Lemma 4.7.2. To that end, I

recall the following definitions for automatons.

Deterministic Finite Automaton A deterministic finite automaton (DFA) is a tuple
(S, A, P, So, Sacc), where (S, A, P, so) is a deterministic MDP (i.e., P degenerated to a deter-

ministic function (S x A) — 5), and s, € S is an accepting state.

Deterministic Rabin Automaton A deterministic Rabin automaton (DRA) is a tuple
(S,I1, T, sg, Acc), where

o Sis a finite set of states.

o II is the atomic propositions of ¢.

o T is a transition function (S x 211) — S.
e Sp € S is an initial state.

o Acc is a set of pairs of subsets of states (B;, G;) € (2°)2.

72

An infinite-length word w over the atomic propositions II is accepted by the DRA, if
there exists a run of the DRA such that there exists a (B;, G;) € Acc where the run visits
all states in B; finitely many times and visits some state(s) in G; infinitely many times.

For any LTL formula ¢, one can always construct an equivalent DRA that accepts the

same set of infinite-length words as ¢ [50].

4.7.4.2 Proof of Lemma 4.7.2 for ¢ ¢ Guarantee

Given an LTL formula ¢, I first construct its equivalent DRA R = (S, 11, T, sq, Acc) [50].

A path in a DRA is a sequence of transitions in the DRA. A cycle in a DRA is a path
that starts from some state and then returns to that state. A cycle is accepting if there exists
a pair (B;, G;) € Ace, such that the cycle does not visit states in B; and visits some states in
G;. Conversely, a cycle is rejecting if it is not accepting. With the above definitions and to

the end of proving Lemma 4.7.2 for the case of ¢ & Guarantee, I prove the following lemma.

Lemma 4.7.3. For any LTL formula ¢ ¢ Guarantee and its equivalent DRA R, it must be
the case that R contains an accepting cycle that is reachable from the initial state and there

exists a path from a state in the accepting cycle to a rejecting cycle.

Proof. Suppose, for the sake of contradiction, there does not exist an accepting cycle that
1. is reachable from the initial state and 2. has a path to a rejecting cycle in the equivalent
DRA R. Then there are two scenarios:

e R does not have any accepting cycle that is reachable from the initial state.

o All accepting cycles reachable from the initial state is not reachable to a rejecting cycle.

For the first scenario, R must not accept any infinite-length word. Therefore ¢ must be
equal to F (i.e., the constant falsum). However, F is in the Finitary LTL class, which is a
subset of Guarantee, so this is a contradiction.

For the second scenario, consider any infinite-length word w. Consider the induced infinite
path P = (sg, w[0], sy, w[1],...) by w on the DRA starting from the initial state s.

If ¢ accepts the word w, the path P must reach some state in some accepting cycle.

Conversely, if ¢ rejects the word w, the path must not visit any state in any accepting
cycle. This is because otherwise the path can no longer visit a rejecting cycle once it visits
the accepting cycle, thereby causing the word to be accepted.

Therefore, ¢ accepts the word w as soon as the path P visits some state in some accepting
cycle. This degenerates the DRA to a DFA, where the accepting states are all the states in
the accepting cycles of the DRA. Then, an infinite-length word w is accepted by ¢ if and
only if there exists a prefix of w that is accepted by the DFA.

73

By the property of the Guarantee class (see Section 4.2.3), for ¢ € Guarantee, there exists
a language of finite-length words, L, such that w F ¢ if L accepts a prefix of w [43]. Since a
DFA recognizes a regular language, the formula must be in the Guarantee LTL class. This
is also a contradiction.

Therefore, there must exist an accepting cycle that is reachable from the initial state
and has a path to a rejecting cycle in the equivalent DRA. This completes the proof of
Lemma 4.7.3 O

I am now ready to give a construction of w,, wy, w. and w, that proves Lemma 4.7.2 for
¢ &€ Guarantee. Consider the equivalent DRA R of the LTL formula. By Lemma 4.7.3, R
must contain an accepting cycle that is reachable from the initial state and has a path to a

rejecting cycle. I can thus define the following paths and cycles:

o Let P, be the path from the initial state to the accepting cycle.

o Let P, be the accepting cycle.

o Let P. be a path from the last state in the accepting cycle to the rejecting cycle.
o Let P, be the rejecting cycle.

For a path P = (s;,w[i],...s;,w[j], sj41), let w(P) denote the finite-length word consisting
only of the characters in between every other state (i.e., each character is a tuple of truth

values of the atomic propositions): w(P) = wli]...w[j]. Consider the assignments of w, =
w(P,), wy = w(Pp), we = w(P.) and wy = w(P,). Notice that:

o The formula ¢ accepts the infinite-length word [w,; w"] because P is an accepting cycle.

o« The formula ¢ rejects all infinite-length words [wq; wi; we; wg] for all i € N because P? is

a rejecting cycle.

By Definition 4.3.7, the infinite-length word [w,;w;’] is an uncommittable accepting word.

This construction proves Lemma 4.7.2 for ¢ & Guarantee.

4.7.4.3 Proof of Lemma 4.7.2 for ¢ ¢ Safety

The proof for ¢ & Safety is symmetrical to ¢ ¢ Guarantee, which I give below for completeness.
Given an LTL formula ¢, I again first construct its equivalent DRA R = (S, 11, T', so, Acc).
To the end of proving Lemma 4.7.2 for the case of ¢ ¢ Safety, 1 state and prove the

following lemma.

74

Lemma 4.7.4. For any LTL formula ¢ & Safety and its equivalent DRA R, it must be the
case that R contains a rejecting cycle that is reachable from the initial state and has a path

from any state in the rejecting cycle to an accepting cycle.

Proof. Suppose, for the sake of contradiction, there does not exist a rejecting cycle that 1. is
reachable from the initial state and 2. has a path to an accepting cycle in the equivalent
DRA R. Then there are two scenarios:

e R does not have any rejecting cycle that is reachable from the initial state.
o All rejecting cycles reachable from the initial state is not reachable to an accepting cycle.

For the first scenario, R must not reject any infinite-length word. Therefore ¢ must be
equal to T (i.e., the constant truth). However, T is in the Finitary LTL class, which is a
subset of Safety, so this is a contradiction.

For the second scenario, consider any infinite-length word w. Consider the induced infinite
path P = (sg, w[0], sy, w[1],...) by w on the DRA starting from the initial state s.

If ¢ rejects the word w, the path P must reach some state in some rejecting cycle.

Conversely, if ¢ accepts w, the path must not visit any state in any rejecting cycle. This
is because otherwise the path can no longer visit a accepting cycle once it visits the rejecting
cycle, thereby causing the word to be rejected.

Therefore, ¢ rejects the word w as soon as the path P visits some state in some rejecting
cycle. I can again construct a DFA based on the DRA by letting the accepting states be all
the states except those in a rejecting cycle of the DRA. By this construction, ¢ accepts an
infinite-length word w if and only if the DFA accepts all finite-length prefixes of w.

By the property of the Safety class (see Section 4.2.3), for ¢ € Safety, there exists a
language of finite-length words, L, such that w E ¢ if L accepts all prefixes of w [43]. Since
a DFA recognizes a regular language, the formula must be in the Safety LTL class. This is
also a contradiction. Therefore, there must exist a rejecting cycle that is reachable from the
initial state and has a path to an accepting cycle in the equivalent DRA. This completes the
proof of Lemma 4.7.4 O

I am now ready to give a construction of w,, wy, w, and wy that proves Lemma 4.7.2
for ¢ & Safety. Consider the equivalent DRA R of the LTL formula. By Lemma 4.7.4, R
must contain a rejecting cycle that is reachable from the initial state and has a path to an

accepting cycle. I can thus define the following paths and cycles:
o Let P, be the path from the initial state to the rejecting cycle.

e Let P, be the rejecting cycle.

5

Objectives

LTL

cp ol tx

02
~Finitary LTL

o5
o4
o3

o6

Figure 4.5: Landscape of objectives’ learnability up to the current chapter. Dashed cir-
cle: LTL objectives; Gray area: infinite-horizon LTL objectives, not PAC-learnable. Green
slanted area: finitary LTL objectives, PAC-learnable. Empty area: objectives not expressible
by LTL formulas.

o Let P. be a path from the last state in the rejecting cycle to the accepting cycle.
o Let Py be the accepting cycle.

Consider the assignments of w, = w(P,), w, = w(P,), w. = w(P,) and wy = w(Py). Then

we have the following facts:
o The formula ¢ rejects the infinite-length word [w,; w"] because PP is a rejecting cycle.

o The formula ¢ accepts all infinite-length words [w,; wi; w.; w¥] for all i € N because P?

is an accepting cycle.

By Definition 4.3.7, the infinite-length word [w,;w;’] is an uncommittable rejecting word.

This construction proves Lemma 4.7.2 for ¢ & Safety.

4.8 Chapter Summary

Figure 4.5 summarizes the landscape of example objectives’ learnability up to the current
chapter. The objectives 01, 02, 05, cp, mc, pd, tx are expressible as LTL objectives.
Among them, 02 and 05 are in the finitary LTL class, and reinforcement learning exists
that learns near-optimal policies for them with high probability. On the other hand, o1,

cp, mc, pd, tx are not in the finitary LTL class. For these objectives, the core result in

76

this chapter implies that no reinforcement learning can learn near-optimal policies with high
probability. Particularly for standard benchmark reinforcement-learning objectives such as
the cart-pole (cp), mountain-car (mc), pendulum (pd), and taxi (tx) objectives, albeit
many reinforcement-learning algorithms empirically produce policies that perform well in
the benchmark environment for each of these objectives, our core results suggests that no
reinforcement learning algorithm can produce near-optimal policies with a high probability
guarantee in an arbitrary unrestricted environment. For example, if the cart-pole happens
on a planet with unknown laws of physics, no reinforcement learning algorithm can learn
near-optimal policies with high probability. For other objectives, such as 04 and 03, they
are not expressible by LTL formulas — I discuss these objectives in the following chapters.

In this chapter, I have formally proved that infinite-horizon LTL objectives in reinforce-
ment learning cannot be learned in unrestricted environments. By inspecting the core result,
I have identified various possible directions forward for future research. My work resolves
the apparent lack of a formal treatment of this fundamental limitation of infinite-horizon
objectives, helps increase the community’s awareness of this problem, and will help organize

the community’s efforts in reinforcement learning with LTL objectives.

7

78

Chapter 5

On the Learnability of Computable
Objectives

In Chapter 4, I have shown that only finitary LTL objectives — those that require inspecting
only a finite number of trajectory steps to determine if the trajectory satisfies the objective
— are PAC-learnable.

5.1 Overview

A natural question is if we may generalize this result to other objectives: What other kinds
of objectives are PAC-learnable?

Recall the gridworld example objectives in Chapter 1, repeated at Table 5.1 for conve-
nience. In particular, consider the objectives 02 and 03. The objective 02 requires reaching
the goal but avoiding water within a fixed number of steps. In Chapter 4, I have estab-
lished that this objective is PAC-learnable. On the other hand, the objective 03 is similar
to 02: instead of a fixed number of steps, the objective 03 requires reaching the goal within

a geometrically distributed number of steps. The geometric distribution has a known finite

Example Gridworld Objectives

ol | Reach goal without stepping on water
02 | Do ol within n = 15 steps w
03 | Do ol within n ~ Geom() steps
04 | Do ol, then retrace the steps back
05 | Do 04 within n = 30 steps S
06 | Repeat 04 forever

Table 5.1: Example gridworld objectives repeated from Table 1.2.

79

expected value — so intuitively, we require the agent to perform the task within a finite
number of steps on average. Therefore, we expect that 03 is also PAC-learnable because
it is similar to 02 in that it does not require inspecting an infinite number of steps of the
trajectory. To see this later fact, recall that the geometric distribution assigns a zero proba-
bility to the event that requires an infinite number of steps. Despite the similarity, 03 is not
an LTL objective: An LTL objective is a deterministic Boolean function over trajectories,
but 03 is a function that maps from trajectories to real numbers in [0, 1], where the value is
the probability value of satisfying the task within the geometrically distributed number of
steps. Hence, the results in Chapter 4 do not directly apply to the objective 03.

In this chapter, I will show that the objective 03 is PAC-learnable. The conventional
approach to proving the PAC-learnability of an objective is to design a reinforcement learn-
ing algorithm that learns a near-optimal policy for the objective. However, this approach
requires reasoning about the environment, the policy, and the algorithm. Instead, I estab-
lish a general condition that any continuous and computable objective is PAC-learnable. In
particular, I prove that any continuous objective is PAC-learnable in the sample sense, and
any computable objective is PAC-learnable in the computational sense.

This condition simplifies proving PAC-learnability of objectives: It avoids reasoning about
the environment, the policy, and the algorithm but only requires reasoning about the objec-
tive itself. Further, this condition provides an approach to learning a near-optimal policy
for any computable objective with a PAC guarantee.

In the following section, I will use objective 03 as an example to illustrate this approach.

5.1.1 Example

Consider the objective 03 “reach the goal and avoid water within a geometrically distributed
number of steps.” As mentioned above, this objective is not an LTL objective; however, it
also does not require inspecting an infinite number of trajectory steps to determine if the tra-
jectory satisfies the objective. This property of “not requiring inspecting an infinite number
of steps of a trajectory” is formally capturable by the notion of computability in computabil-
ity theory — in particular, Type-2 computability theory, a generalization of computability
theory to infinite objects.

A formal connection requires formalizing the objective as a function from trajectories to
real numbers. It turns out that this objective falls into a class of known objective functions
in the literature, called geometric linear temporal logic (GLTL) objectives [21]. The main
chapter will show that this class of objectives is computable and use the core condition to

prove that it is PAC-learnable. However, for this overview and to avoid introducing much

80

technical machinery early on, I here formally define this objective in the following way: First,
draw a geometrically distributed number of steps T" from the geometric distribution with the
parameter p = %5 Then, consider the finitary LTL objective that requires reaching the goal
and avoiding water within 7" steps. The objective 03 is formally defined as maximizing the
probability of satisfying this finitary LTL objective.

Next, I will use this example objective to illustrate the core condition.

5.1.2 Continuity and Computability

Continuity and computability are two key properties of objectives that I will use to establish
the core condition. They are also related to each other: A classic result in computabil-
ity theory states that any computable objective is continuous [51]. So, computability is a
stronger condition than continuity. In the following overview, I will first define these two
properties informally and illustrate the definitions with the example objective 03, which

formal treatment will follow in the main chapter.

Continuity A function is continuous if small variations in the input result in small vari-
ations in the output. Since objectives are functions from trajectories to real numbers, a
continuous objective maps from trajectories to real numbers, and small variations in the in-
put trajectory result in small variations in the output real value. In particular, by a standard
metric space definition over trajectories, which I cover in the main chapter, two trajectories
has a small variation of ¢ — formally speaking, e-close — if they share a common prefix of
length T = —log,(€). In words, the longer the common prefix of two trajectories, the closer
they are to each other in this metric space.

Our example objective 03 is, in fact, continuous under this definition. Consider two
trajectories that share a common prefix of length 7". Then, the value of this objective on the
two trajectories differs by at most (1 — p)?. To see this, recall that the probability of the
objective requesting a horizon of more than T steps is exactly (1 — p)T. For horizons less
than 7', the two trajectories are identical, so the probability of satisfying the objective on the
two trajectories is the same. The two trajectories differ for horizons larger than T', but the
probability of that happening is at most (1 — p)T. Therefore, for any two trajectories that
share a common prefix T (i.e., they are e-close, where e = 271, the probability of satisfying
the objective on the two trajectories differs by at most (1 — p)?. In particular, since 1 — p is
less than one, this exponential dependence on 7" implies that the closer the two trajectories
are to each other, the closer the objective values on the two trajectories are to each other.

Therefore, the objective 03 is continuous.

81

def reach_no_water_geom(traj: Iterator[State], T: int) -> Rational:
return all(traj[:T] is not water) and any(traj[:T] is goal)

Listing 5.1: Psuedocode of the objective 03 up to a finite number of steps 7T'.

Computability A computable objective is one that a computer program can compute.
However, since the objective is a function from trajectories to real numbers, and each tra-
jectory is an infinite sequence of states and actions, and real numbers are uncountable, both
the domain and codomain of the objective are infinite objects that cannot be stored in a
finite amount of memory or computed in a finite amount of time. Therefore, the notion of
computability requires a generalization of computability theory to infinite objects, provided
by a branch of computability theory called Type-2 computability theory [51].

In Type-2 computability theory, an objective is computable if a computer program com-
putes the function in the streaming sense. Specifically, the program reads from an infinite
stream of states and writes to an infinite stream of rational outputs. The program runs
forever, reading infinitely many inputs and writing infinitely many outputs. In the limit,
the output rational numbers converge to the real-valued output of the objective function.
Equivalently, the program computes the objective function if it computes an arbitrary ap-
proximation to the objective function on finite prefixes of the trajectory, that is: For any
finite prefix of the trajectory, the program computes an output that is within the speci-
fied precision of the true output, and the number of steps required to obtain the output is
computable from the precision. Computability is a stronger condition than continuity: A
computable objective is always continuous.

In our example, the objective 03 is both continuous and computable. Specifically, for an
arbitrary precision €, we can compute the number of steps 7T required to obtain an output
within € of the true output. Then, we can compute the finitary LTL objective that requires
reaching the goal and avoiding water within 7" steps. To see this, consider the computation
in Listing 5.1 that reads from a stream of states and actions, and checks if the trajectory
satisfies “reach the goal and avoid water within 7" steps.” If we run this computation for
some input 7" and compare it to the true output of the objective, we will find that the output
differs by at most (1 —p)T to the true output because the probability of requiring more than
T steps is exactly (1 — p)?, and even though our computation is potentially wrong for any
case where the true objective requires more than 7T steps, the probability of that happening
at most (1 — p)?, and since the objective’s value is between 0 and 1, the error is at most

(1 —p)". Therefore, for any precision €, we can choose T' = log(;_,,(€) such that the error

82

. PAC-learnable
Continuous =——————

(sample sense)

oR— =
sB, \ S
< =
.2 i
2z Theorem 5.3.8 =
o [
¥ <
<

O« 2

PAC-learnable
computational sense)

Computable =—— (

Figure 5.1: Conditions for PAC-learnability

is less than €. By running the computation in Listing 5.1 for T" steps, we obtain an output

within € of the true output.

5.1.3 PAC-learnability

I next show that the objective 03 is PAC-learnable.

Recall from Chapter 3 that PAC-learnability requires learning a near-optimal policy
with high probability. Since the objective is computable, we can compute an arbitrary
approximation to the objective function. Thus, we can use the computation in Listing 5.1 as
an approximation to the objective function. By learning a policy for this approximation, we
can ensure that this learned policy is also near-optimal for the true objective. In particular,
suppose we would like to learn a policy that is e-optimal with probability 1 — §. Then, we
choose T' = log(lfp)(g) such that the error of the approximate computable objective is less
than §. We then follow the same approach as in Chapter 4 to reduce the problem of policy
learning for the computable approximate objective, equivalent to a finitary LTL objective,
to the problem of policy learning for a finite-horizon cumulative rewards objective. Same as
in Chapter 4, we can use a reinforcement learning algorithm such as the ORLC algorithm
provided by Dann et al. [38] for finite-horizon cumulative reward objectives to learn a near-
optimal behavior for this reward objective up to precision § with probability 1 — 4. By
combining the two errors, each less than 5, we obtain tha a learned policy through such an
approach is e-optimal for the original objective 03 with probability 1 — 4.

The overall approach above applies not only to the example objective 03, but to any
continuous or computable objective. In the following sections, I will show that a continuous
objective is PAC-learnable in the sample sense and a computable objective is PAC-learnable
in the computational sense. Figure 5.1 summarizes these conditions, the relationship be-
tween continuity and computability as discussed above, and the relationship between PAC-

learnability in the sample and computational sense. In the following sections, I formally

establish the arrows in Figure 5.1. In Section 5.4, I will apply these conditions to three

83

classes of objectives and show that they are PAC-learnable.

5.2 Type-2 Computability Theory

Computabilty theory is a foundational concept in computer science, and it provides a the-
oretical framework for understanding the limits of computation. In this chapter, I reveal
a connection between reinforcement learning objectives and computability, and this sec-
tion provides an overview of the key concepts in Type-2 computability theory, focusing on
computability over infinite objects, such as infinite sequences and real numbers. This sec-
tion’s material closely follows the exposition in Weihrauch [51], which comprehensively treats

Type-2 computability theory.

5.2.1 Ordinary Computability

Computability theory studies the notion of computable functions, which are functions that
a computer program can compute. Before introducing Type-2 computability theory, which
extends the notion of computability to infinite objects, I first review the standard notion of
computability over finite objects.

I use the widely accepted notion of computability over finite objects such as N, Q, ¥*: A
function mapping between these objects is computable iff a program in a Turing-complete
programming language supporting types of these objects computes that function. Type-
2 computability theory extends this notion to functions over uncountable objects, such as
infinite sequences and real numbers, which will be relevant in the thesis. However, to provide
a soft introduction to Type-2 computability theory, I first briefly review the standard notion
of computability over finite objects based on Turing machines.

The ordinary notion of computability, or Type-1 computability, considers functions over
finite objects, such as integers, rationals, or finite-length words. In the following overview,
I assume familiarity with the standard definition of an ordinary Turing machine and its
operation on finite-length words.

Let ¥ be a finite set of symbols called an alphabet, and let ¥* denote the set of all
finite-length words over . A function mapping between finite-length words f: >* — »* is
computable if there exists a Turing machine that computes f, meaning the Turing machine

halts on input = and outputs f(z) for all z € X*.

Notations Computability over other countable sets, such as integers or rationals, is defined

in terms of naming elements of these finite-length words using a notation function. A notation

84

for a set M is a partial surjective function v C ¥* — M.

Computability under Notations For a single argument function f: M — N, the func-
tion is computable under notations v, and vy if there is a computable function ¢: >* — »*
such that

fva () = vn(o(x))

for all € ¥* such that f(vy(x)) is defined. Intuitively, the definition says that a function
is computable if there is a computable function that maps the notation of an element in M
to the notation of the corresponding element in N. The Turing machine that computes f
still transforms from finite-length words to finite-length words, and the user interprets the
input and output as elements of M and N, respectively.

More broadly, a k > 0 argument function f: (M; X ... x M) — N is computable under

notations vy, ...vy, and vy if there is a computable function ¢: (E*)]c — 2 such that

fwan (1), .. v, (zr)) = v (P, . .., xk))

for all @1, ..., 2z, € ¥* such that f(vp, (21),..., v, (x)) is defined.

Pseudocode to Represent Computable Functions As mentioned, since computability
over finite objects such as N, Q, >* is well-understood, in the thesis, I use the widely accepted
notion of computability over finite objects to avoid explicitly reasoning about Turing ma-
chines and notations: A function mapping between these objects is computable if there is a
program in a Turing-complete programming language that computes the function.

In particular, throughout the thesis, I use a Python-like pseudocode to represent com-
putable functions. I assume standard support for finite objects such as integers, rationals, and
finite-length words (lists) in this language. I also assume standard computable functions over
these objects, such as arithmetic operations, indexing, and iteration. I intentionally avoid
imprecise data types, such as floating-point numbers, to ensure the pseudocode matches the

theoretical Type-1 computability definition.

5.2.2 Type-2 Computability

In this thesis, I discuss reinforcement-learning objectives as functions from trajectories, which
are infinite-length words, to real numbers. Therefore, notions of computability on such
uncountable objects become essential. Type-2 computability theory extends the classical
notion of computability to functions over uncountable objects, such as infinite sequences or

real numbers. This section provides a brief overview of Type-2 computability theory.

85

def finite_discounted_sum(w: List[Rational], gamma: Rational = 0.9) -> Rational:
"""Compute the discounted sum of the input sequence."""
s: Rational = 0
for i, x in enumerate(w):
s += (gamma ** i) * x

return s

def sum(w: List[Rational]) -> Rational:
"""Compute the sum of the input sequence.
return discounted_sum(w, 1)

nnn

Listing 5.2: Example pseudocode of a computable over finite objects.

Uncountable objects are infinite by their nature: Since there is no surjective function from
such objects to the finite-length words ¥*, they are not representable by a finite sequence
of finite-length words, but only by an infinite sequence of finite-length words. Consequently,
each object is not storable in a finite Turing machine’s tape segment.

No physical device can store uncountable objects or perform infinite computations within
finite time. However, the key insight of Type-2 computability is that a computer can operate
on finite segments of inputs and compute corresponding finite segments of outputs. Thus,
the notion of computability over infinite objects reduces to computability over sequences of

finite objects representing these infinite objects in the limit.

5.2.2.1 Computability over Infinite-length Words

A Type-2 Turing machine is a Turing machine that operates on infinite-length words. Specif-
ically, it has £ € N input tapes, a finite number of work tapes, and one output tape. The
input tapes are read-only, and the output tape is write-only.

Unlike ordinary Turing machines, a Type-2 Turing machine never halts: It reads the
infinite-length inputs from input tapes and runs the computation forever, writing the output
to the output tape. We say a infinite-length word function f: (¥¢ x .-+ x ¥¢) — ¥ is
computable if there is a Type-2 Turing machine that, given wy,ws,...,w, € X% as input,
computes forever and writes y = f(wq, ws, ..., wg) € X to the output tape.

An infinite-length word z € X% is computable iff the constnat function with zero number

of inputs f() = x is computable.

5.2.2.2 Computability over General Sets

Just like computability over general countable sets is defined in terms of naming elements of

finite-length words using a notation function, computability over general uncountable sets is

86

defined in terms of naming elements of infinite-length words using a representation function.

Representations A representation for a set M is a partial surjective function v C X —
M. A function f: M — N is computable under representations vy, and vy if there is a

computable function ¢: X¢ — X such that

fvn(z)) = vy (6(2))

for all z € ¥ such that f(vy(x)) is defined. Intuitively, the definition says that a function
is computable if there is a computable function that maps the representation of an element
in M to the representation of the corresponding element in N. The Type-2 Turing machine
that computes f still transforms from infinite-length words to infinite-length words, and the

user interprets the input and output as elements of M and N, respectively.

Computability under Representations More broadly, a £ > 0 argument function
f:(My x...x M) — N is computable under representations vy, ... vy, and vy if there is
a computable function ¢: (Z‘“)k — X% such that

f(VM1(171), s ’VMk(xk)> - VN(¢(x17 s 7$k))

for all @y, ...,z € B¢ such that f(vag (21), ..., v, (2x)) is defined.

5.2.2.3 Computability over Real Numbers

The real numbers R are uncountable, thus necessitating a representation function to define
computability over them. In the thesis, I will use the most useful representation of real
numbers, the fast-converging Cauchy representation. This representation is useful because
practically relevant real functions are computable under this representation — I discuss some
example functions after the definition.

The fast-converging Cauchy representation of a real number x € R is a sequence of

rational numbers (g,)nen such that
VneN, |z—g,| <27 (5.1)

Since rational numbers are countable, they can be represented by finite-length words on a
tape, for example, by representing the numerator and denominator of the rational number

in binary. Therefore, the fast-converging Cauchy representation of a real number maps an

87

def every_other(w: Iterator[A]) -> Iterator[A]:
"""Output every other element of the input infinite-length word."""
for i, x in enumerate(w):
if 1 % 2 ==
yield x

Listing 5.3: Example pseudocode of a computable function over infinite-length words.

Real = Iterator[Rationall

def discounted_sum(w: Iterator[Rational], gamma: Rational = 0.9) -> Real:
"""Compute the discounted sum of an infinite stream of rational numbers in [0, 1]."""
for i in count(0):
n = (log2floor(l - gamma) - i) / log2ceil (gamma)
yield finite_discounted_sum(list(islice(w, n)), gamma)

Listing 5.4: Example pseudocode of a computable over infinite objects.

infinite sequence of rationals — each encoded as a finite-length word — converging to that
real number in the limit.

Since I will be concerned with only the fast-converging Cauchy representation of real
numbers, by computable fundamental functions, I mean real functions that are computable
under the fast-converging Cauchy representation. A real number z € R is computable if the
constant function with zero number of inputs f() = x is computable.

As mentioned, many practical real functions are computable under the fast-converging
Cauchy representation. For example, the arithmetic operations +, —, X, +, exponentiation
x¥ for x,y € R, the elementary functions exp,log, sin, cos, and many continuous piecewise
functions such as min(z,y), max(z,y) and |z| are computable in Type-2 computability the-
ory. On the other hand, various common real functions are not computable. The following

classic result states the inherent non-computability of the equality and comparison functions.

Theorem 5.2.1 (Non-computability of Equality and Comparison [51, Theorem 4.1.16]).
There is no representation of the reals such that the functions 1. f(z,y) = 1{x =y} (equal-
ity) and 2. f(x,y) = 1{x <y} (comparison) are computable in Type-2 computability theory.

5.2.2.4 Psuedocode for Computable Functions over Infinite Objects

When proving the computability of a function over infinite objects, the Type-2 theoretical

approach is tedious to work with since it requires specifying the function on a Turing machine.

88

Therefore, in the case of computability over finite objects, to prove the computability of a
function over infinite objects, I avoid explicit reasoning about Type-2 Turing machines and
representations, Instead, I use pseudocode to formulate an algorithm that takes in infinite
streams of inputs w; ... wy and outputs an infinite stream.

Specifically, I use a Python-based pseudocode to represent computable functions over
infinite objects. In this language, I assume standard support for infinite objects, such as
infinite-length words and real numbers, and standard computable functions over these ob-
jects, such as arithmetic operations, indexing, and iteration.

Listing 5.3 provides an example of a Type-2 computable function that operates on infinite-
length words. Specifically, the function every_other takes an infinite-length word as input
and outputs an infinite-length word containing every other input element.

I use the type alias Iterator [A] to represent infinite-length words of type A, correspond-
ing to the mathematical notation A®. In this context, Python’s generator mechanism serves
as a natural representation for Type-2 computable functions, enabling functions to consume
and produce infinite objects by consuming and yielding elements one at a time. In particular,
each time a yield x statement is executed, the function emits an output x to the output
stream, and by repeatedly yielding outputs, it produces an infinite output stream.

Additionally, T use standard Python utilities, such as enumerate in this example, to
simplify the implementation. These utilities retain the semantics of their counterparts in
Python’s standard library. I provide a complete list of these utilities in Appendix A.

Listing 5.4 provides an example of a computable function mapping from an infinite
stream of rational numbers (w: Iterator[Rationall) and a rational number 7 (gamma:
Rational) to a fast-converging Cauchy represented real number. The function computes the
discounted sum of an infinite stream of rational numbers in [0, 1]. The type Real, as an alias
to Iterator [Rationall, indicates that the variable of this type is a real number represented
in the fast-converging Cauchy representation. However, this type hint is a notation of intent
rather than a guarantee. To rigorously establish that a function, such as discounted_sum,
is a Type-2 computable function that outputs a real number, it is necessary to prove that
the sequence of yielded outputs explicitly satisfies the fast-converging Cauchy representation
criteria. The proof must demonstrate that each rational number in the sequence converges
to the corresponding real number in the limit, as specified by the condition described in
Equation (5.1). For this example, the proof would involve showing that the sequence of
outputs converges to the discounted sum of the input sequence in the limit. To see this, note

that the maximum difference between the discounted sum in the limit and the ¢-th yielded

89

output is
(Llofg(l—('y))_]l—i) (logg(l—('y))—i)
o0 3 1 1
] ,yn(z) v oga (v 7y oga (v

= < =27
8 I—7 L=~

Therefore, the function discounted_sum is a Type-2 computable function that outputs the

discounted sum of the input sequence in the fast-converging Cauchy representation.

5.2.2.5 Computability Implies Continuity

A classic result in computability theory is that all computable functions are continuous [51].

In particular, I recall the following classic theorem:

Theorem 5.2.2 (Computability implies Continuity, [51, Corollary 3.1.2]). Fori =0...k,
let v; be representations of sets M;, and 1; be a topology on M;. If each v; is admissible with
respect to 1;, then every computable function f: (Myx...x My) — My under representations

Vi, ...,V Vo 1S continuous with respect to the topologies Ty, ..., Tk, To.

I only consider standard topologies in the spaces of interest: For example, the stan-
dard topology induced by d§2 for ¥® and the standard topology on R induced by the Eu-
clidean metric. Further, all representations I consider are admissible concerning the standard
topologies, such as the trivial identity representation of ¢ and the fast-converging Cauchy
representation of real numbers. Therefore, the precise definition of admissibility is only a
technicality that I omit here. For a precise definition, see Weihrauch [51, Chapter 3]. In
summary, all computable functions are continuous with respect to the standard topologies

of the spaces of interest.

5.3 Condition for PAC-Learnability

This section presents my main result: sufficient conditions for an objective’s learnability. The
first two subsections analyze learnability in the information-theoretic setting. Specifically, I
show that an objective given as an oracle is PAC-learnable if it is uniformly continuous. The
next two subsections analyze learnability in the computation-theoretic setting. Specifically,
using a standard result from computational analysis, I show that a computable objective
is PAC-learnable. Section 5.10 complements my result by showing that my conditions are

sufficient but not necessary.

5.3.1 Uniform Continuity

I first recall the following standard definition of a uniformly continuous function.

90

Definition 5.3.1 (Uniformly Continuous Function). A function f: X — Y with metric
spaces (X, dx) and (Y,dy) is uniformly continuous if, for any € > 0, there exists § > 0 so

that f maps 5-close elements in the domain to e-close elements in the image ' :

Ve > 0.0 > 0.Vx; € XV, € X :
dx<l'1,$2> <0= dY(f(xl)a f($2)) <e

To specialize the above definition to an objective, I next note the metric space of the
domain of an objective. An objective’s domain is the set of infinite-length sequences X<,
where X = (S x A) for an environment-specific objective and X = F' for an environment-
generic objective. The domain forms a metric space by the standard distance function
dxw (wy, wy) = 2~ Leretix(Wrw2) " where Lyrefix (w1, w2) is the length of the longest common prefix

of wy and wy [43]. T now specialize the definition of uniform continuity to objectives.

Definition 5.3.2 (Uniformly Continuous Objective). An objective (environment-specific or
environment-generic) f: X® — R is uniformly continuous if, for any € >0, there exists a
finite horizon H so that the objective maps all infinite-length sequences sharing the same

prefix of length H to e-close values:

Ve > 0.3H € NYw € X“ Vu' € X% :
Lpreﬁw(wa w,) > H=|f(w) - f(w/)| <e

Note that since the domain of an objective is compact, the Heine-Cantor theorem guar-
antees that a continuous objective is also uniformly continuous. This paper only uses uniform
continuity since it is more relevant to my theorem and proof. Nonetheless, theorems pre-

sented in the following section also hold for continuous objectives.

5.3.2 Continuity Implies PAC-learnability

Environment-specific Objectives. 1 give a sufficient condition for a learnable environ-

ment-specific objective:

Theorem 5.3.3. An environment-specific objective k is k-PAC-learnable in the information-

theoretic setting if it is uniformly continuous.

I will prove the theorem by constructing a xk-PAC reinforcement-learning algorithm for

any uniformly continuous . To that end, I reduce k to a finite-horizon cumulative rewards

!Note that textbook definitions commonly use < instead of <: my definition is equivalent. I use < to
match with the comparison operators in the PAC definitions.

91

problem; I then prove the theorem by invoking an existing PAC reinforcement-learning

algorithm for finite-horizon cumulative rewards problems.

Proof of Theorem 5.53.3. For any € > 0, since the objective k is uniformly continuous, there
exists a bound H such that all infinite-length sequences sharing a length-H prefix are mapped
to €'-close values.

For concreteness, let us pick any s€S5 and any a€ A. For each length-H sequence
ue (S x A)H, 1 pick the representative infinite-length sequence [u; ($,a)®] that starts with
the prefix u and ends in an infinite repetition of ($, a). Using these representatives, I construct
a finite-horizon rewards objective K. of horizon H. The construction assigns each infinite-
length sequence with the value of the original x at the chosen representative. That is, let
w[:H| denote the length-H prefix of w, I define k. as:

Fo(w) 2 K([w[:H]; (5,a)“]), Yw € (S x A)®.

By construction, £. is €-close to k, meaning that for any infinite-length input, their

evaluations differ by at most €’
|Rer(w) — k(w)] <€, Yw € (S x A)®.

Thus, an €¢-optimal policy for k. is 2¢-optimal for k.

I then reduce the approximated objective i., which assigns a history-dependent reward
at the horizon H, into a finite-horizon cumulative rewards objective, which assigns a history-
independent reward at each step. To that end, I lift the state space to U= U (S x A)L.
Each state u; = (S x A)‘at step t in the lifted state space is the length-t history of states
and actions encountered in the environment. For any state before step H, I assign a reward
of zero. For any state upg = (S x A) at step H, I assign a reward of &.([ug; (8, a)®]).
The lifted state space and the history-independent reward function above form the desired
finite-horizon cumulative rewards problem.

Dann et al. [38] introduced ORLC, a PAC reinforcement-learning algorithm for finite-
horizon cumulative rewards problems.? Applying ORLC to the above finite-horizon cumula-

tive rewards problem produces an 2¢-optimal policy for . Finally, for any €, choosing €’ = §

U

gives a k-PAC reinforcement-learning algorithm for .

Environment-generic Objectives. Theorem 5.3.3 states a sufficient condition for when

an environment-specific objective is PAC-learnable. The following corollary generalizes the

20RLC provides an individual policy certificates (IPOC) guarantee. Dann et al. showed that IPOC
implies my PAC definition, which they called “supervised-learning style PAC”.

92

condition to environment-generic objectives.

Corollary 5.3.4. An environment-generic objective & is £-PAC-learnable in the information-

theoretic setting if & is uniformly continuous.

To prove Corollary 5.3.4, I first observe the following lemma, which I prove in Section 5.7.

Lemma 5.3.5. If an environment-generic objective is uniformly continuous, then, for all

labeling functions, the induced environment-specific objective is also uniformly continuous.

With Lemma 5.3.5, Corollary 5.3.4 is straightforward. Since each induced environment-
specific objective k is uniformly continuous, each k is k-PAC-learnable by Theorem 5.3.3.
Thus, the objective ¢ is {-PAC-learnable by definition.

5.3.3 Computability

I now define the computability of an objective f: X® — R. The standard definition of
computability of such functions depends on Type-2 Turing machines [51, Chapter 2, Defini-
tion 2] and a representation of the reals by an infinite sequence of rational approximations,
called the Cauchy-representation [51, Chapter 3, Definition 3]. Recall that a Type-2 Turing
machine is a Turing machine with an infinite-length input tape and a one-way infinite-length

output tape. It reads the input tape and computes forever writing to the output tape.

Definition 5.3.6 (Computable Objective). An objective f is computable if a Type-2 Tur-
ing machine reads w from the input tape and writes a fast-converging Cauchy sequence

90, q1,--.] € Q¥ of rational approximations to f(w) to the output, that is: ¥Yn € N,
|f(w) — qn| <277

When proving computability, this definition is tedious to work with since it requires
implementing the function on a Turing machine. Instead, I will use pseudocode to formulate
an algorithm that takes in an infinite-stream input w and a natural number n and outputs
the n-th rational approximation g,. Repeatedly invoking the algorithm by enumerating n
produces the Cauchy sequence of rational approximations.

A classic result in computable analysis is that computable functions are continuous [51,
Theorem 2.5 and 4.3]. Since an objective’s domain is compact, by the Heine-Cantor theorem,
this result also holds for uniform continuity. Even stronger, the following theorem, modi-
fied from Weihrauch [51, Theorem 6.2.7] for my context, guarantees that for a computable
objective, for any rational € > 0, I can compute a horizon H that satisfies the definition of

uniform continuity. Define the modulus of continuity of an objective as a function m: Q — N

93

that satisfies Ve € Q, Yw; € X®,Vwy € X 1 Lyefix (W1, ws) > m(e) = |f (w1) — f (wq)| < e

Theorem 5.3.7. A computable objective is uniformly continuous. Further, its modulus of

continuity m is computable.
For completeness, Section 5.8 gives pseudocode that computes the modulus of continuity

for any computable objective specified by the interface described above.

5.3.4 Computability Implies PAC-learnability

I now extend my result in Section 5.3.2 from the information-theoretic to the computation-

theoretic setting. The following theorem states this extension.

Theorem 5.3.8. An (environment-generic or environment-specific) objective f is f-PAC-

learnable in the computation-theoretic setting if f is computable.

Proof. Combining theorems in Section 5.3.2 and Theorem 5.3.7, a computable objective f is
uniformly continuous, therefore f-PAC-learnable in the information-theoretic setting. In the
computational-theoretic setting, I need to further construct a computable reinforcement-
learning algorithm. Note that my proof of Corollary 5.3.4 is already constructive of an

algorithm. However, I need to:

o compute the bound H from the given ¢ and

o computably evaluate the approximated objective & .

A computable objective resolves both points:

e By Theorem 5.3.7, the bound H is computable for any e.

o Evaluating the approximate objective is computable, since the approximated objective

only depends on the length-H prefix of the input. O

For completeness, Section 5.9 provides the pseudocode for an f-PAC reinforcement-learn-

ing for any computable objective f.

5.4 Theorem Applications

This section applies the core theorem and corollary to three classes of objectives in the

existing literature and proves each objective’s PAC-learnability.

94

5.4.1 Reward Machine

The first class of objectives I consider is reward machines [23].

Proof of PAC-learnability I prove that the reward-machine objective reviewed in Sec-
tion 3.1 is PAC-learnable.

Proposition 5.4.1. The objective [R] of a simple reward machine R is [R]]-PAC-learnable.

Proof. By Theorem 5.3.8, it is sufficient to show that a simple reward-machine objective is
computable. Consider the pseudocode with Python-like syntax in Listing 5.5.

Listing 5.5 defines an algorithm for computing the simple reward-machine objective.
It first initializes the state variable u to the initial state ug. It then computes a horizon
H = ([logy(1 —)] —n — [logy Tmax|) /[logy 7], where rpax = max (]6,(+)]) is the maximum
magnitude of all possible rewards. It iterates through the first H indices of the input and
transits the reward machine’s state according to the transitions ¢,. For each input w and n,
the algorithm accumulates the discounted cumulative rewards truncated to the first H-terms:
Seso 7O (g, wpgr)-

By definition of a computable objective, I need to show that the yield values for all n

form a fast-converging Cauchy sequence:
Vn € N, |simple_reward_machine(w)[n] — [R](w)| < 27",

where I used the notation simple_reward_machine(w)[n| to denote the n-th yielded out-
put of the simple_reward machine function. Then, let A be the difference between the

algorithm’s output and the objective’s value:
A £ |simple_reward_machine(w)[n] — [R] (w)| = | Y +*8, (uk, wps1)] -
k=H

Then, T have A < rmaxv" /14 by upper bounding the rewards by rp.y, then simplifying the
infinite sum into a closed form. By plugging in the value of H and simplifying the inequality,
[have A < 27", Thus, the objective is computable and [R]-PAC-learnable.]

5.4.2 LTL Surrogate Objectives

Linear temporal logic (LTL) objectives are measurable Boolean objectives that live in the
first two-and-half levels of the Borel hierarchy [43]. Various works [1, 16, 17] considered

LTL objectives for reinforcement learning and empirical algorithms for learning. A common

95

def simple_reward_machine(w: Iterator[2"]) -> Real:
u: U, value: Rational = ug, O
rmax: Rational = max(abs(d,(ul, u2)) for ul, u2 in U?)
for n in count(0):
H: Natural = (log2floor(l -) - n - log2ceil(rmax)) / log2ceil(vy)
for k in range(H):
u_ = 0, (u, wikl)
value += y*x¥k * 0.(u, u_)
u=u

yield value

Listing 5.5: Computation of the simple reward objective

pattern of these algorithms is that they convert a given LTL formula to an intermediate
specification that takes in additional hyper-parameters. They show that in an unreachable
limit of these hyper-parameters, the optimal policy for this intermediate specification be-
comes the optimal policy for the given LTL formula. I call such intermediate specifications
LTL surrogate specifications. Due to space, I will focus on Bozkurt et al. [1] and give the
objective specified by their LTL surrogate -specification. I will show that this objective is
PAC-learnable. The same process, namely writing down the LTL surrogate specification and
then proving that the specified objective is PAC-learnable, also applies to the approaches in
Sadigh et al. [2], Hahn et al. [16], and Hasanbeig et al. [17].

Bozkurt et al.’s LTL Surrogate Specification Given an LTL formula, Bozkurt et al.
first convert the formula into a limit deterministic Bichi Automaton (LDBA) by a standard
conversion algorithm [52] with two additional discount factor parameters. An LDBA is
a non-deterministic finite automaton. It is bipartite by two sets of states, those in an
initial component and those in an accepting component. Transitions in the automaton can
only go from the initial component to the accepting component, but not the reverse. An
LDBA is “deterministic in the limit”: it only has non-deterministic e-transitions in the

initial component, but it is deterministic in the accepting component. The formal definition
of LDBA is:

Definition 5.4.2 (LDBA). For an LTL formula over propositions 11, an LDBA converted
from the formula is a tuple (U,E,6,,uy, B), where

o U is a finite set of states,

o &£ is a set of e-transitions,

96

o Oy: (U x (20U {e})) — 2V is a non-deterministic transition function,
e ug is an initial state, and
o B CU isa set of accepting states.

Additionally, U has a bi-partition of an initial component with states U; and an accepting
component with states Ug. An LDBA satisfies the conditions: (1) 0,(u,€) =0 for allu € Ug,
(2) 6u(u,2M) C Up for allu € Ug, and (3) B C Ug.

The agent and environment models are similar to a simple reward machine. In particular,
at each step, the agent chooses an environment’s action and steps in the environment. A
labeling function classifies the current state of the environment to a tuple of truth values of
the set of propositions II.

At each step, an LDBA takes either a non-deterministic e-transitions (if such transition is
available) or the transition along the tuple of the truth values of the propositions. Each time
the LDBA enters an accepting state, the agent receives a reward of 1 — 7, and discounts all
future rewards by ;. Each time the LDBA enters a non-accepting state, the agent receives
no reward and discounts all future rewards by 7,. An oracle controls the e-transitions. In
words, the objective is to maximize the (state-dependent) discounted cumulative rewards,

assuming the oracle makes the optimal choice that maximizes the cumulative rewards.

Bozkurt et al.’s LTL Surrogate Objective Bozkurt et al.’s LTL surrogate specification
is a tuple (L,71,72): the LDBA L and the two hyper-parameters 71,72 € Q. It specifies
an environment-generic objective [(L,v1,72)]: (2M)® — R. Let £ = £ U { L}, where € is

the set of e-transitions and L is a non-e-transition (i.e., following a transition with a tuple

97

classified by the labeling function), the objective is:

[(L,71,72)](w) = max g(we,w) where

wg€EW

00 i—1

g(we, w) = ;R(Uz’) HIF(UJ')?

R(u) = (1 —m)1{u € B},
I'(u) = n1{u € B} + »1{u & B},
VEk Z 0: Uk+1 = 5u(uk7wl—§’_)7

ty = ;]l{wg[i] = L or (uy,weli]) € 0.},

o — wlty] if welk] = L or (ug, welk]) & dy,
’ welk] otherwise

Here, t;, is the step count of the environment when the LDBA takes its k-th step. Note that
tr < k, since the environment does not step when LDBA takes an e-transition. The value
wltg] is the tuple of truth values of the input infinite-length sequence w at ;. I define wj;
as the transition label taken by the LDBA at the k-th step: It is either (1) a tuple of truth
values w|k], if we[k] is a non-e-transition or an e-transition that is not available from the
current LDBA state uy, or (2) the e-transition we[k]. By its definition, w; is always a valid
transition of the LDBA, and it always leads to a deterministic next state. Therefore, I write
U1 = 0u(ug, wy) to denote that the LDBA state ug; follows this deterministic transition

to transit to the next state.

Proof of PAC-learnability I now prove that the objective specified by an LTL surrogate
specification in Bozkurt et al. [1] is PAC-learnable. Although this section aims to show an
example, as I mentioned, the proof strategy here also applies to the approaches in Sadigh
et al. [2], Hahn et al. [16], and Hasanbeig et al. [17].

Proposition 5.4.3. Bozkurt et al.’s LTL surrogate objective [(L,v1,72)] is [(L,v1,72)]-
PAC-learnable.

Proof. By Theorem 5.3.8, it is sufficient to show that Bozkurt et al.’s objective is computable.
Consider the pseudocode with Python-like syntax in Listing 5.6.

Listing 5.6 gives pseudocode for computing Bozkurt et al.’s objective. The pseudocode
contains two procedures. The procedure bozkurt_helper computes g but truncates the

sum to the first H = (|logy(1 — max(vy1,72)] — n) /[log, max(y1,72)] terms. The proce-

98

def bozkurt_objective(w: Iterator[2U]) -> Real:

for n in count(0):
gamma_max: Rational = max(7y;, 72)
H: Natural = (log2floor(l - gamma_max) - n) / log2ceil (gamma_max)
v: Rational = 0
for w e in &H:

v = max(v, bozkurt_helper(H, w_e, w))

yield v

def bozkurt_helper(H: Natural, w_e: EH w: S¥) -> Rational:
v: Rational, u: U, discount: Rational = 0, wug, 1

for k in range(H):
if u in B:
reward, gamma
else:
reward, gamma = 0, 79

]
_
3
2
=

v += reward * discount
discount *= gamma

if w_e[k] == L or (u, w_elk]) not in J,:
w_k_plus = wlk]

else:
w_k_plus = w_e[k]

u = §,(u, w_k_plus)

return v

Listing 5.6: Computation of Bozkurt et al.’s objective

dure bozkurt_objective then computes the n-th rational approximation of the objec-
tive’s value. It invokes the helper function for all w. € £™ and calculates the value of
max,; cen bozkurt_helper (e, w,n).

Section 5.11 proves that the yielded values of bozkurt_objective for all n € N form a

fast-converging Cauchy sequence:
|bozkurt_objective(w)[n] — [(L,y1,v2)](w)] < 27"

Therefore, the objective is computable and consequently [(L, v1, 72)]-PAC-learnable. O]

99

5.4.3 Geometric Linear Temporal Logic

Littman et al. [21] introduced geometric linear temporal logic (GLTL), a variant of lin-
ear temporal logic with expiring temporal operators. This section formalizes the objective

specified by a GLTL formula and proves that the objective is PAC-learnable.

5.4.3.1 GLTL Specification

A GLTL formula is built from a finite set of atomic propositions II, logical connectives
-, A\, V, temporal next X, and expiring temporal operators Gy (expiring always), F ¢ (expiring
eventually), and Uy (expiring until). Equation (5.3) gives the grammar of a GLTL formula

¢ over the set of atomic propositions II:

pi=a|-0|6Nd|6VE|XD|Goo|Fes|0Ups, acTlOcQ. (5.3)

Each temporal operator (i.e., G, F and U) has a rational expiration probability # in range
(0,1). For example, Fggoal A Ggglava is a valid GLTL formula.

The semantics of GLTL is similar to that of LTL (which I review in Section 4.2.1),
except that each operator expires at every step with the given probability 6 associated with
the operator. In particular, for the expiring operator Gy¢, if ¢ is always true prior to an
expiration event, then the overall formula evaluates to true; otherwise, ¢ is ever false prior to
the expiration event, then the overall formula evaluates to false. Conversely, for the expiring
operator F ¢, if ¢ is ever true prior to an expiration event, then the overall formula evaluates
to true; otherwise, ¢ is always false prior to the expiration event, then the overall formula
evaluates to false. I give the formal semantics of GLTL below.

I first define the event form of a GLTL formula. An event-form of a GLTL formula is
an LTL formula. This LTL formula contains the propositions in the GLTL formula and an
additional set of propositions called expiration events. 1 define the event-form of a GLTL
formula in such a way that, when an expiration event triggers at time ¢, the entire sub-

formula corresponding to this event expires. The event form 7 (¢) of a GLTL formula ¢ is

100

defined recursively as:

~T(¥) ¢ =

T (W) AT (12) =11 Nih

T (1) vV T () =11V
T() = {XT(¥) ¢ =Xy

TW)U(T) Aeg) ¢ = Gotp

—eg UT (1) ¢=Fop

(T (1) AN=ep) UT (1h2) & =11 Upapo

Here, each ey is a fresh proposition corresponding to the sub-formula ¢. In words:

o If the outer formula is logical connective or temporal next, the operator T recursively

converts the sub-formula(s) while preserving the outer formula’s operator.

o If the outer formula is Gy, it recursively converts the sub-formula. It outputs the LTL
formula T (1) U (T (2) A e,) that requires the converted sub-formula to hold until the

expiration event ey expires.

o If the outer formula is Fy, it recursively converts the sub-formula. It outputs the LTL
formula =7 (1)) U ey that requires the converted sub-formula to become true at least

once before the expiration event expires.

o If the outer formula is 11 Uy 1o, it recursively converts the sub-formula and outputs the
LTL formula (7 (¢)1) A —eg) U T ()5) that requires the converted sub-formula 7 (1) to

hold until 7 (1)5) becomes true, all before the expiration event expires.

For example, the event form of the GLTL formula ¢ = Ggg(a A Fogb) is
T(¢) =(aN(—epUb))U ((aA(—eypUb)) Aey), where 9 is the sub-formula F o b.

During an evaluation of a GLTL formula, each expiration event e, corresponds to an
infinite stream of independently distributed Bernoulli random variables, each triggering with
probability 6, the expiration probability associated with the outermost expiring temporal
operator of ¢. Given an infinite-length path of propositions w, the probability of w satisfying
a GLTL formula ¢ is the probability of w satisfying the event-form LTL formula 7 (¢), with

stochasticity due to the expiration events.

101

5.4.3.2 GLTL Objective

I now give the objective specified by a GLTL formula. A GLTL formula ¢ over propositions

IT specifies an environment-generic objective [¢]: (2)* — R, given by:

[[gb]] (w) = PewBernoulli(G)((Zip (w7 we) = T(QS))) (54)

Here, e is the set of all the expiration events in ¢, and each is a random variable following an
infinite stream of Bernoulli distribution. T use zip (w, w,) : (2!'Y¢)® to denote the element-wise
combination of w and the w,. I write zip (w,w.) F T(¢) to denote that the infinite-length
path zip (w,w,.) satisfies the LTL formula 7 (¢) according to the LTL semantics, which I
review in Section 4.2.1. The objective is then the probability of this infinite-length path
satisfying the LTL formula 7 (¢), with stochasticity due to the expiration events.

5.4.3.3 Proof of PAC-learnability

I now prove that the objective specified by a GLTL formula is PAC-learnable.

Proposition 5.4.4. The objective [¢] specified by a GLTL formula ¢ is [¢]]-PAC-learnable.

Proof Outline The strategy of my proof is as follows.

o First, I will prove that a GLTL objective is uniformly continuous. In particular, for
any € € Q, I will give an upper bound H, so that the objective maps infinite-length

paths inputs sharing a prefix of H to e-close values.

o Next, I present a pseudocode that computes a GLTL objective. To obtain the n-
th rational approximation, the pseudocode first determines the upper bound H from
e = 27", It then computes a lower bound on the objective value after observing the first

H indices of the input and returns this lower bound as the n-th rational approximation.

o Finally, I show that the rational approximations form a fast-converging Cauchy se-
quence, which proves that the objective is computable. Therefore by Theorem 5.3.7,
the objective is PAC-learnable.

GLTL Objective is Uniformly Continuous First, the following lemma states that if

all expiration events trigger simultaneously at step H, then the evaluation of the event-form

of the GLTL formula depends only on the length-H prefix of the infinite-length input.

102

Lemma 5.4.5 (Simultaneous Expiration). Given a GLTL formula ¢, the satisfaction of its
event-form depends on the input infinite-length path up to a horizon that all expiration events

are simultaneously triggered. That is:

Yw, € (29)® Vw, € (2")* . Vw, € (2")*:

if (we[H] =TAw[H] = wg[:H]) then (zz’p (w1, we) E T (¢) & zip (we, we) E T((b))

Then, I utilize Lemma 5.4.5 to prove the following lemma that a GLTL objective is

uniformly continuous.
Lemma 5.4.6. A GLTL objective [¢] is uniformly continuous.

Proof. For any input word w, I rewrite the value of the objective in Equation (5.4) by
unrolling the first H steps. Then, I condition the objective (which is a probability) on if
all expirations expire simultaneously at each step. In particular, let E} denote the event
that all expirations trigger simultaneously at step k and let =FE; g denote the event that all

expiration never simultaneously trigger before step H. I expand Equation (5.4) as:

[o](w) = kgl P(Ey) - P(zip (w, we) & T(9) | Ey)+ (55)

P(=Ey. p) - P(zip(w,we) ET(¢) | —Fi. 1)

Then, consider two paths w; and wy sharing a prefix of length H. By Lemma 5.4.5, the
satisfaction of T (¢) depends only on the first H steps of w; and wy. Thus, forall 0 < k < H,
P(zip (w1, we) E T(¢) | Ex) = P(zip(wa,we) E T(¢) | Ex). Therefore, for the difference
A = |[¢](w1) = [@](w2)], T cancel the first H terms in the sum to get:

A (=E1.n) - |P(zip(wi,we) ET(¢) | =Er. g)—P(zip(wy,we) ET(¢) | —FE1_x)

-Ey
(=E1. m)

P
P

IN

Since P(—FE;.) is the probability of the all the expirations not triggering simultaneously
for the first H steps, I have: P(=E)_g) = (1 —[lp,es 0:)". Consequently, I obtain the upper
bound A < (1 —Tlp,¢,0:)".

Given any € > 0, I can always choose H = —_loeld g5 that A < e. Therefore, [o] is

lOg(l_HGqub 0:)
uniformly continuous. m

Computation of a GLTL Objective I give pseudocode for computing a GLTL objective

in Listing 5.7. The code in Listing 5.7 first computes a horizon H = T —. It then
Moga (1=], ¢, 00)1

103

def GLTL(w: Iterator[2']) -> Real:
for n in count(0):
theta = prod(¢.thetas)
H = -n / log2ceil(l - theta)
v =20
for w_e in et
if w_e has a simultaneous trigger:
wp = [zip (w[: H],w_e);-“]
if wp ET(¢):
e_prob =1
for e_i in e:
w_ e i=w_ele_i]
for j in range(H):
e_prob *= w_e_i.theta if w_e_i[j] == 1 else (1 - w_e_i.theta)
—
v += e_prob
yield v

Listing 5.7: Computation of a GLTL objective

computes the sum of H-terms in Equation (5.5):

kZ_: P(Ey) - P(zip (w,we) = T(9) | Ex). (5.6)

To compute this sum, it enumerates all combinations of expiration events of length H. If
a simultaneous expiration ever happens in this length H events, it tests if the input word
is accepted or rejected by T (¢). In particular, to perform the test, it forms any eventual
cyclic path w' = [zip (w[: H],w,) ;-*] that starts with the first H indices of the input w and
the length-H sequence of events w, and ends in an arbitrarily chosen cycle. It then test
if w' satisfies T(¢) by a standard LTL model checking algorithm [42, Chapter 5.2]. Due
to Lemma 5.4.5, this test is equivalent to testing if zip (w,w.) satisfies T(¢). Finally, it
sums the probability of all length-H sequence of expiration events that pass this test. This

produces the desired sum in Equation (5.6).

Conclusion By the proof of Lemma 5.4.6, the sum in Equation (5.6) is at most € = 27"
smaller than the objective’s value. Therefore, the return values of Listing 5.7 for all n € N
form a fast-converging Cauchy sequence that converges to the objective’s value. Thus, the

objective is computable and [¢]-PAC-learnable.

104

5.5 Proof of Lemma 5.4.5

I perform the proof inductively. Specifically, given any GLTL formula ¢, I pose the inductive
hypothesis that each sub-formula of ¢ satisfies Lemma 5.4.5. Given this inductive hypothesis,
I prove that ¢ also satisfies Lemma 5.4.5.

If the outer formula of ¢ is =@y Suppose that w, is true at step H and that w; and w,
match up to step H:
we[H] = T/\ wl[:H] = WQ[H]

By the induction hypothesis, the evaluations of the sub-formula 1 are the same for the two
inputs w; and wy:

le (U)l, we) ': T(¢) = le (w27 th) ': T(I/J)
Therefore, I can prepend negations to both sides:
zip (wy, we) E =T () & zip (wa, we) E =T ().

By definition of 7, I may drop the negations: zip (wy,we) E T(¢) < zip (wa, we) E T (),

which proves this case.

If the outer formula of ¢ is ¥ Ay or ¥y Vo 1 will prove for the case of ¢ = 11 A 1s.
The case of ¢ = /1 V 1)y is the same by changing the logical connective from A to V.
Suppose that w, is true at step H and that w; and wy match up to step H:

we[H) = T Awy[:H] = wo[:H].

By the induction hypothesis, the evaluations of each of the sub-formula ; and 5 are the

same for the two inputs w; and ws, that is:

zip (w1, we) F T (Y1) & 2ip (we, we) F T (¢1)

and
zip (w1, we) E T (¢2) & zip (wa, we) E T (2).

Therefore, I can join the two equivalences by the logical connective: zip (wy,we) E T (1) A
T (12) < zip (we,we) E T (Y1) A T (1q). By definition of T, I have: zip (w1, we) F T(4) <
zip (wa, we) E T (¢), which proves this case.

105

If the outer formula of ¢ is Gyi» Suppose that w, is true at step H and that w; and
wy match up to step H:
we[H] = T/\ U)l[ZH] = wg[H]

Consider the infinite-length paths wi £ w;[i:], wh = wyliz] and w! £ we[i:], the suffixes of
w1, wo and w, beginning at some step ¢ where 0 < i < H. The expiration event triggers at
step H — i for we[i:], that is: wi[H — i] = 1. Further, wi and wi match up to length H — 1,
that is: wi[H —i:] = wi[H — i:]. Therefore, by the induction hypothesis, the evaluations of

the sub-formula 1 are the same for all pairs of suffix inputs w} and w} for all 7, that is:
V0 < i < H.zip (wy,we) [i:] E T (¥) & zip (wa, we) [i:] E T (). (5.7)
Since w, is fixed on both sides, conjuncting both sides with e4, I also have:
V0 < i < H.zip (wy,we) [i:] E (T (¥) A eg) < zip (we, we) [i:] E (T () Aey). (5.8)

To summarize Equations (5.7) and (5.8): The satisfaction relations in the above equations
are equal between w; and wy up to step H.

By defintion of 7" and the semantics of LTL (reviewed in Section 4.2.1), zip (w, we) E T ()
if and only if:

35 > 0, zip (w, we) [j:] F (T (¢) Neg) and Vk.0 < k < j = zip(w,we) [k:] E T (¢). (5.9)

If zip (wy, we) [j:] E (T (¥) A eg) and zip (wy, we) [j:] E (T () A eg) are both true for any
Jj < H, then zip (wi,we) E T (@) equals zip (we, we) E T (¢) due to all satisfaction relations
in Equation (5.9) match between w; and wy up to step H.

On the other hand, if zip (wy,we) [J:] E (T(¢) A eg) and zip (wy, we) [J:] E (T (¢) A eg)
are never true for some j < H, zip (wy, we) E T (¢) andzip (we, we) E T (¢) both equal false.
That is because, since ey is true at step H, in order for zip (w,w.) [H:] E (T (¢) A ey) to be
false, T (1) must be false at step H — which in turn implies that there is no j such that
T (v) will hold until 7 (¢)) A e, becomes true at step j.

In both scenarios, I have zip (w1, we) F T (¢) equivalent to zip (ws, we) F T(¢), which

proves this case.

If the outer formula of ¢ is ¥ Uy ¢y Suppose that w, is true at step H and that w,
and wy match up to step H:

we[H) = 1T Awy [H| = wo[:H].

106

Consider the infinite-length paths w! = w[i:], wy = wy[i:] and w! = we[i:], the suffixes of
wi, we and w, beginning at some step ¢ where 0 < ¢ < H. The expiration event triggers at
step H — i for we[i:], that is: w’[H — i] = 1. Further, wi and wi match up to length H — 1,
that is: wi[H —4:] = wi[H — i:]. Therefore, by the induction hypothesis, the evaluations of
each of the sub-formulas ¢; and), are the same for all pairs of suffix inputs w{ and w} for
all 4, that is:

V0 < i < H.zip (w1, we) [i2] B T (1) < zip (wa, we) [1:] F T (¢1) and

(5.10)
V0 < i < H.zip (wy,we) [i:] E T () < zip (we, we) [i:] E T (¢2).
Since w, is fixed on both sides, conjuncting both sides with e4, I also have:
V0 < i < H.zip (wy,we) [i:] E (T (Y1) A ey) < zip (wa, we) [i:] E (T (¢1) Aey). and (5.11)

V0 <@ < H.zip (wy,we) [i:] E (T (2) A ey) < zip (wa, we) [iz] E (T (¢2) Aeg) .

To summarize Equations (5.10) and (5.11): The satisfaction relations in the above equations
are equal between w; and wy up to step H.

By definition of 7 and the semantics of LTL, zip (w,we) E T () iff:

35 > 0, zip (w, we) [J:] E T (¢2) and VEk.0 < k < j = zip (w, we) [k:] E (T (¢1) A —ey).
(5.12)

If zip (wy,we) [4:] E T (¥2) and zip (wy,we) [7:] E T (¢2) are both true for any j < H,
then zip (w1, we) E T (¢) equals zip (wa, we) E T (¢) due to all satisfaction relations in Equa-
tion (5.12) match between w; and wy up to step H.

On the other hand, if zip (w1, we) [j:] E T(v2) and zip (wi,we) [j:] E T (¢2) are never
true for some j < H, zip (wy,we) F T(¢) andzip (we, we) E T (¢) both equal false. That is
because, since ey is true at step H, T (¢2) A —ey is false at step H — which in turn implies
that there is no j such that 7 (¢1) A =es will hold until T (1) becomes true at step j.

In both scenarios, I have zip (wy,w.) F T (¢) equivalent to zip (wq, we) E T(¢), which

proves this case.
If the outer formula of ¢ is Fyi By definition of the conversion operator T, it is the

case that T (F¢¢) = T (true Uy ¢)). Therefore the proof of the case of ¢ = F 41 is the same
as the proof of the case of ¢ = i)y Uy 109, by specializing 11 = true and ¥y = 9.

107

5.6 Summary of Works on LTL Surrogate Objectives

This section briefly reviews the literature on LTL surrogate objectives. 3

To my knowledge, Sadigh et al. [2] first proposed LTL as an objective for model-free
reinforcement learning. They transformed LTL formulas into Rabin automata that give out
rewards to the agent. Although the approach was appealing, Hahn et al. [16] identified
counterexamples demonstrating that the translation was not entirely correct. Subsequently;,
both Hahn et al. [16] and Hasanbeig et al. [17] proposed to use LDBA-based reward schemes,
and Hahn et al. [16]’s approach addressed the issues in Sadigh et al. [2]. Later, Bozkurt et al.
[1] proposed an LDBA-based reward scheme that was less sparse than previous LDBA-based
reward schemes—meaning this scheme provides rewards not only at the sink states of the
LDBA, but also at intermediate states. In the same year, Hahn et al. [53] proposed a dense
reward scheme and conducted experimental comparisons of various approaches.

Note that although all the above approaches attempt to use LTL as reinforcement-
learning objectives, Yang, Littman, and Carbin [22] proved that PAC learning is only possible
for a subset of LTL formulas called the finitary formulas. Nonetheless, approaches in the
previous paragraph all fall into a common pattern that they convert a given LTL formula to
an intermediate specification (Rabin automaton or LDBA) that takes in additional hyper-
parameters. They show that in an unreachable limit of these hyper-parameters, the optimal
policy for this intermediate specification becomes optimal for the given LTL formula. As
mentioned in Section 5.4.2, I view these approaches as introducing LTL surrogate objectives

and using them as proxies to the true LTL objectives.

5.7 Proof of Lemma 5.3.5

Proof. Since £ is uniformly continuous, by definition, I have:

Ve > 0.dH € NVws € F® Vw, € F®.
Lpreﬁx(w3>w4) > H = ‘f(wg) - €<w4)’ <e

Let kK = £ o L be the environment-specific objective induced by & and the labeling function

L. By rewriting ws as L(w) and wy as L(ws), I get:

Ve > 0.3H € NV € (S x A)® Vs € (S x A)*.

(5.13)
Lpresix (£ (w1) , £ (w2)) =2 H = [r(w1) — £(w2)| < €.

31 acknowledge the valuable input from an anonymous reviewer that helped us with this summary.

108

Consider any w € (S x A)® and w’ € (S x A)®. If w and w' share a prefix of length H,
then the labeling function also maps them to infinite-length paths sharing a prefix of length
at least H, that is:

VH € val € (S X A)“’.‘v’wg c (S X A)w Lpreﬁx(wl,wg) > H = Lpreﬁx(ﬁ(wl),ﬁ(wg)) > H.

(5.14)
By chaining the implications in Equation (5.13) and Equation (5.14), I get:
Ve > 0.9H € NVw; € (S x A)®.Vw, € (S x A)“.
Lpreﬁx (w17w2) Z H = |/ﬁ](1U1) - ’%(w2)| S €.
Therefore, k is uniformly continuous by definition. O]

5.8 Computing the Modulus-of-Continuity

Listing 5.8 gives pseudocode for computing the modulus of continuity of any computable
objective given by the interface (X x N) — Q (described in Section 5.3.3).

def modulus_of_continuity(fn: Callable[Iterator[X]][Rational], e: Rational) -> Natural:
H=1
while True:
try:
for w in X
n = log2ceil(e)
for _ in zip(range(n), fn(w)):
pass
return H
except Stoplteration:
H+= 1

Listing 5.8: Computation of the modulus-of-continuity of a computable objective

The algorithm enumerates H from 0. It forms finite-length words w for each X and
invokes the objective on w and n = [log,(€)]. If the computation of the objective attempts
to read w[k] for some k greater than H, an exception is thrown. The exception terminates
the enumeration of X and returns the control to the outer loop. The algorithm essentially
finds the first H such that the objective only needs to inspect the first H indices of w to

calculate an e-close approximation to the objective’s value.

109

5.9 PAC Reinforcement-Learning Algorithm for Com-
putable Objectives

Listing 5.9 gives pseudocode for a reinforcement-learning algorithm for any computable ob-
jective given by the interface (X“ xN) — Q (described in Section 5.3.3). The algorithm first
computes a sufficient horizon bound H for achieving §-approximation to the objective’s value.
It then constructs the lifted MDP with finite-horizon cumulative rewards as described in the
proof of Theorem 5.3.3. Finally, it invokes r1 finite horizon_cumulative_rewards, an
existing PAC reinforcement-learning algorithm for finite-horizon cumulative rewards problem
to obtain a $-optimal policy. Overall, the obtained policy is e-optimal for the computable

objective.

5.10 Proof of Unnecessity

I complement my result and prove that my conditions are only sufficient but not necessary
by giving two examples.

The first example is an objective that is not uniformly continuous (or computable) but
is PAC-learnable. Consider an environment-generic objective £: {a,b}* — R with features
F ={a, b}, given by:

(w) =1{w # v} where & = abaabaaab . ..

That is, the objective assigns a value of 0 for w, which is an infinite-length path with a
naturally increasing number of as between infinitely many bs, and 1 otherwise. Any finite
state Markov chain has zero probability of generating w, since the pattern of 1w necessarily
requires an infinite memory to generate. Thus, this objective’s value is 1 for any environ-
ment and any policy. In other words, for any environment, all policies are equally optimal.
Therefore, the objective is trivially PAC-learnable. However, due to discontinuity at , the
objective is neither uniformly continuous nor computable.

The second example is an objective that is not computable but not PAC-learnable. This
example simply utilizes the fact that any computable objective plus a non-computable con-
stant, such as the Chaitin’s constant, is not computable. Yet, addition of a constant does
not affect the induced ordering of policies by the objective. Therefore, the non-computable
objective is PAC-learnable by simply ignoring the constant.

Although my condition is only sufficient, to my knowledge, no existing objectives in the

literature have a similar nature to these examples that make my conditions inapplicable.

110

5.11 Proof of Computability of Listing 5.6

Let ga:b(we7w) < ?:a

R(u;) TT;Z1 T(u;) denote the partial sum of g in Equation (5.2) from
a to b. Let z, be the sequence of e-moves of length-h that maximizes go.,, that is: 2z, =
argmax,; cen Jo:n(We, w). Similarly, let 2o, € £ be the infinite-length path of e-moves that

maximizes g. Then I can write A as:
A 2 |[(L,v1,72)](w) — bozkurt_objective(w,n)|

= | max g(we, w) — max g (e, w)

- |g(zooa U}) - gO:H(ZH7 w)|

Observe that ¢g(zeo, w) > go.u(zm, w). To see this inequality, let w, € £ be any infinite-
length path of e-moves with zg as the prefix. Then I must have g(w,, w) < g(ze0, W), since zy
maximizes g. Moreover, since go.g(2zy, w) is just a partial sum of g(w,, w) and since each term
of the summation is positive (because R and I' are postive), I have go.x (2, w) < g(,, w).
I chain the inequalities to get g(2o0, w) > go.m(zm,w). Therefore I may drop the absolute
value: A = g(zo0, W) — go.g(2m, w).

I now bound A by bounding ¢(ze, w):

A = g(200, w) — go:rr (2, W)
= §0:1(Zo0s W) + gH:00(Z00, W) — Go.u (2H, W)

S gH:oo(Zoo, w)

The second equality holds by splitting the summation in g. The last inequality holds since

zp maximizes go.rr: go.r (2, W) > Go:r (Zoo, W).
Therefore, after expanding the definition of gp., I have A < 3524 R(u;) TT0Z) T'(u;).
Since R(u;) < 1 and I'(uj) < max(y1,72), [have A < 322, max(y1,72)" . Simplifying the

sum, I get A < max(y1,72)"71

—max (7 772)1. Finally, I plug in the value of
([logy(1 — max(y1,72))] —n)

H =
[log, max(7y1,72)

and get A < 27", Therefore, the objective is computable and [(L, 1, 72)]-PAC-learnable.

111

Non-computable

LTL

mc pd

cp ol tx

02
Finitary LTL

o5

Figure 5.2: Landscape of objectives’ learnability up to the current chapter. Dashed circle:
LTL objectives; Gray area: objectives provably not PAC-learnable in unrestricted environ-
ment; Green slanted area: finitary LTL objectives, PAC-learnable. Empty area: objectives
not expressible up to this chapter, and their PAC-learnability is unknown.

5.12 Chapter Summary

Figure 4.5 summarizes the landscape of example objectives’ learnability up to the current
chapter. In addition to the finitary LTL objectives, including example objectives 02, 05 —
which follows from the results in Chapter 4, the following objectives and classes of objectives

are provably PAC-learnable:

o Finite-horizon rewards (%),

 Discounted rewards (37),

e Reward Machine (RM) objectives,

o The LTL surrogate objective proposed by Bozkurt et al. [1] (Boz),
 Generalized Linear Temporal Logic (GLTL) objectives.

In contrast, two classes objectives, namely limit-average reward objective lim% and
infinite-horizon LTL objectives, are provably not PAC-learnable in unrestricted environ-
ments. These results underscore the limitations of the classical PAC-learnability framework
for certain objectives and motivate the need for alternative approaches, such as limit PAC-

learnability, to analyze more complex and non-computable objectives.

112

This work studies the PAC-learnability of general reinforcement-learning objectives and
gives the first sufficient condition of PAC-learnability of an objective. Figure 5.1 summarizes
my main result. I use examples to show the applicability of my condition on various existing

objectives whose learnability were previously unknown.

Applications to Existing Objectives Although I only demonstrated three examples,
my theorem also applies to other objectives in the literature. Some examples are (1) mod-
ifications to the simple reward machine such as the (standard) reward machine [23] (where
rewards depend on not only the reward machine’s state but also the environment’s state)
and the stochastic reward machine [54], (2) other LTL surrogate objectives [2, 16, 17], and
(3) various finite-horizon objectives [18, 24, 25].

Moreover, I gave example objectives in Section 5.10 showing my condition is sufficient
but not necessary. However, to my knowledge, no previous objective has a similar pattern
to my examples. Therefore, I conjecture that my condition applies to most, if not all,
existing PAC-learnable objectives in the literature. Nonetheless, verifying each objective’s

PAC-learnability is out of scope of this work.
Guiding The Design of New Objectives My main result could also help the design

of new objectives. With the sufficient condition, researchers can create continuous and

computable objectives by design, and the condition will ensure their PAC-learnability.

113

def rl_general_objective(epsilon, delta, objective, mdp, label_fn):
epsilon_prime = epsilon / 2
H = modulus_of_continuity(objective, epsilon_prime)

def lifted_transition(state, action):

if len(state) == 1:
mdp_state = state[-1]
else:

last_action, mdp_state = state[-1]

next_mdp_state = mdp.step(mdp_state, action)

next_state = state + ((action, next_mdp_state),)
return next_state

def reward_fn(state, action):
if len(state) ==

return objective(state, epsilon_prime)
else:

return O

policy = rl_finite_horizon_cumulative_rewards(

epsilon_prime,

delta,

horizon=H,

mdp=MDP (
step=lifted_transition,
reward_fn=reward_f£fn,
init_state=(mdp.init_state,)

)

return policy

Listing 5.9: Pseudocode for a reinforcement-learning algorithm for computable objectives

114

Chapter 6
Non-Computable Objectives

As established in Chapter 5, computable objectives are learnable within the PAC-MDP
framework and widely applicable in practice. However, many reinforcement learning ob-
jectives encountered in research and applications are non-computable and, under classical
definitions, not PAC-learnable. Notable examples include the limit-average reward [33] and
infinite-horizon LTL objectives [22], as discussed in Chapter 4. Among the gridworld objec-
tives in Chapter 1, which I repeat in Table 6.1 below for convenience, the objectives o1, 05,
and 06 are all non-computable, and no existing policy learning approach provides theoretical
guarantees for these objectives.

This chapter presents my contributions toward addressing the challenges of representing

and learning policies for non-computable objectives.

6.1 Overview

I informally illustrate my approach to non-computable objectives using the gridworld exam-
ples 05 and 06. I formally analyze these examples in Section 6.4, but here, I introduce them

intuitively to provide motivation and an overview of my approach.

Example Gridworld Objectives

ol | Reach goal without stepping on water
02 | Do ol within n = 15 steps w
03 | Do ol within n ~ Geom() steps
o4 | Do ol, then retrace the steps back
05 | Do 04 within n = 30 steps Y
06 | Repeat o4 forever

Table 6.1: Example gridworld objectives repeated from Table 1.2.

115

Following the illustrations, I discuss prior work on non-computable objectives to con-
textualize the challenges and further justify the need for a general, unified framework for

representing and learning non-computable objectives.

6.1.1 Examples

The following gridworld objectives from Table 6.1 illustrate the core challenges of non-

computable objectives:

o The objective ol requires the agent to reach the goal state while avoiding water.

o The objective 05 requires the agent to perform the objective ol and then retrace its
path back to the initial state.

o The objective 06 requires the agent to repeat the process of the objective 05 forever.

The objective ol is a simpler case of 05 — I omit its informal discussion here for brevity. I
formally analyze all three and more examples in Section 6.4.

Below, I illustrate my approach to the representation and learnability of 05 and 06. By
representation, I mean a formal language in which every objective has at least one finite-
length string in that language that denotes that objective. This definition aligns with the
standard definition of representation in computability theory, which I reviewed in Section 5.2.
A formal representation is essential for formally defining objectives and analyzing objectives’

properties rigorously, particularly their learnability.

6.1.1.1 Representation

As discussed in Chapter 4, the objective ol is an infinite-horizon LTL objective: even though
it is representable using the formal language LTL, it is not computable. On the other hand,
the objective 05 is not computable nor representable in LTL. In this chapter, I introduce a
formal representation for o1, 05, and, more broadly, all non-computable objectives.

Specifically, using results from mathematical analysis and computability theory, I es-
tablish the first general formal representation of non-computable objectives. Specifically, I
show that these objectives are expressible as nested limits of computable functions. The
non-computability arises from the limits, while the computable function’s program text fully
encodes the objective. This representation is universal, encompassing all definable objectives
without relying on non-computable constants.

I separate the representation into two cases: single-limit and multi-limit. The single-limit
case includes objectives like 01 and 05, and is a simpler, special case of the multi-limit case

that enjoys a simpler condition for their learnability, as I will discuss later.

116

def reach_and_retrace_helper(w: List[State]) -> Boolean:
"""Check if the target is reached and retracted from the reversed path
within the finite-length trajectory w.
nnn
history = []
for i, s in enumerate(w):
if s is target:
break
history.append(s)
if len(history) > len(w) - i:
return False
for s1, s2 in zip(w([i:], reversed(history)):
if s1 != s2:
return False
return True

def reach_and_retrace(n: Natural, w: Iterator[State]) -> Real:
return real(reach_and_retrace_helper(list(islice(w, n))))

Listing 6.1: Pseudocode for the objective 05. real casts a Boolean to a real number;
islice(w, n) slices an iterator w to the first n elements.

Single-limit Case Consider the objective 05. A computable function, given in Listing 6.1,
checks whether the agent successfully completes ol and then retraces its path back to the
starting state within a finite horizon ofnsteps. Formally, the objective 05 is defined as the

limit of this function asnapproaches infinity:
lim reach_and_retrace(n,w)
n—oo

This limiting process captures the non-computability of 05: While the function is computable

for any fixed n, performing the check in the limit of infinite n is not computable.

Multi-limit Case The objective 06 introduces an additional limit. Instead of verifying
a single “reach the goal while avoiding water, then retrace the steps back”, it requires the
agent to satisfy the check forever. To represent the objective formally, I express it as a nested
limits of the computable function in Listing 6.2.

Specifically, the function in Listing 6.2 checks whether the agent reaches the goal while
avoiding water, then retraces its path within ny steps. It does this iteratively, starting from

the first state of the trajectory, the second state, and so on, up to the n;-th state. The

117

def reach_and_retraces(n2: Natural, w: Iterator[State]) -> Iterator[Boolean]:
w = list(islice(x, n2))
for i in range(n2):
yield reach_and_retrace_helper(w[i:])
yield from repeat(False)

def alwaysO(n: Natural, w: Iterator[Boolean]) -> Boolean:
"""Check if all input elements in the stream is True, up to n elements.
return all(islice(w, n))

nnn

def always_reach_and_retrace(nl: Natural, n2: Natural, w: Iterator[State]) -> Boolean:
return alwaysO(nl, reach_and_retraces(n2, w))

Listing 6.2: Pseudocode for the objective 06.

objective 06 is then defined by first taking ny to infinity, followed by ny:

lim lim always_reach_and_retrace(n;,ns, w)
ni—o0 N —00 - - -

The nested limits in this definition account for the non-computability of 06.

6.1.1.2 Learnability

I introduce limit PAC-learnability, a weaker learnability criterion than the classical PAC-
MDP framework, designed for non-computable objectives.

Informally, limit PAC-learnability requires approximating a non-computable objective in
probability by a sequence of PAC-learnable objectives in the limit. Objectives satisfying this
criterion exhibit a desirable property: within a finite or, more generally, a compact policy set,
the near-optimal policies for the PAC-learnable objectives eventually become near-optimal
for the non-computable objective.

This property suggests an executable policy-learning strategy with an in-the-limit per-

formance guarantee of near-optimality:

o Learn near-optimal policies for a sequence of PAC-learnable objectives that approxi-

mate the non-computable objective in probability in the limit.

o At some unknown but finite step, the learned near-optimal policies for the approxima-

tions also become near-optimal for the true non-computable objective.

This guarantee is weaker than the classical PAC-MDP guarantee because it does not en-

sure near-optimality within a finite number of samples or computations. However, it remains

118

valuable for the following reasons: When the guarantee holds, the learned policy optimizes
the correct objective in the limit of infinite samples and computation. In other words, the
guarantee ensures that after consuming sufficient resources, the learning process identifies
a near-optimal policy for the non-computable objective. Conversely, if the guarantee fails
for an objective, the learned policy may bear no meaningful relation to the optimal policy,
meaning the learning algorithm is optimizing for the wrong objective — a phenomenon that
plagues in practice, as discussed in Section 1.1.3.

For the above strategy to be executable, each objective in the sequence must be PAC-
learnable under the given finite policy set. That is, there must exist an algorithm that
identifies a near-optimal policy from the policy class with high probability. For computable
objectives, such algorithms exist in the planning-with-generative-model setting under a fixed,
finite set of deterministic policies [39]. Therefore, the problem reduces to policy learning for
a sequence of computable objectives, so that in the limit, the learned policies eventually
become near-optimal for the non-computable objective. Morover, assuming access to such
algorithms, the results in this chapter extend to compact policy classes (e.g., stochastic
finite-memory policies) and the reinforcement learning setting, providing a concrete strategy
for learning near-optimal policies for non-computable objectives in the limit.

Furthermore, I provide a sufficient condition that simplifies proving limit PAC-learnability
for non-computable objectives. This condition decomposes the proof into a set of conver-
gence conditions on the individual components of the objective, where each component is
expressed as a single limit of a computable function. The condition imposes constraints on
the rate at which each computable function converges to its limit, relative to the rates of
outer components. For single-limit objectives, this condition is trivially satisfied, leading to
the corollary that any non-computable objective defined as a single limit of a computable
function is limit PAC-learnable.

Both example objectives satisfy limit PAC-learnability, as I illustrate below.

Single-Limit Case Recall that 05 is formally a single limit of a computable function.
Limit PAC-learnability implies the existence of a sequence of PAC-learnable objectives such
that learning a near-optimal policy for each objective in the sequence eventually yields a
near-optimal policy for the non-computable 05. This sequence is precisely the sequence of
computable functions defined in Listing 6.1, obtained by varying the input cutoff n. Using
the sufficient condition from this chapter, a single limit of a computable function is trivially

limit PAC-learnable. Specifically, a strategy for learning a policy for this objective is:

o Fix a finite set of deterministic policies of interest, for example, a set of deterministic

policies with a fixed amount of memory.

119

o Learn a near-optimal policy for the computable objective 05 with cutoff n = 1.
o Learn a near-optimal policy for the computable objective 05 with cutoff n = 2.
o Continue this process for n = 3,4, ...

o Eventually, at some unknown but finite n, the learned near-optimal policies become

near-optimal for the true non-computable 05 within the fixed policy set.

For each learning step, we require a PAC-MDP algorithm that learns a near-optimal pol-
icy for the computable objective within the fixed policy set. Such an algorithm exists for
the planning-with-generative-model setting under a fixed set of deterministic policies [39].
Moreover, assuming access to such algorithms, the results in this chapter extend to com-
pact policy classes (e.g., stochastic finite-memory policies) and the reinforcement learning
setting, providing a concrete strategy for learning near-optimal policies for non-computable

objectives in the limit.

Multi-Limit Case The objective 06 is formally a nested limit of a computable function.
For 06, the sequence of computable objectives is given in Listing 6.2. In order to form a
single sequence of computable and PAC-learnable objectives, I parametrize the two input
cutoffs, ni(n) and ny(n), using a single parameter n, such that both approach infinity as n
grows. Furthermore, using the sufficient condition from this chapter, I prove that 06 is limit
PAC-learnable if ny(n) grows at a faster rate than ny(n). A concrete strategy for learning a

policy for this objective follows:

o Fix a finite set of deterministic policies of interest.

« Choose a parameterization of nj(n) and ns(n) satisfying the rate condition, such as

ni(n) = n and ny(n) = n?.

o Learn a near-optimal policy for the computable objective in Listing 6.2 with n = 1,

that is, n;y = 1 and ny = 1.

o Learn a near-optimal policy for the computable objective with n = 2, that is, ny = 2

and ny = 4.
o Continue this process for n = 3,4, ...

« Eventually, at some unknown but finite n, the learned near-optimal policies become

near-optimal for the true non-computable 06 within the fixed policy set.

As in the case of 05, for each learning step, I assume access to a PAC-MDP algorithm that

learns a near-optimal policy for the computable objective within the fixed policy set.

120

6.1.2 Prior Work

Existing research on non-computable objectives has primarily focused on specific subclasses,
often characterized using formal languages such as LTL. However, a general and unified
framework for representing all non-computable objectives remains elusive. Moreover, the
classical PAC-learnability criterion is overly restrictive in this setting. To my knowledge, all
substantive non-computable objectives — excluding the contrived examples in Section 5.10

— fail to meet this criterion.

Representation Prior works [29, 55], including those discussed in earlier chapters, de-
fine general objectives as functions that assign a ranking to each trajectory. However, this
definition lacks an explicit representation of arbitrary objectives.

While computable objectives are representable by their program text in a Turing-complete
language, the explicit representation of arbitrary non-computable objectives remains unclear.
Existing research typically focuses on specific subclasses and employs various formal or math-

ematical languages for representation:

« Limit-average reward objectives are mathematically defined as the limit of the expected
average reward [33].
« Infinite-horizon LTL objectives are expressed in Linear Temporal Logic (LTL) [22].

» w-regular objectives are specified using w-regular automata [16].

In the related field of planning, where the environment is known, the Planning Domain
Definition Language (PDDL) provides a formal framework for describing planning problems
[56]. PDDL can specify objectives such as state reachability, which is non-computable. While
these languages effectively capture particular classes of non-computable objectives, they do
not generalize to all possible objectives.

In practice, reinforcement-learning practitioners often describe objectives informally us-
ing natural language [57|, which may be non-computable when formalized. As discussed
in Section 1.1.3, rather than formalizing these objectives directly, practitioners commonly
design reward-based surrogates — such as discounted cumulative rewards — hoping that
optimizing the surrogate will yield good performance on the true objective. However, as
noted in Chapter 1, this approach is vulnerable to reward hacking, where the learned policy
optimizes the surrogate but fails to align with the intended objective. This issue is partic-
ularly pronounced for non-computable objectives, as the absence of a formal representation
makes it difficult — if not impossible — to analyze the relationship between the surrogate
and the true objective.

To my knowledge, no formal representation exists for general non-computable objectives.

121

Learnability In Section 5.10, I demonstrated that while computable objectives are PAC-
learnable under the classical PAC framework, only contrived non-computable objectives
satisfy this criterion. Thus, classical PAC-learnability is not a meaningful guarantee for
non-computable objectives. Addressing this gap requires a weaker, yet practically relevant,
learnability criterion.

Several works [15, 17, 58, 59] focus on empirical performance without providing theoret-
ical guarantees on the optimality of learned policies. Other research, building on Chapter 4,
has introduced relaxed PAC guarantees for specific subclasses of non-computable objectives.

For example:

 Voloshin et al. [60] assume partial environment knowledge to provide PAC guarantees
for LTL objectives.
« Svoboda, Bansal, and Chatterjee [61] establish a relaxed PAC-like guarantee based on

the expected finite steps required to reach a target state.

Other approaches propose algorithms for learning policies for non-computable objectives,
such as limit-average reward and LTL objectives, often by reducing the problem to learning
a policy for a computable surrogate objective (e.g., discounted cumulative rewards). Various

works establish different theoretical guarantees for learning non-computable objectives:

« Naik et al. [62] approximate the limit-average reward objective via a sequence of dis-
counted cumulative reward objectives. As the discount factor approaches 1, the learned
policy converges to a near-optimal policy for the limit-average reward objective.

« Bozkurt et al. [1] and Shao and Kwiatkowska [63] provide PAC guarantees for learn-
ing near-optimal policies for LTL objectives in the limit of a surrogate parameter, as
reviewed in Chapter 4.

» Concurrent with this work, Le et al. [64] establish a PAC guarantee for learning near-
optimal policies for w-regular objectives (a superset of LTL objectives) by reducing
them to limit-average reward objectives, which can then be optimized in the limit via

a sequence of discounted cumulative reward objectives.

These guarantees apply only to specific classes of objectives and do not extend to all
non-computable objectives. They are sometimes referred to as asymptotic guarantees [27,
33, 64], meaning that optimality is achieved only in the limit — asymptotically — of infinite
samples or computation. However, the precise definition of asymptotic guarantees varies
across works and objective classes.

The absence of a formal representation for general non-computable objectives has hin-

dered progress in establishing a general criterion for learning such objectives. To address the

122

learnability challenges of non-computable objectives, it is first necessary to develop a formal
representation framework. This foundation would pave the way for a unified criterion for

learning non-computable objectives.

6.2 Non-computable Objective

Before discussing the learnability of any objective, computable or not, the first step is to
establish a formal representation. For computable objectives laid out in Chapter 5, the
representation is straightforward: it is simply the program text of the objective.

However, non-computable objectives require a different approach. Natural language de-
scriptions are inadequate for formal analysis, necessitating a rigorous formalism to represent
non-computable objectives. I address this by representing non-computable objectives as a
nested limit of computable functions. This universal representation encompasses all non-
computable objectives up to a non-computable constant.

Then, the classic notion of PAC-learnability is not sufficient for non-computable objec-
tives: As I have shown in Chapter 4, the infinite-horizon LTL objectives are not PAC-
learnable and not computable. Therefore, I introduce the concept of limit PAC-learnability,
a learnability criterion suited for non-computable objectives that requires the agent to learn
a sequence of objectives approximating the non-computable objective in the limit. The
new criterion has the desirable property that, the near-optimal policy for the computable

objective becomes near-optimal for the non-computable objective in the limit.

6.2.1 Representation

I represent each objective r: S“ — R as a k-nested limits of a computable objective k: (N¥x
S®) — R. Given a Turing-complete programming language with alphabet X, let K € ¥*
be a finite-length string in the language whose denotation is the computable function «:
kK = [K]. Then, the objective « is represented as

/»q;(w) :n}gnoonlll)noo K(nla"'anlmw) (61)

The program text K of k completely represents the objective . In this chapter, I use teletype
font symbols such as k, f, and n to indicate that the symbol refers to a computable function.

When k£ = 0, the objective is computable and falls out of the scope of this chapter —
I discuss computable objectives in Chapter 5. The current chapter focuses on cases where

k > 1: Due to the nested limits, x is non-computable in such cases.

123

Since nested limits appear frequently in the discussion, to avoid the clutter, for a k + 1
argument function f: (N¥ x X) — Y whose first k& arguments are natural numbers, I use
lim[f] to denote the function X — Y that takes each of the first & arguments of f to infinity

in order:

I therefore write k = lim[k] to mean that the computable objective k represents the non-

computable objective k.

Representation is Universal The next theorem states the expressiveness of this repre-
sentation: It covers all objectives except those that depend on a non-computable constant.
In other words, I consider all objectives where non-computability arises from the nested lim-
its of evaluating the objective over the system’s trajectory instead of an outside source of

non-computability. *
Theorem 6.2.1. Either Equation (6.1) holds or there exists a finite set ¥ and a computable
function k: (NP x S® x *) — R and a non-computable constant C € X% such that

K(w) = nlll)noo P nE{)nOO K(”la . nk? w? O)

I prove Theorem 6.2.1 in Section 6.5.1, where I leverage two key lemmas: (1) A Borel-mea-
surable function is a nested limit of a continuous function. (2) A continuous function is a
computable function with access to a potentially non-computable constant. The first lemma
is a standard result in descriptive set theory Kechris [65, Theorem 11.6]. I prove the second
lemma using a theorem due to Yasugi, Mori, and Tsujii [66], which states that computable

functions are dense in the space of continuous functions.

6.2.2 Limit PAC-learable

Intuitively, I want to use a sequence of learnable objectives to approximate the non-com-
putable objective, in the sense that by learning each objective in the sequence, the near-
optimal policy for the learned objective becomes near-optimal for the non-computable ob-
jective in the limit of the sequence. However, the exact index for when the approximation

becomes near-optimal is environment-dependent and unknown.

My results are generalizable to the case of oracle access to the non-computable constant. But, due to
a lack of practical objectives that depend on such non-computable constants and simplicity, I assume the
representation in Equation (6.1) holds.

124

Definition 6.2.2 (Limit PAC-learnability). Let II be a finite set of deterministic policies
for the MDP M. An objective k is limit PAC-learnable if there exists a sequence of PAC
learnable objectives {k,}52, such that for all Markov chain D induced by the MDP M and
the policy m € 11, Kk, converges to k in probability. That is, for all e > 0,

lim Py p(|kn(w) — k(w)| >€) =0

n— oo
The sequence {k,}22 is a limit PAC-learnable realization, or simply, a realization, for k.

Limit PAC-learnability implies that, in practice, as the agent learns near-optimal policies
for the sequence of learnable objectives one by one, at some unknown but finite index n,
the learned near-optimal policy for approximation k,, is also near-optimal for the true, non-

computable objective k. The following proposition formalizes this intuition.

Proposition 6.2.3. Let k be a non-computable objective and 11 be a finite set of deterministic
policies for the MDP M. If k, is a limit PAC-learnable realization for k, then there exists

n such that the optimal policy for k, is also optimal for k in the limit:

Jim max Eypfin(w)] = max Eyp[w(w)]

Proof. Since k,, and k are bounded, convergence in expectation is equivalent to convergence
in probability:

Jim Eyplfon ()] = Eppopli(w)

Therefore, take max over the deterministic policies IT on both sides:

max lim Eyplrn(w)] = max E,p[k(w)]

Since II is finite, the limit and the max are interchangeable. This completes the proof. [

A key requirement for the execution of the above practical strategy is that each objective
in the sequence is PAC-learnable under the given finite set of policies, meaning a practioner
can run an algorithm to identify a near-optimal policy from the given policy class with high
probability. In this chapter, I assume the availability of such an algorithm for a computable
objective. Such an algorithm is available for computable objectives in the planning-with-
generative-model setting under a fixed finite set of deterministic policies. In particular, [39]
provides such an algorithm for the case of planning-with-generative-model setting under
a fixed finite set of deterministic policies, such as finite-memory deterministic policies for

finite-horizon cumulative reward objectives. Then, using the result laid out in Chapter 5, the

125

algorithm is extendable to computable objectives. The above definition and proposition, and
their derived theorems in the rest of this chapter, are generalizable to the case of compact
policy classes, such as stochastic finite-memory policies or the reinforcement learning setting.
However, I do not discuss the generalization here, since I am not aware of PAC-learning
reinforcement-learning or planning-with-a-generative-model algorithms that identify a near-
optimal policy for computable objectives in an arbitrary compact policy class. Nonetheless,
provided the availability of such algorithms, the results in this chapter is extendable to the
case of compact policy classes and gives rise to a practical strategy to learn near-optimal

policies for non-computable objectives in those settings.

6.3 Condition for Limit PAC-learnability

This section establishes a sufficient condition for the limit PAC-learnability of a non-com-
putable objective k. Proving limit PAC-learnability directly on a non-computable is chal-
lenging due to the nested limits of lim[x]. The key idea of the sufficient condition that
addresses this challenge is to break down the global convergence condition on k into a series
of convergence conditions on the components of the nested composition of x, where each
component is a single limit of a computable function. Each convergence condition imposes
a constraint on the choice of the index to the component. In particular, each constraint
requires the index of a component to grow at a rate fast enough relative to the indices of the
outer components. More specifically, it requires the growth rate to be large enough so that
the computable function at the current layer converges to its limit in probability in the face
of the compounding error induced by outer layers.

In this section, I formalize these insights and present the main theorem. I first introduce
the decomposition of k into nested components. I then present the sufficient condition for

limit PAC-learnability that leverages the decomposition.

6.3.1 Decomposition of Non-computable Objective

To establish limit PAC-learnability of an objective x = lim[k], I first decompose it as a com-
position of non-computable functions, lim[f;]: X; — X; 1, each a single limit of a computable

function f;: (N x X;) — X, ;.
k(w) = (lim[f;] o ... olim[f]) (w) (6.2)

where each X; is a computably compact metric space with the metric d;, X = (S x A)®
and Xy = R.

126

The following proposition asserts that such a decomposition is not unique and always

possible for any non-computable objective.
Proposition 6.3.1. Any objective lim[k] decomposes as Equation (6.2).

I give a constructive proof of this proposition in Section 6.5.2. Although a constructive
decomposition exists by this proof, the decomposition might not help prove limit PAC-
learnability. In practice, one might need to find a suitable decomposition that makes proving

limit PAC-learnability easier.

6.3.2 Sufficient Condition for Limit PAC-learnability

Before stating the main theorem, I recall the definition of the modulus of continuity, and
give some notations necessary to state the theorem.

Recall that since f;(n;, .) is computable and X is compact, f;(n;, .) is uniformly continuous:
For all € > 0, there exists § > 0 such that for all x1, 25 € X,

|21, 23] < 0 = |fi(ny, 1), fi(ng, 22)| < €

Let 67 (n;, €) be a modulus of continuity of f;(n;,.). Not that, as mentioned in Chapter 5,
07 (n;, €) is a computable function Weihrauch [51, Theorem 6.2.7].

Moreover, Let F; = lim[f;] o ... o lim][f;] denote the intermediate composition from i to
k. Let ny...n; be a sequence of computable functions parametrize by n, and define the

computable objective k,, as the composition of the computable functions f; indexed at n;:

Kn(w) = f1 (n1(n), fa (n2(n), ... fx (ng(n), w))).
I now state the main theorem.

Theorem 6.3.2. Let k = lim[k] be an objective with the decomposition in Equation (6.2).
The objective r is limit PAC-learnable by the realization k, if for each i € {1...k} the
following condition holds: for all e > 0

lim P(|f; (n;(n), Fiy1) , Um[f;] (Fiy1)] > €i(n,e)) =0 (6.3)

n—o0

where €; is recursively defined as:

€ ifi=1
Ei(na 6) =
df 1(ni—1(n),e;i—1(n,€)) otherwise

127

Here, each condition in Equation (6.3) imposes a constraint on the growth rate of the
index n;(n) relative to the growth rate of the indices n;(n) for the outer components j <
i. Each constraint is controlled by compounding of the modulus of continuity 87 of all
outer components 7, recursively up to the desired error € in the definition of convergence in

probability. I interpret this theorem separately under the single-limit and multi-limit cases.

Single Limit Case When the objective is a single limit of a computable function, that is,

when k = 1, the above condition is trivially satisfied by setting n;(n) = n.

Corollary 6.3.3. Any objective lim[K| that is a single limit of a computable function K is

limit PAC-learnable with the realization k,(.) = k(n,.).

To prove this, note that €;(.) = €, and the conditionly simply requires convergence of
fi(n,.) to lim[f;](.) in probability. Since fi(n,.) converges to lim[f;](.) in the limit, as in
sure-convergence, convergence in probability is trivially satisfied when ny(n) = n.

I demonstrate the utility of this corollary through examples in Section 6.4.

Multi-Limit Case When the objective s is a multi-limit of computable functions (i.e.,
k > 1) the theorem simplifies the proof of the limit PAC-learnability of the objective —
a condition imposed on the entire objective — into k separate convergence conditions on
the components in the objective decomposition. Moreover, the i-th condition imposes a
constraint on the growth rate of the index n;(n) relative to the growth rate of the indices
nj(n) for the outer components j < i through a chain of modulus of continuity &7 up to
the outermost component. Since the modulus of continuity is a known computable function,
the proof required to show the limit PAC-learnability of x reduces to finding an expression
that upper-bounds the probability in Equation (6.3), and showing that this upper bound
converges to 0 as n approaches infinity with a suitable choice of n;(n). I demonstrate the

utility of this theorem with examples in Section 6.4.

6.4 Examples

In this section, I give various examples of non-computable objectives using the representa-
tion in Equation (6.1), and show that these objectives are limit PAC-learnable using Corol-

lary 6.3.3 and Theorem 6.3.2 for the single-limit and multi-limit cases, respectively.

128

def real(x: Union[Rational, Natural, Boolean]) -> Real:
"""Casts a finitely representable object to the corresponding real number under
fastest-converging Cauchy sequence representation."""
return repeat (x)

def mean(w: List[Rational]) -> Rational:
return sum(w) / len(w)

def limit_average_reward_cesaro(n: Natural, w: Iterator[State]) -> Real:
w = [reward(s) for s in islice(w, n)]
inner_means = []
for i in range(n):
means .append (mean(w[:i+1]))
outer_mean = mean(inner_means)
return real (outer_mean)

def limit_average_reward_discount(n: Natural, w: Iterator[State]) -> Real:
gamma = 1 / (n + 1)
return (1 - gamma) * discounted_sum(map(reward, w), gamma)

Listing 6.3: Pseudocode for the Limit Average Reward objective

6.4.1 Single Limit Examples

I give examples of non-computable objectives that are single limits of computable functions.
For each objective, I briefly describe the objective and give the pseudocode for the computable
function that represents the objective. All these objectives are limit PAC-learnable by the
corollary to Theorem 6.3.2.

6.4.1.1 Limit Average Reward

A classic reward-based objective in reinforcement learning is the limit average reward.
Conventionally, the limit average reward objective is the average reward under the stationary
distribution of the Markov chain induced by the environment MDP and the policy. A
common definition, as reviewed in Chapter 2, is the limit average of the expected T'—step
reward as T approaches infinity:

1 T—1
Th_{go TED [; R(w[z])].
Notably, in this formulation, the limit average reward objective is not a function of the

trajectory but a function of the Markov chain. It is not a simple limit average of the reward

function (i.e., lim, o = 77 R(wli])), since this limit might not exist for periodic Markov

129

chains [32].

Cesaro Mean Representation Instead, one standard alternative formulation [32, Chap-

ter 8.2] of the limit average reward is the Cesaro mean of the rewards:

1 & 1 &
reward . .
i) = i L 3 (3 Riwl)).

For finite state Markov chains, this Cesaro mean always exists and is equivalent to the
conventional limit average reward [32]. Listing 6.3 gives the pseudocode for limit average
reward under the Cesaro mean formulation.

Note that the limit_average reward_cesaro function calculates the Cesaro mean,
outer_mean, as a rational number. To be consistent with the general objectives framework
where objectives map trajectories to the reals, the last step of limit_average reward _
cesaro casts the result to a real number in the fastest-converging Cauchy sequence repre-
sentation using the function real(.) that repeats the rational number indefinitely. This
pattern of casting a rational or Boolean to the corresponding real number holds for various

examples in this section.

Discounting-based Representation Another standard alternative formulation is the

1 — v weighted, y-discounted sum of the rewards:

R () = Tim (1 - 4(n) Y 2(n) R(wli)
i=0

Here, 7(.) is a sequence of discount factors that approaches 0 as n approaches infinity such

as y(n) = 1/(n+1). This formulation is equivalent to the conventional limit average reward

(62, 67] for finite-state Markov chains. Listing 6.3 gives the pseudocode for limit-average

reward under the discounting-based formulations.

Learnability By Corollary 6.3.3, since the limit average reward is a single limit of a
computable function in either the Cesaro mean or the discounting-based formulation, the
limit average reward objective is limit PAC-learnable with either realization 1imit_average

_reward_cesaro and limit_average reward_discount given in Listing 6.3.

6.4.1.2 Reward Lower Bound

The reward lower bound objective maximizes the lower bound of the encountered —

un-summed — rewards in the trajectory. In particular, given a bounded reward function

130

def reward_lower_bound(n: Natural, w: Iterator[State]) -> Real:
w = [reward(s) for s in islice(w, n))l]
return real(min(w))

Listing 6.4: Pseudocode for the Reward Lower Bound objective

Safety Recurrence

Finitary Obligation Reactivity

Guarantee Persistence

Figure 6.1: Region highlighting non-finitary LTL objectives below the obligation class

mapping from each state r: S — Q, the reward lower bound objective k: S — R is:

Kp(w) = min r(s)

Representation Listing 6.4 gives the pseudocode for the reward lower bound objective.
The function reward lower_bound calculates the minimum reward in the trajectory up to
the n-th state, and casts the result to a real number. In the limit of n, reward_lower_bound
becomes exactly the reward lower bound objective.

lim reward_lower_bound(n,w) = lim min r(s) = minr(s)

n—00 - - n—00 sz[:n] sew
The limit exists and equals the reward lower bound objective since the reward function r is

a bounded bounded function over a finite the state space.

Learnability By Corollary 6.3.3, since the reward lower bound is a single limit of a com-
putable function, the reward lower bound objective is limit PAC-learnable with the realiza-

tion reward_lower_bound given in Listing 6.4.

6.4.1.3 Non-finitary LTL Formulas Lower Than the Obligation Class

The class of non-finitary LTL objectives below the obligation class, as shown in Figure 6.1,

are expressible as a single limit of a sequence of computable functions [43].

131

def eventuallyO(n: Natural, w: Iterator[Boolean]) -> Boolean:
"""Check if any input element in the stream is True, up to n elements.
return any(islice(w, n))

def alwaysO(n: Natural, w: Iterator[Boolean]) -> Boolean:
"""Check if all input elements in the stream is True, up to n elements."""
return all(islice(w, n))

def build_1tl_single(
logical_op: Callable[[NTuple[Boolean]], Boolean]) -> Boolean:
temporal_ops: NTuple[Union[alwaysO, eventuallyO]],
dfa: Callable[Iterator[State], Iterator [NTuple[Boolean]]]):
"""Construct a single limit of a sequence of computable functions for
non-finitary LTL objectives below the obligation class."""
def 1tl_single(n: Natural, w: Iterator[State]) -> Real:
dfa_outputs = dfa(w)
temporal_results = [temporal_ops(n, seq) for seq in zip(*dfa_outputs)]

return real(logical_op(*temporal_results))

return 1tl_single

Listing 6.5: Pseudocode for constructing a single limit of a sequence of computable functions
for non-finitary LTL objectives below the obligation class

Representation Specifically, Manna and Pnueli [43] established that any objective in this
class is equivalent to a logical combination of the always (G) and eventually (F) opera-
tors applied to a finite set of atomic propositions. A deterministic finite automaton (DFA)
tracks these atomic propositions. The DFA is a computable function that takes the envi-
ronment’s trajectory as input and outputs a corresponding trajectory of tuples of Booleans
that indicates the satisfaction of each atomic proposition over time.

Listing 6.5 gives an explicit construction of the sequence of computable functions that rep-
resent any LTL objective in this class, using the higher-order function build_1t1l_single(.).

In particular, it takes as input

» a computable function that maps a trajectory to a trajectory of n-tuple of satisfaction
of the atomic propositions.
« a n-tuple of either the alwaysO or eventuallyO functions,

« a logical operation joining the result of the temporal operators,

and returns a computable function 1tl_single(n, w) that represents the LTL objective in

132

def not_water_until_goal_past(w: Iterator[State]) -> Iterator[Tuple[Boolean]]:
"""Check if the agent has not stepped on water until it reaches the goal."""
sat = True
for s in w:
sat = sat and (is_goal(s) or not is_water(s))
yield (sat,)

ol = build_1tl_single(lambda x: x, (eventuallyO,), not_water_until_goal)

Listing 6.6: Pseudocode for the objective 01, “reach goal without stepping on water”.

the limit of n approaching infinity.

Here, the function alwayso0 is a computable function that checks if all the input elements
in the stream are True, from 0 to the n-th input. Similarly, the function eventuallyO checks
if any of the input elements in the stream is True, from 0 to the n-th input. The suffix 0 in
the function names indicates that the functions perform these checks starting from the 0-th

input and return a single Boolean value.

Example: Reach Goal Without Stepping on Water As an example, consider the LTL
objective ol from Table 1.1, “Reach goal without stepping on water”, which is exressible as
the LTL formula —~water U goal 2. The formula is equivalent to the LTL formula F p, where
p is the atomic proposition that is true at time ¢ iff the agent has not stepped on water until

it reaches the goal in the past up to time ¢.

Learnability By Corollary 6.3.3, since any LTL objective below the obligation class is
a single limit of a computable function, such an objective is limit PAC-learnable with the

realization 1t1_single in Listing 6.5. This class includes the objectives o1 in Listing 6.6.

6.4.1.4 Reach and Retrace

The reach and retrace objective checks if the agent reaches given target state, and whether
it retracts from the target state in the reversed path. This objective is an extension of the
LTL objective “eventually reach the target state”, but it requires the agent to retrace from
the target state in the reversed path. This additional requirement makes the objective not

capturable by LTL, since LTL cannot memorize the path taken to reach the target state [42].

2Note that here instead of the formula F goal A G water used in prior chapters, I assume here that we do
not care about the agent stepping on water once it reaches the goal for simplicity.

133

Safety Recurrence

Finitary Obligation Reactivity

Guarantee Persistence

Figure 6.2: Region highlighting LTL objectives above the obligation class

Representation Listing 6.1 gives the pseudocode for the reach and retrace objective. The
function reach_and_retrace_helper checks if the target is reached and retracted from the
reversed path within the finite-length trajectory w. The function reach_and _retrace slices
the first n states of the trajectory w, process the trajectory using the function reach_and _
retrace_helper, then casts the result to a real number in the fastest-converging Cauchy

sequence representation.

Learnability By Corollary 6.3.3, since the reach and retrace objective is a single limit
of a computable function, the reach and retrace objective is limit PAC-learnable with the

realization reach_and_retrace given in Listing 6.1.

6.4.2 Multi-Limit Examples

In the multi-limit case, I give examples of non-computable objectives. For each objective, I
first give their representation as a nested limit of computable functions. I then prove that
they are limit PAC-learnable using the sufficient condition to limit PAC-learnability derived

earlier in Section 6.3.

6.4.2.1 Linear Temporal Logic Above the Obligation Class

The class of LTL objectives above the obligation class, shown in Figure 6.2, is expressible

as a multi-limit of computable functions. I prove below that they are limit PAC-learnable.

Representation In particular, Manna and Pnueli [43] established that any objective in
this class is equivalent to a logical combination of the GF (always eventually) and FG
(eventually always) operators applied to a finite set of atomic propositions. A deterministic
finite automaton (DFA) tracks these atomic propositions. The DFA is a computable function
that takes the environment’s trajectory as input and outputs a corresponding trajectory of

tuples of Booleans that indicates the satisfaction of each atomic proposition over time.

134

def always(n: Natural, w: Iterator[Boolean]) -> Iterator[Boolean]:
w = list(islice(w, n))
for i in range(n):
yield all(w[i:])
yield from repeat(False)

def eventually(n: Natural, w: Iterator[Boolean]) -> Iterator[Boolean]:
w = list(islice(w, n))
for i in range(n):
yield any(wl[i:])
yield from repeat(False)

GF
FG

(alwaysO, eventually)
(eventually0O, always)

def build_1tl_multi(
logical_op: Callable[[NTuple[Boolean]], Boolean],
temporal_ops: NTuple[Union[GF, FG]],
dfa: Callable[Iterator[State], Iterator[NTuple[Boolean]]]):
temporal_ops_outer, temporal_ops_inner = zip(*temporal_ops)

def inner(n: Natural, w: Iterator[State]) -> Iterator [NTuple[Boolean]]:
return zip(*[op(n, wp) for op, wp in zip(temporal_ops_inner, zip(*dfa(w)))])

def outer(n: Natural, w: Iterator[NTuple[Boolean]]) -> Boolean:
return logical_op(*[op(n, wp) for op, wp in zip(temporal_ops_outer, zip(*w))])

def 1tl_multi(nl: Natural, n2: Natural, w: Iterator[State]) -> Real:
return real(outer(nl, inner(n2, w)))

return 1tl_multi

Listing 6.7: Pseudocode for constructing a multi-limit of a sequence of computable functions

for LTL objectives above the obligation class

Listing 6.7 gives an explicit construction of the sequence of computable functions that rep-

resent any LTL objective in this class, using the higher-order function build 1t1 multi(.).

In particular, it takes as input

« a computable function that maps a trajectory to a trajectory of n-tuple of satisfaction

of the atomic propositions.
« a n-tuple of pairs of temporal operators, either GF or FG,

 a logical operation joining the result of the temporal operators,

and returns a computable function 1t1_multi(nl, n2, w) that represents the LTL objective

in the limit of n1 and n2.

135

Learnability The following theorem states that any LTL objective above the obligation

class is limit PAC-learnable.

Theorem 6.4.1. Any LTL objective above the obligation class is limit PAC-learnable with

the realization 1t1_multi:
Kn(w) = 1t1l_multi(ny(n),ns(n),w)

where ni(n) and ny(n) are computable functions parametrized by n, with the constraints:

lim ny(n) =00 and lim
n—00 n—oo nl(n

~—

The theorem states that a realization of the LTL objectives above the obligation class
must satisfy that the index ny for the inner temporal operators must grow faster than the
index n; for the outer temporal operators so that the temporal operators are accurate in the

limit of the common index n.

6.4.2.2 Repeating Reach and Retrace

The repeating reach and retrace objective repeats the reach and retrace objective in the
single limit case for an infinite number of times. Intuitively, the agent must reach the target
state and retract from it in the reversed path. Further, it repeats this same process deter-
ministically an infinite number of times. Listing 6.2 gives the pseudocode for the repeating
reach and retrace objective.

I prove that the repeating reach and retrace objective is limit PAC-learnable using the

sufficient condition for limit PAC-learnability in Section 6.3.

Representation The objective is formally defined as the double limit of computable func-
tion K(ny, ng, w)

) = Jim,_ i, (o ma)

where the computable function k(nj,ng, w) is the composition of computable functions

alwaysO and reach_and_retraces.
K(n1,n9, w) = always0(n;, reach_and_retraces(ng, w))

The function reach_and retraces is a stream variant of the reach_and_retrace function
in Listing 6.1: For each index of the input infinite-length trajectory, it checks if the target

state is reached starting from that index and if the trajectory retraces from the reversed

136

path to the starting index. In the limit of ny — oo, it produces an infinite stream of
Boolean values, where each value is the result of the reach and retrace check starting from
the corresponding index.

The function alwaysO checks if the input stream is a repeating sequence of True values.
The limit of n; — oo produces a single Boolean value, indicating whether the input stream
is an infinitely repeating sequence of True values.

As a composition of the two functions, the objective evaluates to true if the trajectory

repeatedly visits both the initial and target states, using the same path between visits.

Learnability The following theorem states that the repeating reach and retrace objective
is limit PAC-learnable.

Theorem 6.4.2. The repeating reach and retrace objective is limit PAC-learnable by the
realization.:

Kn(w) = alwaysO(n;(n), reach_and_retraces(ng(n),w))

where ni(n) and ny(n) are computable functions parametrized by n, with the constraints:

lim ny(n) =00 and lim
n—0o0 n—oo nl(n

~—

For example, ni(n) = n and ny(n) = n? satisfy the constraints.

Intuitively, the theorem states that the above realization for the objective must ensure
that the index ny for the reach_and_retraces function grows faster than the index n, for
the alwaysO function, ensuring the reach-and-retrace check remains accurate in the limit of
the common index n.

The proof follows from the sufficient condition for limit PAC-learnability given in Sec-
tion 6.3, and is similar to the proof of limit PAC-learnability for LTL objectives above the

obligation class. I give the complete proof in Section 6.5.5.

6.4.2.3 Eventually Repeat Reach and Retrace

The eventual repeat reach and retrace objective is similar to the repeating reach and
retrace objective, but instead of requiring the repeat of the reach and retrace process start
from the beginning of the trajectory, it requires that the process eventually starts at some

point in the trajectory.

137

def eventually_repeat_reach_and_retrace(nl: Natural, n2: Natural, w: Iterator[State]) ->
< Real:
return real(eventuallyO(nl, always(n2, reach_and_retraces(n3, w))))

Listing 6.8: Pseudocode for the Eventually Repeat Reach and Retrace objective

Representation The objective is formally defined as the triple limit of computable func-
tion K(ny,ng, ng, w)

I{(w) - n%linoo nggnoo n;lglinoo K(nl’ 2, M3, ’UJ)

where the computable function k(ni,ns,ng,w) is the composition of computable functions

eventuallyO, always, and reach_and_retraces.
K(n1,ng,n3, w) = eventuallyO(n;, always(ny, reach_and_retraces(ns, w)))

The function eventuallyO checks if the input stream eventually becomes True. In the
limit of n; — oo, it produces a single Boolean value, indicating whether the input stream
eventually becomes True. The function always checks if the input stream is a repeating
sequence of True values. The limit of ny — co produces a single Boolean value, indicating
whether the input stream is an infinitely repeating sequence of True values. The function

reach_and_retraces is the same as in the repeating reach and retrace objective.

Learnability The following theorem states that the eventual repeat reach and retrace

objective is limit PAC-learnable.

Theorem 6.4.3. The eventually repeating reach and retrace objective is limit PAC-learnable

by the realization:
Kn,(w) = eventually (ny(n), always(ns(n), reach_and_retraces(nz(n),w)))

where ni(n) and ny(n) are computable functions parametrized by n, with the constraints:

lim n(n) =oco0, lim =00 and lim n3(n)

rroo n00 () nSoo ng(n)

For ezample, ni(n) = n, ny(n) = n? and n3(n) = n® satisfy the constraints.

The proof is similar to Theorem 6.4.2. 1 give a sketch here for brevity: In the proof for
Theorem 6.4.2, the sufficient condition for limit PAC-learnability given in Section 6.3 expands

138

to two conditions, corresponding to the limits in ny(n) and ny(n). Here, the condition expands

to three conditions, corresponding to the limits in ny(n), ny(n), and nz(n).

6.5 Proofs

In this section, I give the proofs of the theorems and lemmas presented in this chapter.

6.5.1 Proof of Theorem 6.2.1

To the end of proving Theorem 6.2.1, I first give two key lemmas: (1) A Borel-measurable
function is a nested limit of a continuous function. (2) A continuous function is a computable
function with access to a potentially non-computable constant. Then, I prove Theorem 6.2.1

using these lemmas.

6.5.1.1 Key Lemmas

The first lemma is a standard result in descriptive set theory:

Lemma 6.5.1 (Theorem 11.6 of Kechris [65], Reworded). Let X be a metrizable space
and f: X — R a Borel-measurable function. There ezists a (ny...n;)-indexed sequence of
continuous functions {fm...m}%m:o such that

Yw. f(w)= lim ... lim f,, .. (w)

n1—00 N;—» 00
The second lemma is a corollary of a theorem due to Yasugi, Mori, and Tsujii [66]:

Theorem 6.5.2 (Theorem 1 of Yasugi, Mori, and Tsujii [66]). Let X be a computably
compact metric space and f: X — R be a continuous function. For any e > 0, there exists

a computable function g: X — R such thut max,cx|f(z) — g(z)| <e.
I now state and prove the second lemma:

Lemma 6.5.3. Let X be a computably compact metric space. Let f: X — R be a continuous

function. There exists an alphabet 3, a computable function h: (X x3®) — R and a constant
C € X% such that f(z) = h(z,C).

Proof of Lemma 6.5.3. Let C' be the sequence of descriptions of the computable functions
g, that approximates f within ¢; = 27* according to Theorem 6.5.2. Note that since g, is a
computable function, for any Turing-complete programming language over the alphabet X, it

has a finite-length description in X%, that is, its program text. Therefore, C' is a potentially

139

non-computable constant. I construct h as an interpreter of the programming language. The

interpreter runs the i-th program in C' on the input x to produce a (27%)-approximation of
f(z). Then, h is computable and f(x) = h(z,C). O

6.5.1.2 Proof of Theorem 6.2.1

Proof of Theorem 6.2.1. 1If C' is a computable constant, then I subsume C' into the com-
putable function k — doing so proves that Equation (6.1) holds. Therefore, it suffices to
prove the theorem for the case where C' is a potentially non-computable constant.

First, I apply Lemma 6.5.1 to «:

Yw. k(w) = ngll)noo . nh_r)noo Ry ooms (W)

It suffices to show that there exists a computable function k such that
Yw. Fny,.on (W) = k(ng,...0nw,C)

To make notations more concise, the index (n; ... n;) is enumerable and can be mapped to
a single index n. In particular, let p: N* — N be a pairing function, a computable bijection
between N and N such that both p and p~! are computable. To be concrete, I use the

generalized Cantor pairing function:

p(”h e ,ni) = pb(nlapb(n27 e 7”1))

where p, is the binary Cantor pairing function: py(ni,ns) = %(nl + ng)(ny + ng + 1) + no.
Given indices nq,...,n;, I let n = p(ny,...,n;) be the corresponding index in N. I can
therefore write the (n; ...n;)-indexed sequence {&,, . .} as singly indexed sequence {,},
where K, = fp-1(n).

Since k,, is continuous, I apply Lemma 6.5.3 to rewrite it in terms of a computable

function k,, and a constant A,,:
Vw. Ep(w) = ky(w, A,)

I pack the constants A, € X% into a single constant A € »¢ using Cantor’s diagonal
argument: A[py(n,7)] = A,[i]. The function that extracts the C,, from A is computable, and
I can subsume it into K,,:

Vw. EKp(w) = ky(w, A)

Now consider the function K(n) that takes in the index n and returns the computable

140

function k,: K(n) = k,. Since each k,, is computable, I represent it as a program text in
3*. Further, I can encode the program texts of all k, into a single constant B € ¥, and

the function K that extracts the n-th program text from B is computable:

K(n) = K(n,B)

Finally, I pack the constants A and B into a single constant C' € % by alternating between
elements of A and B:
C[2i] = A[i] and C[2i + 1] = B[]

The functions that extracts A and B from C are computable, denote them as p4 and pp

respectively. Finally defining the computable function k as

K(ny,...n;,w,C) = f((p(nl ...n;),pe(C))(w, pa(C))

completes the proof. n

6.5.2 Proof of Proposition 6.3.1

Proof. In particular, any objective has a trivial decomposition, where each f; simply packs
the arguments ny and x and outputs the tuple (n—lk, x) for i > 1, and the outermost f; unpacks

all the tuples and applies the full computation k:

o) (ni,*x) i >1

A\NN:.T) = B

o (ng, 24 i afi]) i=1
K M i—1]

Note that all domains and codomains of f;s are computably compact metric spaces, and

therefore is a valid decomposition as in Equation (6.2). O

6.5.3 Proof of Theorem 6.3.2

Theorem 6.5.4. The objective k = lim|[] is limit PAC-learnable and «,, is a realization for
K if for each i € {1...k}, lim, o, n;(n) = oo and the following condition holds: for all e > 0

lim P([f; (n;(n), Fis1) , im[f;] (Fiq1)| > €i(n,€)) =0

n—oo

141

where €; is recursively defined as:

€ ifi=1
Ei(na 6) -
df 1(ni—1(n),e;i-1(n,€)) otherwise

Proof. Let F; be a shorthand for the intermediate composition of the computable functions

f; from 7 to k:
Fi(n) =1 (n;(n),...fx (ng(n),w))

I lower bound on the probability that F; is €;-close to F;:

P(IFi(n), Fi[> &)
= P(Ifi (ns(n), Fix1(n)) , im(f;] (Fian)| >)
< P([fi (ns(n), Fis1) , s (ns(n), Fia)| > ;ei) + P([fi (ni(n), Fiy1) , Hmlfi] (Fiy1)| > ;ei)

where I applied the triangle inequality and the union bound at the last step.
For the first term, since f; is computable and the domain X; is compact, it is uniformly

continuous. Let 0] be the modulus of continuity of f;. I upper-bound the first term by

P(Fiss(n), For| > 6 (ni(n), 5)

This bound in turn becomes a condition on F;;1(n) to be €;11-close to F; iy, where €41 is
given by the definition in the theorem statement. Therefore, by induction, it suffices to let

the second term approach zero in the limit of n. This completes the proof. O

6.5.4 Proof of Theorem 6.4.1

Proof Sketch. First, I pull out the temporal operators combinations (GF and F G) from the
outermost logical operation: If, for i € {1...k}, the sequence of functions), : S® — B
converges to k(;): S® — B in probability, then the function x, = logical_op(kin, ..., Kkn)
converges to k = logical_op(k(), .-, k(k)) in probability. Therefore, it suffices to show that
for any atomic proposition a, the formulas G F a and F G a are limit PAC-learnable by the real-
izations alwaysO(ni(n), eventually(ny(n),w)) and eventuallyO(ni(n),always(ns(n),w)),
respectively. Without loss of generality, I focus on the GF a case below.
By the sufficient condition for limit PAC-learnability (Section 6.3), I need to show that
the following condition holds for all € > 0:
lim P(|alwaysO(ni(n),w),lim[alwaysO](w)| > €) =0,

n—oo

142

and

Jim P(Jeventually(na(n),), lim[eventually|(w)| > d31yayso (N1(12), €)) = 0,
where the the two conditions are due to ¢ = 1 and ¢ = 2 in the theorem statement, respec-
tively. The first condition is satisfied by letting ni(n) grow to infinity:

aipg m(n) = oo

so I focus on the second condition.

The function 07,5 is the modulus of continuity of the function always0. Since the
function alwaysO inspects only the first n elements of the input stream, and the input stream
is the metric space over the infinite-length words B® which has the metric dpo(wy,ws) =

2~ Lprefix(wiw2) where Lyreix (w1, w2) is the length of the longest common prefix of wy and ws,

*

it is simply 63)4ays0(7, €) = 27", Thus, the condition simplifies to

Jim P(|eventually(ny(n), w), lim[eventually](w)| > 2-™™) = 0.
Recall the following epsilon-delta definition of the limit of the function eventually:
lim[eventually](w) = lim eventually(n,w)
For all € > 0 and w € B®, there exists n such that for all n’ > n:

92 —Lprefix (eventually(n/,w),lim[eventually](w)) <€

Let n*(e,w) be the minimum n that satisfies the above for any given w € B®, called the
local modulus of convergence of eventually to lim[eventually|. Then I rewrite the above

inequaility using the local modulus of convergence:

P(leventually(ny(n),w),lim[eventually|(w)| > 2’”1("))
< P(n*(Q’"l("),w) > ny(n))
- E[n*(27™, w)]

na(n)

The second step is due to Markov’s inequality:.
Therefore, by Theorem 6.3.2, it suffices to show that the ratio approaches zero in the

limit of n:)
*(09—n1(n
(2,)

n—00 n2(n)

=0 (6.4)

143

Here, the numerator is the expected number of steps of the inputs w, so that the first n;
elements of the output of eventually matches that of lim[eventually], where the expec-
tation is taken over the distribution of the inputs w induced by the Markov chain. I show
that the numerator is O (ny(n)).

Consider the i-th output of the function eventually, for i € {1...n;(n)}. Let n} denote
the minimum number of inputs eventually consumes such that the i-th output matches.

When the input does not satisfy “reach a state such that the proposition a is true”
starting from wli:], the i-th output of lim[eventually]| is False. Therefore, if n} = i, the
i-th output matches.

When the input satisfies “reach a state such that the proposition a is true” starting from
wli:], i-th output of eventually is also True must also be True. if n} equals the hitting time
of the target start starting from w(i:]. In other words, n} is upper bounded by @ + Ty (wli:]).

Combing the two cases, I have n} < i+ T3, (w[i:]), where T (w[i:]) is the hitting time
of the target state from w[i:] if it is finite (i.e., the target state is reachable from w][i:]), or 0

otherwise. Using this bound on n}, I derive the following chain of inequalities:

Efn’ (27", w)] < E[_max 0]

<E[_max i+ 75 (wlid)

< my(n) +E[_max T (wfid)

ni(n)

< ny(n) + ; E[T (wliz])]

The term E[T{, (w[i:])] is the expected hitting time of the target state from the state w|i:].
However, it is upper bounded by M = max,cgs 1% (s), where TP, (s) is the hitting time of
the target state from the state s if it is finite, or 0 otherwise. The quantity M is a constant

given the Markov chain. Therefore, the numerator is further upper bounded by
E[n*(27™™ w)] < (1+ M)ny(n)

Plugging the above bound back to ratio in Equation (6.4): If ny(n) grows faster than ny(n)

then the ratio approaches zero:

El[n* 2—n1(n)
lim £ O gy i)
n—oo n2<n) n—00 n2(n)
and the objective is limit PAC-learnable. n

144

6.5.5 Proof of Theorem 6.4.2

Proof. By the sufficient condition for limit PAC-learnability (Section 6.3), I need to show
that the following condition holds for all € > 0:

nangO P(lalways0(n;(n),w),lim[always0](w)| > €) = 0, and

lim P(Jreach_and_retraces(nz(n),w), lim[reach_and_retraces|(w)| > 0a1yayso (N1(1),€)) = 0,
n—oo

where the the two conditions are due to i = 1 and ¢ = 2 in the theorem statement, respec-
tively. The first condition is satisfied by letting n;(n) grow to infinity:
lim ny(n) = 0o
n—oo
so I focus on the second condition.
The function 43,50 1S the modulus of continuity of the function always0. Since the
function alwaysO inspects only the first n elements of the input stream, and the input stream

is the metric space over the infinite-length words B which has the metric dpw(w,wy) =

2~ Lpresix(wiw2) - where L presix (w1, w2) is the length of the longest common prefix of w; and ws,

*

alvayso(1, €) = 27", Thus, the condition simplifies to

it is simply ¢

Jim P(|reach_and_retraces(ny(n),w),lim[reach_and_retraces](w)| > 27"™) = 0.

Recall the following epsilon-delta definition of the limit of the function reach_and_retraces:

lim[reach_and_retraces|(w) = Jim reach_and_retraces(n,w)

For all € > 0 and w € B, there exists n such that for all n’ > n:

27Lpreﬁx(reach_and_retraces(n’,w),lim[reach_and_retraces}(w)) <€

Let n*(e,w) be the minimum n that satisfies the above for any given w € B®, called the
local modulus of convergence of reach_and_retraces to lim[reach_and_retraces]. Then I

rewrite the above inequaility using the local modulus of convergence:

P(|reach_and_retraces(ny(n), w),lim[reach_and_retraces](w)| > 27"
< P (27, w) > ny(n))
E[n (27", w)]

nQ(n)

145

The second step is due to Markov’s inequality.
Therefore, by Theorem 6.3.2, it suffices to show that the ratio approaches zero in the

limit of n: -
Eln*(2—ni(n
L El (@),)

n—oo n2 (n)

=0 (6.5)

Here, the numerator is the expected number of steps of the inputs w, so that the first n;
elements of the output of reach_and_retraces matches that of lim[reach_and_retraces],
where the expectation is taken over the distribution of the inputs w induced by the Markov
chain. I show that the numerator is O (ny(n)).

Consider the i-th output of the function reach_and_retraces, for i € {1...ny(n)}. Let
n; denote the minimum number of inputs reach_and_retraces consumes such that the i-th
output matches. Two cases arise as follows.

¢

When the input violates “reach the goal and retrace the path” starting from wli:], the
i-th output of lim[reach_and_retraces] is False. Thus, if n] = i, the i-th output matches.
When the input satisfies “reach the goal and retrace the path” starting from wli:], i-th
output of reach_and_retrace is also True must also be True. if n} equals twice the hitting
time of the target start starting from wli:] (it is twice because once to reach the target state
and once to retrace the path). In other words, n} is upper bounded by i + 2 - Ty (w]i:]).
Combing the two cases, I have n} < i+2- TP, (wli:]), where T, (w[i:]) is the hitting time
of the target state from w[i:] if it is finite (i.e., the target state is reachable from w]i:]), or 0

otherwise. Using this bound on n}, I derive the following chain of inequalities:

E[n (2™ w)] <E[max n]]
ielom (n)}

<E[max i+2- T (wli:
- [ie{l...nl(n)} hie (0[7:])]

< ni(n) +2- B[max | Ty (w[id)]

ni(n)

<nm(n)+2- Y E[TR (w]i])]

i=1

The term E[T{, (w[i:])] is the expected hitting time of the target state from the state w|i:].
However, it is upper bounded by M = max,es 11, (s), where T (s) is the hitting time of
the target state from the state s if it is finite, or 0 otherwise. The quantity M is a constant

given the Markov chain. Therefore, the numerator is further upper bounded by
Eln*(27"™ w)] < (1 +2M)ny(n)

Plugging the above bound back to ratio in Equation (6.5): If ny(n) grows faster than ny(n)

146

Non-computable
‘__--__T.--..~~
e "\\
s .
™,
mc pd \
! cp ol tx “‘
! \
! [
I i
i 1
i H
H e {
l‘ P - ---.-~ "l
\\ y g 92 -\ J
\/ 7% N
¥ Finitary LTL X
% o5 7 -~
. %7 X4
7 foa
.
/ 7 ! \ ! !
7 X ! 03 | H o6 V4
i 725 \ / L4
oA \E'Y /)// 5% //
% LA G AR AR A A, pmm———
. 7 77 »* v,
754 2707004 ST T DY
e (H Y {lim & 3
\\BO_Z/) D it S -’
omputa®

Figure 6.3: Landscape of objectives’ learnability up to the current chapter. Dashed circles
represent classes of objectives. The blue area denotes non-computable objectives. This
chapter introduced limit PAC-learnability as a suitable notion of learnability guarantee,
along with a sufficient condition that helps establish it. The example objectives in this
region have provably limit PAC-learnable realizations. The green slanted area represents
computable objectives that are PAC-learnable.

then the ratio approaches zero:

Eln* 2—n1(n)
lim [)] < (142M) lim (1) =0
n—oo n2<n) n—oo n2(n)
and the objective is limit PAC-learnable. n

6.6 Chapter Summary

This chapter presents my results on non-computable reinforcement-learning objectives. I
provide the first universal representation, a limit PAC-learnability criterion tailored for non-
computable objectives, and a sufficient condition to establish their learnability. The results
in this chapter lay the groundwork for learning policies with guarantees for non-computable
reinforcement-learning objectives. The universal representation establishes a formal foun-
dation for expressing any non-computable objective. The limit PAC-learnability criterion

provides a learnability guarantee, while the sufficient condition offers a structured frame-

147

work for analyzing and proving the learnability of these objectives.

Figure 6.3 illustrates the landscape of objective learnability up to this chapter. The
green slanted area highlights computable objectives that are PAC-learnable, as established
in Chapter 5. Beyond this area lie non-computable objectives. This chapter introduces a
universal representation of these objectives, a learnability criterion, and a sufficient condition
for proving their learnability — depicted as the light blue area in the figure. Using this
condition, I demonstrate that various example objectives and classes of objectives, enclosed
by the dashed blue boundaries in the figure are limit PAC-learnable. Specifically, infinite-
horizon LTL formulas, the limit average reward objective, and the example objectives o4
(reach and retrace, Section 6.4.1.4), and 06 (repeat reach and retrace, Section 6.4.2.2) all
satisfy limit PAC-learnability.

Application to Other Objectives Although I demonstrated these results through ex-
amples, the methods apply broadly to both existing and new non-computable objectives.
To establish the limit PAC-learnability of a non-computable objective, one first express it
as a nested limit of a sequence of computable functions. If the expression involves only a
single limit, the sufficient condition ensures limit PAC-learnability. For objectives involv-
ing multiple limits, one may decompose the objective into a composition of non-computable
functions, each represented as a single limit of computable functions. The sufficient condi-
tion then guides the reasoning process by constraining the choice of indices for each function
in the composition to ensure overall convergence. Identifying suitable indices that satisfy
the condition proves the limit PAC-learnability of the objective through the constructed

realization.

Generalization to Compact Policy Classes While this chapter assumes a fixed finite
set of deterministic policies and the planning-with-generated-model setting, the core result
extends to compact policy classes, such as stochastic finite-memory policies, and reinforce-
ment learning settings, if PAC-learning algorithms exist for these settings. Future work
could develop PAC-learning algorithms for such settings, and my results would then provide

a foundation for learning non-computable objectives in these settings.

148

Chapter 7
Discussion

The research presented in this thesis addresses a fundamental gap in reinforcement learning:
the specification and learnability of general objectives. By moving beyond reward-based
paradigms, this thesis develops a theoretical foundation for specifying and learning objectives
encompassing a broader spectrum of complexity, including non-computable objectives. These
contributions lay the groundwork for advancing our understanding of reinforcement-learning
objectives and extend the potential of intelligent agents under principled guarantees in a wide
range of applications. This chapter explores the implications of this work in the context of
Al safety and alignment, highlighting its relevance to contemporary challenges. Additionally,

it outlines future research directions that build upon the findings presented in this thesis.

7.1 Advancing Al Safety and Alignment

Artificial intelligence (Al) research has experienced exponential growth in the past decade,
with reinforcement learning at the forefront of this growth. As Al systems become increas-
ingly capable, the importance of Al safety and alignment with human values has become a
central concern. [57]. A body of work dedicated to improving reward-based approaches to
alignment, such as inverse reinforcement learning [68, 69], reward shaping [70], and learning
reward functions interactively from human feedback [71]. These efforts aim to improve Al
systems’ alignment with user intent by refining reward functions to more closely approximate
desired outcomes. Indeed, approaches like RLHF have demonstrated remarkable success,
particularly in large language models (LLMs), where they serve as a critical mechanism for
aligning system behavior with human values.

However, reward-based approaches remain limited in formally defining objectives and
guaranteeing alignment. This thesis extends beyond rewards functions and encompasses the

broader class of general objectives. The foundational contributions presented in this thesis

149

enable the specification of formally defined objectives that enhance alignment with human
values and offer guarantees for learning policies that effectively maximize these objectives.
The underlying premise of this thesis is that designing a truly safe and aligned Al system
requires two fundamental capabilities: first, the ability to specify objectives that reflect the
user’s intent formally, and second, the ability to learn policies that maximize these objectives
with guarantees. While these requirements might be overly stringent or unnecessary in some
applications — such as “generating text that is humorous" where the objectives are challeng-
ing to specify formally, or scenarios when one does not need a near-optimal performance but
merely one that is good enough (e.g., performing) better than the average human — they are
essential in high-stake domains. This extension is particularly critical in high-stakes domains
such as autonomous driving, healthcare, and finance, where a high level of assurance of Al
safety and alignment with intent. By laying the groundwork for specifying and optimizing
general objectives, this thesis contributes directly to the broader mission of advancing Al

safety and alignment in an era of rapidly evolving capabilities.

7.2 Future Work

I outline problems that I did not address in this thesis; nonetheless, they might be useful

directions for future research.

7.2.1 Algorithm Efficiency

The focus of this thesis has primarily been on the computability of the objective, with less
emphasis on algorithmic efficiency with respect to the objective. Specifically, the assumption
that the given objective is a constant implies that the measures of the learning algorithm’s
efficiency, such as sample complexity and computational complexity, do not vary with the
objective. In practice, the efficiency of learning algorithms with respect to the objective is an
important consideration, as it determines the practicality of the approach for specific classes
of objectives. Future research should address how to provide guarantees on the efficiency
of learning algorithms with respect to the objectives, for example, by providing sample
complexity bounds that depend on the complexity of the objective. A key challenge lies in
the variability introduced by different representation languages for objectives, as the same
objective may exhibit different expressiveness in distinct languages. Consequently, fixing the

objectives language is necessary to establish consistent measures of complexity.

150

7.2.2 Identifying Good Policies in a Compact Policy Class

Chapter 6 of thesis assumes the availability of an algorithm for a computable objective
that identifies a near-optimal policy for the objective in a compact set of policies. While
such an algorithm exists for planning-with-a-generative-model setting and a finite set of
deterministic policies, algorithms for other settings remain unvisited. Since the majority of
reinforcement learning research had focused on reward-based objectives, and reward-based
objectives have the property that there always exists a deterministic stationary optimal
policy (for discounted rewards) or a deterministic finite-memory optimal policy (for finite-
horizon rewards), the question of identifying good policies in an arbitrary policy class has
been less explored in the literature. The results in Chapter 6 suggest future exploration into
expression of a compact set of policies and algorithms that identify good policies in these

compact policy classes, thereby extending the applicability of my results to broader settings.

7.2.3 Towards an Objectives Programming Systsem

The theoretical results presented in this thesis provide insights into the design of a program-
ming language for expressing general reinforcement-learning objectives. For computable
objectives, a potential language could offer constructs for expressing computable functions
over real numbers. For non-computable objectives, it could include constructs for specifying
nested limits of computable functions, similar to the universal representation introduced in
this chapter. Such a language would provide a principled way to specify objectives that are
provably learnable by reinforcement learning algorithms. Moreover, akin to compilers that
translate high-level programming languages into machine code, the language could compile
to learning algorithms that identify good policies that achieve the specified objectives with
guarantees. The design of such a language is challenging, requiring a balance between ex-
pressiveness and learnability. The results in this thesis provide a theoretical foundation for
this task.

7.3 Conclusion

Artificial intelligence systems are growing in capabilities and deployed in various applications.
Some applications require high assurance that the Al system will perform as intended in
the presence of uncertainty in the environment. The majority of reinforcement learning
research has focused on reward-based objectives. As a result, the standard practice has
focused on designing reward functions as surrogates for the true objectives — specified

informally to align with the user’s intent — and then learning a policy using a reinforcement-

151

learning algorithm. However, this approach lacks a formal specification of the true objective
and offers little assurance that the resulting policy will perform well with respect to the
true objective. Despite these limitations, reward-based methods have achieved remarkable
practical success in domains such as robotics, games, and natural language processing. Yet,
this raises a critical question: Are we willing to accept the risks associated with the lack of
formal guarantees, especially in high-stakes applications?

This thesis takes a different approach by moving beyond rewards and considering the
general class of objectives, and acts as a first step toward addressing this fundamental gap in
reinforcement learning. The results presented in this thesis provide a theoretical foundation
for specifying and learning objectives that encompass a broader spectrum of complexity,
including non-computable objectives. Ideally, objectives should be specified formally, and
efforts should focus on reducing them to objectives that are efficiently learnable by reinforce-
ment learning algorithms. This approach ensures both formal guarantees of the objective
and the efficiency of the learning algorithm. While this thesis does not provide an end-to-end
solution to this challenge, it lays the theoretical groundwork for a deeper understanding of
reinforcement-learning objectives. It presents a step toward expanding the capabilities of
intelligent agents under principled guarantees.

Even if the realization of fully automated systems remains far in the future, the results
in this thesis still provide insights for practitioners interested in designing reward functions.
Practitioners should first consider if their objective, even if informally specified, is com-
putable — that is, whether it is possible to constructively assign a real number to each
trajectory of the system. If the objective is computable, the findings in Chapter 5 guide
the design of reward functions that precisely capture the objective. For objectives that are
not computable, practitioners can consider expressing the objective as a nested limit of a
sequence of computable functions. In such cases, they can then design a reward function that
aligns with the computable functions and use learning algorithms that learn good policies for
each computable function in the sequence, with the expectation that the policy will perform
well concerning the true objective in the limit.

With the rise of Al systems, such as large language models, being deployed to millions of
users — each with their objectives and preferences — this work is particularly timely. These
systems are increasingly relevant in high-stakes applications such as healthcare, finance, and
autonomous driving, where the ability to formally specify and learn objectives is critical.
The results presented in this thesis will inspire future research in this direction, and the
theoretical foundation laid here will serve as a stepping stone toward a deeper understanding

of the specification of formal objectives in reinforcement learning.

152

Appendix A

Pseudocode and Utility Functions

A.1 Standard Data Types Used in Psuedocode

In the pseudocode, I use the following standard data types:
e Union[A, B] A union of types, either type A or type B,
o List[A] A list of elements of type A, representing a finite-length word,

o Iterator[A] An iterator over elements of type A, representing an infinite-length word.
Note that to avoid confusion, Iterator[A] always represents an infinite-length word,

although Python’s Iterator type can represent finite-length words as well,
o Tuple[A, B] A tuple of elements of types A and B, representing a pair of elements,

e Callable[[A], B] A function that takes an argument of type A and returns a value
of type B.

A.2 Programming Utilities

Listing A.1 presents standard functions over finite objects used in the thesis. All these
functions are implementable in any Turing-complete programming language.

Listing A.2 presents standard stream and sequence processing utilities used in the thesis.
These functions are standard in Python’s standard library [72], and uses Python syntax for
generator, iterator and stream processing. Nonetheless, these functions are implementable

in any Turing-complete programming language.

153

def any(w: List[Boolean]) -> Boolean:
"""Return True if any element of the input list is True."""

def all(w: List[Boolean]) -> Boolean:

"""Return True if all elements of the input list are True."""

def max(w: List[Rational]) -> Rational:
"""Return the maximum element of the input list."""

def min(w: List[Rational]) -> Rational:
"""Return the minimum element of the input list."""

def log2ceil(x: Rational) -> Integer:
"""Return the smallest integer greater than or equal to the base-2 logarithm of x."""

def log2floor(x: Rational) -> Integer:
"""Return the largest integer less than or equal to the base-2 logarithm of x."""

Listing A.1: Standard function over finite objects. Standard arithmetic operations on natu-
rals, integers and rationals omitted.

154

def next(w: Iterator[A]) -> A:
"""Read the next element of the input stream, advancing the iterator.
If the stream is empty, raise a Stoplteration exception.

def map(f: Callable[[A], B], w: Iterator[A]) -> Iterator[B]:
"""Apply the function f to each element of the input stream."""

def enumerate(w: Iterator[A]) -> Iterator[Tuple[Natural, Al]:
"""Enumerate the input stream with indices."""

def zip(*wi: Iterator[Ti]) -> Iterator[Tuple[Ti, ...]]:
"""Transpose two or more input streams into a single stream of tuples."""
def islice(w: Iterator[A], n: Natural) -> Iterator[A]:
"""Slice the first n elements of the iterator.
The returned iterator has the property that trying to read

more than n elements raises a Stoplteration exception.
nnn

def tee(w: Iterator[A], n: Natural = 2) -> Tuple[Iterator[A], ...]:
"""Create n independent copies (default two) of the input iterator."""
def count(n: Integer = 0) -> Iterator[Integer]:
"""Generate an infinite stream of integers starting from n (default 0):

n, n+l, n+2,
nnn

def repeat(x: A) -> Iterator[A]:
"""Generate a stream of x repeated infinitely many times:

X, X, X,
nnn

Listing A.2: Standard stream and sequence processing utilities. The functions match closely
with the Python standard library, and they are implementable in any Turing-complete pro-
gramming language.

155

156

Appendix B

Additional Empirical Justification to
Section 4.4

This section completes the empirical justification Section 4.4 with additional details on the
empirical experiments.

Previous work has introduced various reinforcement-learning algorithms for LTL objec-
tives [1, 2, 16, 17]. T therefore ask the research question: Do the sample complexities for
reinforcement-learning algorithms for LTL objectives introduced by previous work depend on
the transition probabilities of the environment?

To answer the above question, I consider a set of reinforcement-learning algorithms for
LTL objectives and empirically measure the sample size for each algorithm to obtain a near-

optimal policy with high probability.

B.1 Methodology

Reinforcement-learning algorithms We consider a set of recent reinforcement-learning
algorithms for LTL objectives [1, 16], about which I give more details in Appendix B.4.

These algorithms are all implemented in the Mungojerrie toolbox [73].

1—
ay, A b ai,p @’
? a 0’
a2,1_p 2, P

Figure B.1: One of the two environment MDPs used in the experiments.

157

P--3

Figure B.2: Gridworld environment MDP from Sadigh et al. [2] with a customized transition
dynamics. The agent starts from the lower left corner. At each time step, the agent can
choose to move up, down, left or right. The white cells are sticky: the agent moves towards
the intended direction with probability 1 — p (or stays stationary if it will move off the grid),
and stays stationary with probability p. The red cells are trapping: once the agent steps on
a red cell, it stays there forever.

Objectives and Environment MDPs We consider two pairs of LTL formulas and envi-
ronment MDPs (LTL-MDP pair). The first pair is the formula F h and the counterexample
MDP constructed according to Section 4.3.3.1, shown in Figure B.1. The second pair is the
formula F goal and a gridworld environment MDP from the case study by Sadigh et al. [2]

with a customized transition dynamics, shown in Figure B.2.

Experiment Methodology We ran the considered algorithms on each chosen LTL-MDP
pair with a range of values for the parameter p and let the algorithms perform N environment
samples.

For each algorithm and each pair of values of p and N, I fix ¢ = 0.1 and repeatedly
run the algorithm to obtain a Monte Carlo estimation of the LTL-PAC probability (left
side of Equation (4.2)) for that setting of p, N and e. We repeat each setting until the
estimated standard deviation of the estimated probability is within 0.01. In the end, for
each algorithm and LTL-MDP pair I obtain 5 x 21 = 105 LTL-PAC probabilities and their
estimated standard deviations.

For the first LTL-MDP pair, I vary p by a geometric progression from 107! to 1072 in 5
steps: p(i) = 10~ for 1 <i <5 We vary N by a geometric progression from 10* to 10° in
21 steps.

For the second LTL-MDP pair, I vary p by a geometric progression from 0.9 to 0.6 in 5
steps: p(i) = 0.9 x 0.9037 for 1 <1i < 5. We vary N by a geometric progression from 3540 to
9 x 10% in 21 steps; if an algorithm does not converge to the desired LTL-PAC probability

within 9 x 10? steps, I rerun the experiment with an extended range of N from 3540 to

158

Reinforcement-learning-algorithm Learning Rate Exploration Reset Episode Every Steps

Q-learning #Ert Linear decay from 1.0 to 1071 10
Double Q-learning e Linear decay from 1.0 to 10~1 10
SARSA(N) 10 Linear decay from 1.0 to 1073 10

Table B.1: Non-default hyper-parameters used for each learning-algorithm

1.5 x 105,

B.2 Results

Figure 4.4 presents the results for the algorithm in Bozkurt et al. [1] with the setting of
Multi-discount, Q-learning, and the first LTL-MDP pair.

On the left, I plot the LTL-PAC probabilities vs. the number of samples N, one curve for
each p. On the right, I plot the intersections of the curves in the left plot with a horizontal
cutoff of 0.9.

As I see from the left plot of Figure 4.4, for each p, the curve starts at 0 and grows to 1
in a sigmoidal shape as the number of samples increases. However, as p decreases, the MDP
becomes harder: As shown on the right plot of Figure 4.4, the number of samples required
to reach the particular LTL-PAC probability of 0.9 grows exponentially.

Figure B.3 presents the complete results for all settings for the first LTL-MDP pair, and
Figure B.4 present the complete results for all settings for the second LTL-MDP pair. These

results are similar and lead to the same analysis as above.

B.3 Result Interpretation

Since the transition probabilities (p in this case) are unknown in practice, one can’t know
which curve in the left plot a given environment will follow. Therefore, given any finite
number of samples, these reinforcement-algorithms cannot provide guarantees on the LTL-

PAC probability of the learned policy. This result supports Theorem 4.3.4.

B.4 Empirical Experiment Details

Chosen Algorithms We consider a set of recent reinforcement-learning algorithms for
LTL objectives implemented in the Mongujerrie toolbox [73].

A common pattern in these previous works [1, 2, 16] is that each work constructs a
product MDP with rewards (i.e., an MDP with a reward function on that MDP) from

159

an LTL formula and an environment MDP. Moreover, these works permit the use of any
standard reinforcement-learning algorithm, such as Q-learning or SARSA()), to solve the
constructed product MDP with the specified reward function to obtain the product MDP’s
optimal policy. Finally, these works cast the optimal policy back to a non-Markovian policy
of the environment MDP, which becomes the algorithm’s output policy.

Following Hahn et al. [73], I call each specific construction of a product MDP with
rewards as a reward-scheme. We then characterize each reinforcement-learning algorithm as
a “reward-scheme” and “learning-algorithm” pair. We consider a total of five reward-schemes
. Reward-on-acc [2], Multi-discount [1], Zeta-reach [16], Zeta-acc [53], and Zeta-discount
[53]. We consider a total of three learning-algorithms: Q-learning [74], Double Q-learning
[75], and SARSA(X) [76]. This yields a total of 15 reinforcement-learning algorithms for LTL

objectives.

Algorithm Parameters Each reinforcement-learning algorithm in Mungojerrie accepts a
set of hyper-parameters. For the majority of the hyper-parameters, I use their default values
as in Mungojerrie Version 1.0 [73]. We present the hyper-parameters that differ from the
default values in Table B.1. For each of the hyper-parameters in Table B.1, I use a different
value from the default value because it allow all the algorithms that I consider to converge
within 10° steps (i.e., the maximum learning steps that I allow). For SARSA()), Tuse A = 0.

Software and Platform We use a custom version of Mungojerrie. My modifications are:

» Modification to allow parallel Monte Carlo estimation of the LTL-PAC probability.

« Modification to allow the reinforcement-learning algorithms to have a non-linear learning

K
k-t

hyper-parameter (see Table B.1 for the value of k for each algorithm). This modification

rate decay. In particular, I use a learning rate of at every learning step t, where k is a

is necessary for ensuring QQ-learning’s convergence [74].

I run all experiments on a machine with 2.9 GHz 6-Core CPU and 32 GB of RAM.

'We use the same naming of each reward-scheme as in the Mungojerrie toolbox [73]

160

LTL-PAC Prob.

LTL-PAC Prob.

LTL-PAC Prob.

lel
-
“+ le-2
= 3e-3

3e-2

le-3

#samples

104

10°

12500
10000
7500
5000

#samples

2500

— T
le-13e-21e-23e-31e-3
P

(a) Reward-on-acc with Q-learning

LTL-PAC Prob.

T
10t

102

T
103
#samples

T
104

LTL-PAC Prob.

10!

T
102 103
#samples

104

#samples

12500
10000
7500
5000
2500
0

104

#samples

le-13e-2 1e-2 3e-3 1e-3
P

(c) Reward-on-acc with SARSA())

12500
10000
7500
5000

#samples

2500
0

— T
le-13e-21le-23e-3 1e-3
P

(d) Multi-discount with Q-learning

1.00

0.75

LTL-PAC Prob.

103
#samples

104

10°

1.00 A

LTL-PAC Prob.

0.75 4

T
10t

T T
103
#samples

T
104

#samples

#samples

15000

10000

5000

15000

10000

5000

— T
le-13e-21e-23e-31e-3
P

Reward-on-acc with Double Q-learning

B e e
le-13e-2le-23e-3 1e-3
P

(e) Multi-discount with Double Q-learning

(f) Multi-discount

#samples

#samples

— T
le-13e-21le-23e-3 1e-3
P

(g) Zeta-reach with Q-learning

1.00 o

LTL-PAC Prob.

#samples

12500
10000
7500
5000
2500
0

le-13e-2 1e-2 3e-31e-3
P

with SARSA())

1.00

LTL-PAC Prob.

0.75 4

0.75

0.25

103 104
#samples

10°

#samples

104
#samples

#samples

20000

15000

10000

5000

T
le-13e-21le-23e-31e-3
P

Zeta-reach with Double Q-learning

12500
10000
7500
5000
2500
0

— T T
le-13e-21e-2 3e-3 1e-3
P

(i) Zeta-reach with SARSA(\)

Figure B.3: Empirical results of the first LTL-MDP pair (continued on next page)

161

1.00 12500 1.00 20000
8 075 4 g 10000 - 8 075 4 g 15000 -
o S 7500 S 2
Q 0.50 o £ < 0.50 o £ 10000 A
i S 5000 &]
£ 025 - # £ 025 - #
50 2500 4 50 5000
000 1, T T T T o1 0.00 4 T T o
10* 102 10° 10° 10° le-13e-2 le-2 3e-3 1e-3 10* 10° le-13e-2 le-2 3e-3 le-3
#samples P #samples P
(j) Zeta-acc with Q-learning (k) Zeta~acc with Double Q-learning
1.00 4 12500
£ 075 » 10000 -
a @
S 7500 A
2 050 £
i & 5000
£ 0.25 A #
- 2500 o
0.00
T T T T 0 -l T T T T
10 10° 10 10° le-13e-21e-23e-31e-3
#samples 14
(1) Zeta-acc with SARSA ()
1.00 1.00
; 10000 - . 15000 -
§ 0.75 4 g § 0.75 4 g
& 2 7500 4 & 3]
Q 050 o g Q 050 - E 10000
& 5 5000 1 & 3
& | £ =] # 5000 o
£ 025 2500 4 g 0.25
O.Oo_l TTTT TTTT T TTT T TTT 0" T T T T O'OO_I T T T i 0_' T T T T
10* 10° 10° 10° 10° le-13e-2 le-2 3e-3 1e-3 10* 10° 10° 10* 10° le-13e-2 le-2 3e-3 le-3
#samples P #samples P
(m) Zeta-discount with Q-learning (n) Zeta-discount with Double Q-learning
1.00 1 12500 -
5 0.75 4 » 10000 A
& 3 7500
5 J
2 050 £
< & 5000 o
£ 025 A #
= 2500
0.00 T T T T T 0 -, T T T T
10! 102 10° 10 10° le-13e-2 1e-2 3e-3 1e-3
#samples 14

(0) Zeta-discount with SARSA())

Figure B.3: Empirical results of the first LTL-MDP pair (continued). Each sub-figure corre-
sponds to a specific reward-scheme and learning-algorithm pair. For each sub-figure, on the
left: LTL-PAC probabilities vs. number of samples, for varying parameters p; on the right:
number of samples needed to reach 0.9 LTL-PAC probability vs. parameters p.

162

1.00 1.00 90000
; 35000 A ; J
075 g 075 ., 80000
& o & 9
[=3 4 Q
2 050 £ 30000 2 050 o & 70000 A
a © a ©
A o N n
£ 025 # 25000 A 2 0.25 - 3 60000 -
0.00 A - 20000 0.00 A ; 50000 A
— r — T
35x10° 7.9x10% 1.8x10% 4.0x 10 9.0 x 10* 9e-18e-17e-17e-1 6e-1 3.6x10° 92x10° 2.3x10% 59x 10* 1.5x 10° 9e-18e-17e-17e-1 6e-1
#samples P #samples P
(a) Reward-on-acc with Q-learning (b) Reward-on-acc with Double Q-learning
1.00
. 40000 o
g 0.75 - "
a 2 35000
Q 050 £
g ©
4 § 30000 -
£ 025 -
25000 A
0.00 .
Sy ——
3.5%10% 7.9x10% 1.8x10% 4.0x 10* 9.0 x 10* 9e-1 8e-1 7e-1 7e-1 6e-1
#samples 14
(c) Reward-on-acc with SARSA())
1.00 4 40000 1.00 90000 o
2 0.75 4 p 35000 o < 0.75 4 80000 4
g + el 8 £ %
Q 050 - e gel £ 30000 A 2 050 o £ 70000 A
a 4 7e-l I & 3
£ 025 s Tel # 25000 4 5 025 1 # 60000
o 6e-1
000 1 = ——— 20000 + 00 50000 -
35x10° 7.9x10% 1.8x10% 4.0x 10 9.0 x 10* 9e-18e-17e-17e-16e-1 3.6x10° 92x10° 23x10* 5.9x 10 1.5x10° 9e-18e-17e-1 7e-1 6e-1
#samples P #samples P
(d) Multi-discount with Q-learning (e) Multi-discount with Double Q-learning
1.00
£ 075 - ,, 40000 -
I <
S 35000 A
< 0.50 - £
ot # 30000
5 | J
£ 025 #*
0.00 4 ¢ bel 25000
: LU S S B S B B T T T T T
3.5x10° 7.9x10° 1.8x10% 4.0x10* 9.0x 10* 9e-1 8e-17e-1 7e-16e-1
#samples P
(f) Multi-discount with SARSA(\)
1.00 1.00 120000 A
; 35000 A ;
£ 075 4 “» £ 075 “»
£ #+ 9el 9 & 8 100000 4
Q 050 - e gel £ 30000 A Q 0.50 - g
g # Tel 3 it £ s0000
R #* g #* 1
£ 025 o 7e1 25000 4 £ 025
“ 6e-1
0.00 0.00
T ——— T
35%10° 7.9x10° 18x10* 4.0 x 10 9.0x 10* 9e-1 8e-17e-17e-1 6e-1 3.6x10° 92x10° 23x10* 5.9x10¢ 1.5x10° ge-18e-17e-17e-16e-1
#samples P #samples P

(g) Zeta-reach with Q-learning

LTL-PAC Prob.

1.00

0.75

0.50

0.25

0.00

T T
3.5x10° 7.9x10° 1.8x10* 4.0x10* 9.0 x 10*
#samples

(h) Zeta-reach with Double Q-learning

#samples

45000

40000

35000

30000

— T
9e-1 8e-1 7e-17e-1 6e-1
P

(i) Zeta-reach with SARSA(\)

Figure B.4: Empirical results of the second LTL-MDP pair (continued on next page)

163

1.00 1.00
P P 110000 -
0.75 o 35000 + 0.75 o
g P i 8 100000 -
[=3 [=3
£ 050 4 £ 30000 4 2 050 £ 90000 o
a © a ©
A n o a]
£ 025 o ¥ 000 4 2 0.25 - # 80000
0.00 - 0.00 70000
T ey T
3.5%10% 7.9x10% 1.8x10* 4.0x10* 9.0 x 10* 9e-1 8e-1 7e-1 7e-1 6e-1 3.6x10% 9.2x10° 2.3x10* 5.9x10* 1.5x 10° 9e-18e-17e-17e-16e-1
#samples P #samples p
(j) Zeta-acc with Q-learning (k) Zeta~acc with Double Q-learning
1.00 50000 o
. p 77
< 075 4 = 9e-1 5 " 45000 o
& ; <
= J
Q050 { & 7e1 g 40000
& s
2 025 4 sk 7e-1 £ 35000 o
=g o 6e-1
30000 A
0.00 A
T T T T T ——
35x10% 7.9x10° 18x10* 4.0 x 10¢ 9.0x 10° 9e-18e-17e-17e-1 6e-1
#samples P
(1) Zeta-acc with SARSA ()
1.00 1 1.00 1
; 35000 4 . 80000 -|
075 g 075 g
& 2 30000 4 [3 70000 4
< 050 £ 2 050 o 3
g g g 8
£ 0.25 4 # 25000 1 2 025 4§ 60000 4
0.00 A 20000 A 0.00 A 50000 4
——— r e —— T T T
3.5%10% 7.9x10% 1.8x10* 4.0x10* 9.0 x 10* 9e-1 8e-1 7e-1 7e-1 6e-1 3.6x10° 9.2x10° 2.3x10* 5.9x10* 1.5x10° 9e-1 8e-1 7e-1 7e-1 6e-1
#samples P #samples P
(m) Zeta-discount with Q-learning (n) Zeta-discount with Double Q-learning
1.00 45000
g 0.75 - ,, 40000 4
a K
Q - o B
Q 0550 2 35000
& s
2 i & 30000 A
5025 #*
0.00 4 25000 A
T T T T T T T T T T
35x10% 7.9x10° 18x10* 4.0 x 10¢ 9.0x 10° 9e-18e-17e-17e-16e-1
#samples P

(0) Zeta-discount with SARSA())

Figure B.4: Empirical results of the second LTL-MDP pair (continued). Each sub-figure
corresponds to a specific reward-scheme and learning-algorithm pair. For each sub-figure,
on the left: LTL-PAC probabilities vs. number of samples, for varying parameters p; on the
right: number of samples needed to reach 0.9 LTL-PAC probability vs. parameters p.

164

References

1]

[10]

[11]

A. Bozkurt, Y. Wang, M. Zavlanos, and M. Pajic. “Control Synthesis from Linear Tem-
poral Logic Specifications using Model-Free Reinforcement Learning”. In: International

Conference on Robotics and Automation. 2020.

D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia. “A Learning Based
Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic

Specifications”. In: Conference on Decision and Control. 2014.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (4th Edition,).
Pearson, 2020. 1SBN: 9780134610993. URL: http://aima.cs.berkeley.edu/.

L. Ouyang et al. “Training language models to follow instructions with human feed-

back”. In: Neural Information Processing Systems. Curran Associates Inc., 2022.

D. Silver et al. “Mastering the game of Go with deep neural networks and tree search”.
In: Nature (2016).

J. M. Jumper et al. “Highly accurate protein structure prediction with AlphaFold”.
In: Nature (2021).

C. Yu, J. Liu, S. Nemati, and G. Yin. “Reinforcement Learning in Healthcare: A
Survey”. In: ACM Computing Surveys (2021).

H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh. “Learning
scheduling algorithms for data processing clusters”. In: Proceedings of the ACM Special

Interest Group on Data Communication. Association for Computing Machinery, 2019.

O. M. Andrychowicz et al. “Learning dexterous in-hand manipulation”. In: Interna-
tional Journal of Robotics Research (2020).

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, 1998.

A. Strehl, L. Li, E. Wiewiora, J. Langford, and M. Littman. “PAC Model-Free Rein-

forcement Learning”. In: International Conference on Machine Learning. 2006.

165

http://aima.cs.berkeley.edu/

[12]

[19]

[20]

[21]

[22]

R. I. Brafman and M. Tennenholtz. “R-MAX - A General Polynomial Time Algorithm
for Near-Optimal Reinforcement Learning”. In: Journal of Machine Learning Research
3 (2002).

A. Pnueli. “The Temporal Logic of Programs”. In: Symposium on Foundations of Com-

puter Science. 1977.

J. Fu and U. Topcu. “Probably Approximately Correct MDP Learning and Control
With Temporal Logic Constraints”. In: Robotics: Science and Systems X. 2014.

X. Li, C. Vasile, and C. Belta. “Reinforcement learning with temporal logic rewards”.

In: International Conference on Intelligent Robots and Systems (2017).
E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak. “Omega-

Regular Objectives in Model-Free Reinforcement Learning”. In: Tools and Algorithms

for the Construction and Analysis of Systems. 2019.
M. Hasanbeig, Y. Kantaros, A. Abate, D. Kroening, G. Pappas, and I. Lee. “Reinforce-

ment Learning for Temporal Logic Control Synthesis with Probabilistic Satisfaction

Guarantees”. In: Conference on Decision and Control. 2019.

D. Henriques, J. G. Martins, P. Zuliani, A. Platzer, and E. M. Clarke. “Statisti-
cal Model Checking for Markov Decision Processes”. In: International Conference on

Quantitative Fvaluation of Systems. 2012.
P. Ashok, J. Kietinsky, and M. Weininger. “PAC Statistical Model Checking for Markov

Decision Processes and Stochastic Games”. In: Computer Aided Verification. 2019.

Y. Jiang, S. Bharadwaj, B. Wu, R. Shah, U. Topcu, and P. Stone. “Temporal-Logic-
Based Reward Shaping for Continuing Learning Tasks”. In: arXiv preprint: 2007.01498
(2020).

M. L. Littman, U. Topcu, J. Fu, C. Isbell, M. Wen, and J. MacGlashan. “Environment-
Independent Task Specifications via GLTL”. In: arXiv preprint: 1704.04341 (2017).

C. Yang, M. Littman, and M. Carbin. “On the (In)Tractability of LTL Objectives for
Reinforcement Learning”. In: The International Joint Conference on Artificial Intelli-
gence. 2022.

A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. Mcllraith. “LTL
and Beyond: Formal Languages for Reward Function Specification in Reinforcement

Learning”. In: The International Joint Conference on Artificial Intelligence. 2019.

166

[24]

[25]

[26]

G. D. Giacomo, L. Iocchi, M. Favorito, and F. Patrizi. “Foundations for Restrain-
ing Bolts: Reinforcement Learning with LTLf/LDLf Restraining Specifications”. In:

International Conference on Automated Planning and Scheduling. 2019.

K. Jothimurugan, R. Alur, and O. Bastani. “A Composable Specification Language for

Reinforcement Learning Tasks”. In: Neural Information Processing Systems. 2019.

A. Ronca and G. De Giacomo. “Efficient PAC Reinforcement Learning in Regular
Decision Processes”. In: The International Joint Conference on Artificial Intelligence.
2021.

R. Alur, S. Bansal, O. Bastani, and K. Jothimurugan. “A Framework for Transforming

Specifications in Reinforcement Learning”. In: arXiv preprint: 2111.00272 (2021).

H. Bazille, B. Genest, C. Jegourel, and J. Sun. “Global PAC Bounds for Learning
Discrete Time Markov Chains”. In: Computer Aided Verification. 2020.

C. Yang, M. Littman, and M. Carbin. “Computably Continuous Reinforcement-Learn-
ing Objectives are PAC-learnable”. In: National Conference on Artificial Intelligence.
2023.

G. De Giacomo and M. Y. Vardi. “Linear Temporal Logic and Linear Dynamic Logic
on Finite Traces”. In: The International Joint Conference on Artificial Intelligence.
2013.

C.-N. Fiechter. “Efficient Reinforcement Learning”. In: Conference on Computational

Learning Theory. 1994.

M. L. Puterman. Markov Decision Processes— Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., 1994.

M. Kearns and S. Singh. “Near-Optimal Reinforcement Learning in Polynomial Time”.
In: Machine Learning 49.2 (2002).

S. M. Kakade. “On the Sample Complexity of Reinforcement Learning”. PhD thesis.
Gatsby Computational Neuroscience Unit, University College London, 2003.

T. Brazdil, K. Chatterjee, M. Chmelik, V. Forejt, J. Kietinsky, M. Kwiatkowska,
D. Parker, and M. Ujma. “Verification of Markov Decision Processes Using Learning

Algorithms”. In: Automated Technology for Verification and Analysis. 2014.

L. G. Valiant. “A Theory of the Learnable”. In: Communications of the ACM 27.11
(1984).

167

[38]

[39]

[40]

[48]

[49]

C. Dann, T. Lattimore, and E. Brunskill. “Unifying PAC and regret: uniform PAC
bounds for episodic reinforcement learning”. In: Newural Information Processing Sys-
tems. 2017.

C. Dann, L. Li, W. Wei, and E. Brunskill. “Policy Certificates: Towards Accountable

Reinforcement Learning”. In: International Conference on Machine Learning. 2019.

M. Kearns, Y. Mansour, and A. Y. Ng. “Approximate Planning in Large POMDPs via

Reusable Trajectories”. In: Neural Information Processing Systems. 1999.

J.-B. Grill, M. Valko, and R. Munos. “Blazing the trails before beating the path:
Sample-efficient Monte-Carlo planning”. In: Neural Information Processing Systems.
2016.

A. L. Strehl, L. Li, and M. L. Littman. “Reinforcement Learning in Finite MDPs: PAC
Analysis”. In: Journal of Machine Learning Research 10 (2009).

C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

7. Manna and A. Pnueli. “A Hierarchy of Temporal Properties”. In: Symposium on

Principles of Distributed Computing. 1987.

T. Latvala. “Efficient Model Checking of Safety Properties”. In: Model Checking Soft-
ware. 2003.

O. Kupferman and M. Vardi. “Model Checking of Safety Properties”. In: Formal Meth-
ods in System Design 19 (1999).

A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu. “Spot
2.0 - A Framework for LTL and w -Automata Manipulation”. In: ATVA. 2016.

S. Temizer, M. Kochenderfer, L.. Kaelbling, T. Lozano-Perez, and J. Kuchar. “Colli-
sion Avoidance for Unmanned Aircraft using Markov Decision Processes”. In: AIAA

Guidance, Navigation, and Control Conference. 2010.

J. Kober, J. Bagnell, and J. Peters. “Reinforcement Learning in Robotics: A Survey”.
In: The International Journal of Robotics Research 32 (2013).

W. Schwarting, J. Alonso-Mora, and D. Rus. “Planning and Decision-Making for Au-
tonomous Vehicles”. In: Annual Review of Control, Robotics, and Autonomous Systems

1 (2018).

S. Safra. “On the Complexity of w-Automata”. In: Symposium on Foundations of Com-

puter Science. 1988.

K. Weihrauch. Computable Analysis: An Introduction. Springer Science & Business
Media, 2000.

168

[52]

[53]

[64]

[65]

S. Sickert, J. Esparza, S. Jaax, and J. Kfetinsky. “Limit-Deterministic Biichi Automata
for Linear Temporal Logic”. In: Computer Aided Verification. 2016.

E. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak. “Faithful and
Effective Reward Schemes for Model-Free Reinforcement Learning of Omega-Regular

Objectives”. In: Automated Technology for Verification and Analysis. 2020.

J. Corazza, I. Gavran, and D. Neider. “Reinforcement Learning with Stochastic Reward
Machines”. In: aaai. 2022.

R. Subramani, M. Williams, M. Heitmann, H. Holm, C. Griffin, and J. Skalse. “On
the Expressivity of Objective-Specification Formalisms in Reinforcement Learning”.

In: 2024.

D. McDermott, M. Ghallab, A. E. Howe, C. A. Knoblock, A. Ram, M. M. Veloso, D. S.
Weld, and D. E. Wilkins. PDDL — the planning domain definition language. 1998.

D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano, J. Schulman, and D. Mané.
“Concrete Problems in Al Safety”. In: arXiv preprint: 1606.06565 (2016).

R. T. Icarte, T. Q. Klassen, R. A. Valenzano, and S. A. Mcllraith. “Teaching Multiple
Tasks to an RL Agent using LTL”. In: Adaptive Agents and Multi-Agent Systems. 2018.

Q. Gao, D. Hajinezhad, Y. Zhang, Y. Kantaros, and M. M. Zavlanos. “Reduced Vari-
ance Deep Reinforcement Learning with Temporal Logic Specifications”. In: Interna-

tional Conference on Cyber-Physical Systems. 2019.
C. Voloshin, H. M. Le, S. Chaudhuri, and Y. Yue. “Policy optimization with linear

temporal logic constraints”. In: Neural Information Processing Systems. 2024.

J. Svoboda, S. Bansal, and K. Chatterjee. “Reinforcement Learning from Reachability
Specifications: PAC Guarantees with Expected Conditional Distance”. In: Interna-

tional Conference on Machine Learning. 2024.

A. Naik, R. Shariff, N. Yasui, H. Yao, and R. S. Sutton. “Discounted Reinforcement
Learning Is Not an Optimization Problem”. In: arXiv preprint: 1910.02140 (2019).

D. Shao and M. Kwiatkowska. “Sample efficient model-free reinforcement learning from
It] specifications with optimality guarantees”. In: The International Joint Conference
on Artificial Intelligence. 2023.

X.-B. Le, D. Wagner, L. Witzman, A. Rabinovich, and L. Ong. “Reinforcement Learn-
ing with LTL and ω-Regular Objectives via Optimality-Preserving Translation

to Average Rewards”. In: Neural Information Processing Systems. 2024.

A. S. Kechris. Classical Descriptive Set Theory. Springer, 1995.

169

[66]

[67]

[68]

[69]

[70]

M. Yasugi, T. Mori, and Y. Tsujii. “Effective properties of sets and functions in metric

spaces with computability structure”. In: Theoretical Computer Science (1999).

C. J. Bishop, E. A. Feinberg, and J. Zhang. “Examples concerning Abel and Cesaro
limits”. In: Journal of Mathematical Analysis and Applications 2 (2014).

A. Y. Ng and S. J. Russell. “Algorithms for Inverse Reinforcement Learning”. In:

International Conference on Machine Learning. 2000.

D. Hadfield-Menell, A. Dragan, P. Abbeel, and S. Russell. “Cooperative inverse rein-

forcement learning”. In: Neural Information Processing Systems. 2016.

A. Y. Ng, D. Harada, and S. J. Russell. “Policy Invariance Under Reward Transforma-
tions: Theory and Application to Reward Shaping”. In: International Conference on
Machine Learning. 1999.

P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei. “Deep
reinforcement learning from human preferences”. In: Neural Information Processing
Systems. 2017.

P. S. Foundation. Python Documentation. 2025. URL: https://docs.python.org/3/.
E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak. “Mungojer-

rie: Reinforcement Learning of Linear-Time Objectives”. In: arXiv preprint: 2106.09161
(2021).

C. J. C. H. Watkins and P. Dayan. “Q-learning”. In: Machine Learning 8.3 (1992).
H. V. Hasselt. “Double Q-learning”. In: Neural Information Processing Systems. 2010.

R. S. Sutton. “Learning to predict by the methods of temporal differences”. In: Machine
Learning 3.1 (1988).

170

https://docs.python.org/3/

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The Reward Objective
	1.1.1 Specification
	1.1.2 Guarantee
	1.1.3 Reward Hacking

	1.2 Beyond Reward-based Objectives
	1.2.1 Example with Logical Specification
	1.2.2 Other Specifications in the Literature
	1.2.3 Beyond the Literature

	1.3 Thesis: A Framework for General Objectives
	1.3.1 LTL Objectives
	1.3.2 PAC-learnability of Computable Objectives
	1.3.3 Towards Learnability of Non-Computable Objectives
	1.3.4 Examples Objectives

	1.4 Contributions
	1.4.1 Linear Temporal Logic Objectives
	1.4.2 Computable Objectives
	1.4.3 Non-computable Objectives

	1.5 Thesis Organization

	2 Preliminaries
	2.1 Basic Notations
	2.2 Reinforcement Learning with Rewards
	2.2.1 Gridworld Example
	2.2.2 Markov Processes
	2.2.3 Reward-Based Objectives
	2.2.4 Learning Models
	2.2.5 Guarantees for Reinforcement Learning Algorithms

	3 Foundation for General Reinforcement-learning Objectives
	3.1 Overview
	3.2 Markov Processes
	3.3 Objectives
	3.3.1 Environment-specific Objective
	3.3.2 Environment-generic Objective

	3.4 Planning with a Generative Model
	3.5 Reinforcement Learning
	3.6 Probably Approximately Correct in MDPs
	3.6.1 Learnability of Objectives
	3.6.2 Established PAC-Learnable Objectives

	4 Linear Temporal Logic Objectives
	4.1 Overview
	4.1.1 Linear Temporal Logic Objective
	4.1.2 Infinite-horizon LTL Objective Example
	4.1.3 Finitary LTL Objective Example
	4.1.4 Prior Works
	4.1.5 Implications for Relevant and Future Work

	4.2 Linear Temporal Logic Objectives
	4.2.1 Linear Temporal Logic
	4.2.2 MDP with LTL Objectives
	4.2.3 Infinite Horizons in LTL Objectives

	4.3 Learnability of LTL Objectives
	4.3.1 The Main Theorem
	4.3.2 Consequence of the Theorem
	4.3.3 Proof of 4.3.4: Forward Direction
	4.3.4 Proof Sketch of 4.3.4: Reverse Direction
	4.3.5 Proof of 4.3.4: the Reverse Direction

	4.4 Empirical Justifications
	4.4.1 Methodology
	4.4.2 Results
	4.4.3 Results Interpretation

	4.5 Directions Forward
	4.5.1 Use a Finitary Objective
	4.5.2 Best-effort Guarantee
	4.5.3 Know More About the Environment
	4.5.4 Use an LTL-like Objective

	4.6 Concurrent Work
	4.7 Proofs
	4.7.1 Proof of 4.3.5
	4.7.2 Proof of 4.7.1
	4.7.3 Complete Proof of 4.3.6
	4.7.4 Uncommittable Words for non-Finitary Formulas

	4.8 Chapter Summary

	5 On the Learnability of Computable Objectives
	5.1 Overview
	5.1.1 Example
	5.1.2 Continuity and Computability
	5.1.3 PAC-learnability

	5.2 Type-2 Computability Theory
	5.2.1 Ordinary Computability
	5.2.2 Type-2 Computability

	5.3 Condition for PAC-Learnability
	5.3.1 Uniform Continuity
	5.3.2 Continuity Implies PAC-learnability
	5.3.3 Computability
	5.3.4 Computability Implies PAC-learnability

	5.4 Theorem Applications
	5.4.1 Reward Machine
	5.4.2 LTL Surrogate Objectives
	5.4.3 Geometric Linear Temporal Logic

	5.5 Proof of 5.4.5
	5.6 Summary of Works on LTL Surrogate Objectives
	5.7 Proof of 5.3.5
	5.8 Computing the Modulus-of-Continuity
	5.9 PAC Reinforcement-Learning Algorithm for Computable Objectives
	5.10 Proof of Unnecessity
	5.11 Proof of Computability of 5.6
	5.12 Chapter Summary

	6 Non-Computable Objectives
	6.1 Overview
	6.1.1 Examples
	6.1.2 Prior Work

	6.2 Non-computable Objective
	6.2.1 Representation
	6.2.2 Limit PAC-learable

	6.3 Condition for Limit PAC-learnability
	6.3.1 Decomposition of Non-computable Objective
	6.3.2 Sufficient Condition for Limit PAC-learnability

	6.4 Examples
	6.4.1 Single Limit Examples
	6.4.2 Multi-Limit Examples

	6.5 Proofs
	6.5.1 Proof of 6.2.1
	6.5.2 Proof of 6.3.1
	6.5.3 Proof of 6.3.2
	6.5.4 Proof of 6.4.1
	6.5.5 Proof of 6.4.2

	6.6 Chapter Summary

	7 Discussion
	7.1 Advancing AI Safety and Alignment
	7.2 Future Work
	7.2.1 Algorithm Efficiency
	7.2.2 Identifying Good Policies in a Compact Policy Class
	7.2.3 Towards an Objectives Programming Systsem

	7.3 Conclusion

	A Pseudocode and Utility Functions
	A.1 Standard Data Types Used in Psuedocode
	A.2 Programming Utilities

	B Additional Empirical Justification to 4.4
	B.1 Methodology
	B.2 Results
	B.3 Result Interpretation
	B.4 Empirical Experiment Details

	References

