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Abstract

A desirable goal for cryptographic protocols is to guarantee security when the protocol is
composed with other protocol instances. Universally Composable (UC) protocols provide this
guarantee in a strong sense: A protocol remains secure even when composed concurrently with
an unbounded number of instances of arbitrary protocols. However, UC protocols for carrying
out general tasks are known to exist only if a majority of the participants are honest, or in
the common reference string (CRS) model where all parties are assumed to have access to a
common string that is drawn from some pre-defined distribution. Furthermore, carrying out
many interesting tasks in a UC manner and without honest majority or set-up assumptions is
impossible, even if ideally authenticated communication is provided.

A natural question is thus whether there exist more relaxed set-up assumptions than the CRS
model that still allow for UC protocols. We answer this question in the affirmative: we propose
alternative and relaxed set-up assumptions and show that they suffice for reproducing the general
feasibility results for UC protocols in the CRS model. These alternative assumptions have the
flavor of a “public-key infrastructure”: parties have registered public keys, no single registration
authority needs to be fully trusted, and no single piece of information has to be globally trusted
and available. In addition, unlike known protocols in the CRS model, the proposed protocols
guarantee some basic level of security even if the set-up assumption is violated.

∗Work done while visiting the IBM T.J. Watson Research Center. Supported by NSF grants DMS-0111298 and
CCR-0324906.

†Work done while at the Royal Institute of Technology, Sweden.
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1 Introduction

Designing protocols that guarantee security in open, multi-protocol, multi-party execution environ-
ments is a challenging task. In such environments a protocol instance is executed concurrently with
an unknown number of instances of the protocol, as well as arbitrary other protocols. Indeed, it
has been demonstrated time and again that adversarially-coordinated interactions between different
protocol instances can compromise the security of protocols that were demonstrated to be secure
when run in isolation (see, e.g., [GK90, DDN00, KSW97, DNS98]). A natural way for guaranteeing
security of protocols in such complex execution environments is to require that protocols satisfy
a notion of security that provides a general secure composability guarantee. That is, it should
be guaranteed that a secure protocol maintains its security even when composed with (i.e., runs
alongside) arbitrary other protocols. Such a general notion of security is provided by the universally
composable (UC) security framework [C01], which provides a very general composability property: A
secure protocol is guaranteed to maintain its security (in the sense of emulating an ideally trusted
and secure service) even when run concurrently with multiple copies of itself, plus arbitrary network
activity.

However, such strong secure composability properties come at a price: Carrying out many in-
teresting cryptographic tasks in the UC framework has been shown to be impossible in the plain
model, unless a majority of the participants are completely honest [C01, CF01, CKL03]. The impos-
sibility holds even if ideally authenticated communication is guaranteed. Furthermore, it has been
shown [L03, L04] that this impossibility is not a result of technical characteristics of any particular
framework; rather, they are inherent to the strong composability requirements.

In light of these results, researchers have turned to constructing protocols under some setup
assumptions. Specifically, the common reference string (CRS) model was used. In this model,
originally proposed in [BFM88], all parties have access to a common string r that was ideally drawn
from some publicly known distribution. (In the case of [BFM88], this was the uniform distribution.)
It is further assumed that no secret information correlated with this string is known. (It can be
thought of as if this string is published by some “trusted dealer” that plays no further part in the
protocol execution). Several strong feasibility results are known in the CRS model. In particular,
it was shown that practically any functionality can be realized by a UC protocol in the CRS model,
with any number of faults, assuming authenticated communication [CF01, CLOS02]. Furthermore,
non-interactive UC Zero-Knowledge protocols were constructed in the CRS model model under
similar assumptions (and assuming secure data erasure is possible) [DDO+01, CLOS02].

Drawbacks of the CRS model. Security in the CRS model depends in a crucial way on the
fact that the common string is chosen properly. That is, the model provides no security guarantees
in the case that the common string is chosen from a different distribution than the specified one, or
when some “secret trapdoor information” correlated with the reference string is leaked. In fact, in
most existing protocols in the CRS model the security proof actually provides an efficient strategy
for completely breaking the security of the protocol when the reference string can be chosen in a
malicious way. In particular, if the CRS is chosen by a single entity then this entity could, if
it wished, read sensitive data, forge proofs, and in general completely undermine the security of
the protocol, all in a way that is undetectable by the honest parties. This means that the naive
way of realizing the CRS model by letting a single entity choose the reference string forces all the
participants to put absolute trust in this entity.



Our approach. We reproduce the above feasibility results, proven in the CRS model, in a number
of alternative models (or, “set-up assumptions”). The main advantage of these alternative models
is that they are realizable in ways that reduce the trust that the participants need to put in other
entities. All these models have a common theme: They avoid the need that all participants in a
protocol execution put complete trust in a single entity, or a single reference string. Instead, we
adopt a trust model that somewhat resembles the trust model of a “public-key infrastructure.”
That is, each party registers a “public key” with a “registration authority” that it trusts. In order
to engage in a joint computation, the participants obtain the public keys of each other from the
respective authorities. The trust that each participant has to put in other authorities, except for the
authority it is registered with, is quite minimal; thus no single entity needs to be completely trusted
by all participants. Our protocols do not require parties to keep any secret data that is associated
with their public keys. Furthermore, they are naturally aligned with the standard trust model of a
public-key infrastructure, that is anyhow needed for obtaining authenticated communication. They
also provides better “plausible deniability” properties.

Our results in more detail. We first formulate a “key registration (KR) service” that captures
the “minimal common denominator” of several set-up scenarios. That is, we demonstrate how this
service can be realized in each one of these scenarios. Then, we show how to reproduce the above
results given this service. All our results hold in face of any number of adaptively corrupted parties.
(Technically, the KR service is captured as an “ideal functionality” within the UC framework. See
details within.)

The key registration service is parameterized by a function f : {0, 1}∗ → {0, 1}∗ (representing
a method for deriving the public key from a seed, that represents the secret key), and provides
roughly the following “ideal services”. Any party can register with the KR service and obtain a
public key in return. In a “normal” registration process, the registering party obtains a public key
v = f(r) for some uniformly chosen r that is known only to the service. (Such keys are called safe.)
In addition, a corrupted party may provide the service with any arbitrary r and have its public key
set to f(r). (Such keys are called well-formed.) Furthermore, uniqueness of keys is not guaranteed:
the public key of any party may be set as equal to the public key of any other party, subject to
the sole restriction that honest parties are assigned safe keys. Parties may also have multiple keys.
Whenever a party asks the service for the public key of another party, the service returns one of
the keys registered for that party.

This formulation of the KR service provides relatively weak security guaranteed to users. It
captures either a single entity that provides keys to all parties (such as in the case of a CRS),
or a collection of separate entities, where no single entity is trusted by all parties. The difference
between the powers of honest and corrupted registering parties, and the ability to copy keys, models
the fact that a party can put less trust in registration services chosen be other parties than it can
put in its own registration service. Specifically, a party can trust only its own key to be safe. Other
keys may be only well-formed.

We show how to realize any ideal functionality given a KR service with an appropriate choice
of the derivation function f . Our constructions are natural adaptations of the [CF01, CLOS02, DN02]
constructions and rely on the same cryptographic assumptions. We also show how to construct
non-interactive UC Zero-Knowledge protocols given a KR service with an appropriate f . Here our
construction is quite different than existing ones, as no natural extension of the existing construc-
tions seems to work.

We show that the KR service can be easily realized in a number of natural settings (or, trust



models). A first such model is the CRS model itself (thus demonstrating that the KR service
model is indeed a relaxation of the CRS model). Other trust models include a number of “PKI-
like” settings where the parties have access to registration authorities that either choose public keys
for the registering parties, or alternatively expect the registering party to exhibit the secret seed
that corresponds to the registered public key. These models constitute a sequence where the trust
in the registration authorities becomes weaker and weaker. See details in Section 3.

Our trust assumptions should be contrasted with the more standard trust assumptions on regis-
tration authorities for the purpose of providing authenticated communication. (These assumptions
are formalized within the UC framework in [C04], where it is also shown that without trust as-
sumptions no authenticated communication is possible.) Essentially, for the purpose of providing
authenticated communication, the registration authority should simply register the registrant’s
identity together with a public value that is provided by the registrant, and supply the registered
public key of any party upon request. This is a strictly weaker trust assumption than that the KR
service. However, for the purpose of guaranteeing authentication it is essential that the keys of
each two honest parties are different from each other, and furthermore that each party maintains
a secret key associated with its public key. In contrast, in our case the keys of honest parties can
be identical and no secret information related to those keys needs to be known.

Finally, we consider the case where parties have no trust whatsoever in the registration services
used by other parties. (This setting can be thought of as the setting where each party runs
its own registration service which registers only itself.) Here we’re back in the plain model of
computation, thus UC computation is in general impossible. Yet, our protocols still provide some
security guarantees. Specifically, we demonstrate that they remain secure with respect to the
standard notion of stand-alone security (as in, say, [C00]).

Our Techniques. We use two different types of techniques: one for realizing general function-
alities (i.e., re-establishing the [CLOS02] results), and another for constructing non-interactive UC
Zero-Knowledge protocols. We sketch them in order. Recall that the [CLOS02] general construction
for realizing any ideal functionality proceeds as follows. First, a UC Commitment protocol, i.e. a
protocol that realizes the ideal commitment functionality, is constructed. Next, any functionality
is realized given ideal commitment. It thus suffices for our purpose to demonstrate how to realize
the ideal commitment functionality in our model. Recall that the ideal commitment functionality
comes in two flavors: Fcom, which handles a single commitment, and Fmcom, which handles multiple
commitments. We concentrate on the more challenging task of realizing Fmcom; this allows us to
run multiple commitments (and, consequently, multiple copies of our protocols for realizing any
functionality) using a single public key per party.

Our starting point is an observation that existing protocols for realizing Fmcom in the CRS
model actually use the CRS for two separate purposes, called extractability and equivocation. (A
sketch of these properties appears within.) Furthermore, the CRS consists of two separate parts,
where each part is used to guarantee only one of the properties. Finally, extractability is a concern
only when the committer is corrupted, and equivocation is a concern only when the receiver is
corrupted. It thus seems natural to “split” the CRS between the public keys of the committer and
the receiver, where each party holds the corresponding part. That is, the public key of each party
will consist of a part guaranteeing extractability for the commitments where it plays the committer,
plus a part guaranteeing equivocation for the commitments where it plays the receiver. We show
that this approach works, modulo some technical complications. In another “twist,” taken from
[DN02], we show how to realize Fmcom in a setting where only the committer has a registered public
key.



Next we sketch our approach for constructing non-interactive UC Zero-Knowledge protocols.
Here the exiting protocols are not so naturally amenable to separating the CRS. Specifically, all
known constructions use the so-called “hidden bit model” (see, e.g., [Gol01]), where the same string
is used to guarantee the concerns of both parties, i.e. extractability and simulatability. We thus
propose a new construction, that allows for such separation: Essentially, the parties will run the
ZAP protocol of [DN00], where the verifier’s challenge is included in its public key. In addition,
the verifier’s public key will contain additional information that guarantees simulatability, and the
prover’s public key contains information that allows extracting the witness.

Obtaining plausible deniability. An intriguing property of traditional zero-knowledge proto-
cols in the plain model is that the interaction is “deniable” for the prover, in the sense that the
verifier cannot later “convince” a third party, who did not witness the interaction, that the inter-
action took place. Essentially, this is so since the verifier can, using the simulator guaranteed by
the zero-knowledge property, generate a valid-looking transcript of an interaction even when the
verifier never actually interacted with the prover. The crucial property here is that there exists a
simulator that needs only information that is locally known to the verifier. We call this property
self simulatability, and generalize it in a natural way to two-party protocols for any task.1

Interestingly, zero-knowledge and other secure two-party protocols in the CRS model are not
necessarily self-simulatable, since that model allows the simulator to use “trapdoor information”
on the CRS that is not available to the parties in a real execution. Furthermore, none of the known
zero-knowledge and general two party protocols in the UC framework are self-simulatable.

Our constructions, both of UC non-interactive zero-knowledge and of protocols for realizing
any two-party functionality, are self-simulatable for some of the instantiations of the KR service.
(Specifically, we need an instantiation where each party explicitly provides its secret seed to the
registration service.) This may be regarded as an additional advantage of our protocols over
existing ones. We note that the way we achieve self-simulatability is reminiscent of the technique
of Jakobsson et. al. [JSI96].

Related Work. Prabhakaran and Sahai [PS04] have recently proposed a way to relax the UC
framework so as to allow general secure computation in the plain model while maintaining the
ability to prove the universal composition theorem. This approach is complementary to ours:
While we investigate how far can one relax the set-up assumptions within the UC framework, they
investigate how far can one relax the framework itself, while still guaranteeing some sort of security
and composability in certain cases. In particular, while they make no set-up assumptions, the
security guarantees provided by their notion are strictly weaker than the ones provided here.

Herzog, Liskov and Micali [HLM03] use an enhanced public-key model that has some similarities
to our model, in order to obtain plaintext-aware encryption.

Organization. Section 2 contains some brief background on the UC framework. Section 3
presents the key registration model and discusses how it can be realized. Section 4 shows how to
realize any well-formed functionality in the key registration model. Section 5 sketches our construc-
tion of UC non-interactive ZK protocols, and Section 6 sketches our argument that the protocols

1We do not use the term “deniability” since it means different things in different contexts. For instance, in the
context of encryption and voting, deniability means the ability of the sender of data (or voter) to equivocate its local
data and randomness even when the true communication transcript is known (see e.g. [BT94, CDNO97]).



we construct remain stand-alone secure even if all the trust assumptions fail. The presentation in
this extended abstract is quite informal. More rigorous treatment is provided in [BCNP04] .

2 The UC framework and the CRS model

We provide a brief overview of the universally composable security framework of [C01]. The frame-
work allows for defining the security properties of cryptographic tasks so that the security of
protocols is maintained under a general composition operation with an unbounded number of in-
stances of arbitrary protocols running concurrently in the system. This composition operation is
called universal composition. Similarly, definitions of security in this framework are called universally
composable (UC).

As in other general definitions (e.g., [MR91, B91, C00, PW00]), we use the definitional approach
of [GMW87], where a protocol is said to securely realize a given task if running the protocol amounts
to “emulating” an ideal process where the parties and the adversary hand their inputs to a trusted
party that locally evaluates the appropriate outputs and hands them back to the parties. The
algorithm run by the trusted party (which is aimed at capturing the requirements of the task at
hand) is called an ideal functionality. This algorithm may simply evaluate a function of the inputs
of the parties, or alternatively be an ongoing reactive process where inputs and outputs occur
repeatedly over time and local state is maintained.

The model of computation includes the parties running the protocol, an adversary A that
controls the communication channels and potentially corrupts parties, and an environment Z that
generates the inputs to all parties, reads all outputs, and in addition interacts with the adversary
in an arbitrary way throughout the computation. (The interaction between A and Z models the
inevitable “information flow” between a protocol execution and the rest of the system, including
other protocols running concurrently.) A protocol “emulates” the ideal process with a given ideal
functionality F if for any “real-life” adversary A there exists an “ideal-process adversary” S, such
that no environment Z can tell whether it is interacting with A and parties running the protocol,
or with S and parties that interact with F in the ideal process. In a sense, here Z serves as an
“interactive distinguisher” between a run of the protocol and the ideal process with access to F .

In addition to serving as a security criterion for protocols, the concept of a “trusted party” is
used also to capture semi-idealized computation, and in particular set-up assumptions. Specifically,
given an ideal functionality F , the F-hybrid model is defined as the model where the parties have,
in addition to the usual communication mechanisms, also access to multiple copies of a trusted
party running F . The copies of F are identified via session IDs (SIDs). That is, each call to a
copy of F and each response from this copy should hold the SID of that copy.

The following universal composition theorem is proven in [C01]. Consider a protocol π that
operates in the F-hybrid model, and let ρ be a protocol that securely realizes F as sketched
above. Let the composed protocol πρ be identical to π with the exception that the interaction
with each copy of F is replaced with an interaction with a separate instance of ρ. Then, π and
πρ have essentially the same input/output behavior. In particular, if π securely realizes some ideal
functionality G in the F-hybrid model then πρ securely realizes I as well, without access to F .

The CRS model. In the UC framework, the CRS model is formalized as the Fcrs-hybrid model,
where Fcrs is the common reference string ideal functionality, presented in Figure 1. Here all calls
to Fcrs are answered by the same reference string that was chosen by the functionality according
to a publicly known distribution.



3 The key registration functionality

This section presents and motivates our relaxed key registration functionality. We also present
several alternative ways to realize it. The idea is to provide a relatively general and minimal set-up
assumption that can be realized by a number of quite different and alternative “set-up mechanisms”,
and at the same time suffices for realizing general functionalities. We first present the functionality.
Next, we describe a number of ways to realize it.

The key registration functionality, Fkr, is presented in Figure 2. It is parameterized by a
(deterministic) function f : {0, 1}∗ → {0, 1}∗, that represents a method for computing a public
key given a secret (and supposedly random) key. The functionality allows parties to register their
identities together with an associated “public key”. The “public key” to be associated with a
party upon registration is determined as follows. The functionality keeps a (public) set R of “good
public keys”. Upon receiving a registration request from party Pi (which is either corrupted or
uncorrupted), the functionality first notifies the adversary that a request was made and gives the
adversary the option to set the registered key to some key p that is already in R. If the adversary
declines to set the registered key, then the functionality determines the key on its own, by choosing
a random secret r from a given domain (say, {0, 1}k for a security parameter k) and letting p = f(r).
Once the registered key p is chosen, the functionality records (Pi, p) and returns p to Pi and to
the adversary. Finally, if p was chosen by the functionality itself then p is added to R. If the
registering party is corrupted, then it can also specify, if it chooses, an arbitrary “secret key” r
and then register with the value f(r). A retrieval request (made by any party) for the public key
of Pi is answered with either an error message ⊥ or one of the registered public keys of Pi, where
the adversary chooses which registered public key, if any, is returned. (That is, the adversary can
prevent a party from retrieving any of the registered keys of another party.)

Notice that the uncorrupted parties do not obtain any secret keys associated with their public
keys, whereas the corrupted parties may know the secret keys of their public keys. Furthermore,
Fkr gives the adversary a fair amount of freedom in choosing the registered keys. It can set the
keys associated with corrupted parties to be any arbitrary value (as long as the functionality sees
the corresponding private key). The adversary can also cause the keys of both corrupted and
uncorrupted parties to be identical to the keys of other (either corrupted or uncorrupted) parties.
Still, Fkr guarantees two basic properties: (a) the public keys of good parties are “safe” (in the
sense that their secret keys were chosen at random and kept secret from the adversary), and (b)
the public keys of the corrupted parties are “well-formed”, in the sense that the functionality has
seen the corresponding secret keys. We demonstrate that Fkr can be realized using a variety of
mechanisms:

Functionality FD
crs

FD
crs is parameterized by distribution D. It proceeds as follows, running with a set of parties and

an adversary:

1. Choose a value r
R← D.

2. When receiving (CRS,sid) from some party send (CRS,sid, r) to that party.

Figure 1: The CRS functionality



Functionality Ff
kr

Ff
kr proceeds as follows, given function f and security parameter k, and running with a set of parties

and an adversary S. At the first activation a set R of strings is initialized to be empty.
Registration: When receiving a message (register, sid) from a party Pi (which is either corrupted
or uncorrupted), send (register, sid, Pi) to S and receive a value p′ from S. Then, if p′ ∈ R then
let p← p′. Else, choose r

R← {0, 1}k, let p← f(r), and add p to R. Finally, record (Pi, p) and return
(sid, p) to Pi and to S.
Registration by a corrupted party: When receiving a message (register, sid, r) from a cor-
rupted party Pi, record (Pi, f(r)). In this case, f(r) is not added to R.
Retrieval: When receiving a message (retrieve, sid, Pi) from party Pj , send (retrieve,
sid, Pi, Pj) to S, and obtain a value p from S. If (Pi, p) is recorded then return (sid, Pi, p) to
Pj . Else, return (sid, Pi,⊥) to Pj .

Figure 2: The Key Registration functionality

Realizing Fkr in the Fcrs-hybrid model. We first demonstrate that Ff
kr can be easily realized

in the FD
crs-hybrid model, where D = Dk is the distribution of f(r) where r is uniform in {0, 1}k.

The protocol is straightforward: On input either (register, sid) or (retrieve, sid, Pj), party
Pi sends (CRS, sid) to Fcrs and returns the obtained value. The following proposition is proven
in [BCNP04]:

Proposition 1 The above protocol securely realizes Ff
kr in the FD

crs-hybrid model.

Realizing Fkr given a randomized registration service. Next, consider a setting where
the parties have access to a registration service where parties can register and obtain public keys
that were chosen at random according to a given distribution (i.e., the public key is f(r) for
an r

R← {0, 1}k). This is similar to the registration authority needed for a standard “public-key
infrastructure,” except that here (a) the public keys are chosen by the authority, and (b) the
registering party does not obtain the corresponding secret keys. We let Frkr (for random key
registration) denote the ideal functionality that captures this registration service.

We claim that Fkr can be realized in this setting via the same protocol as for realizing Fkr in
the Fcrs-hybrid model:

Proposition 2 The above protocol securely realizes Ff
kr in the Ff

rkr-hybrid model.

Realizing Fkr given a registration service with knowledge. Next, consider an alternative
setting where the registration service lets the registering parties choose their public keys on their
own, but insists on seeing the corresponding secret keys. This model reduces the trust in the service:
no longer is it trusted to make truly random choices. It is only trusted to verify “well-formedness”
of the keys. In particular, the keys of corrupted parties are no longer guaranteed to be randomly
chosen. (This setting is also very close to the standard “public-key infrastructure” setting.) We
let Fkrk (for key registration with knowledge) denote the ideal functionality that captures this
registration service. We show how to realize Fkr in this setting. On input (register, sid), party
Pi chooses a random ri

R← {0, 1}k, provides ri to the registration authority, computes pi = f(ri),
erases ri, and returns pi.

Proposition 3 The above protocol securely realizes Ff
kr in the Ff

krk-hybrid model.



Realizing Fkr with semi-trusted registration service. The above two settings assumed
that the registration service is completely trusted to perform its task according to the specification.
Alternatively, we can consider a setting where there are multiple registration services, where no
single service is trusted by all the parties. Instead, each party is willing to “fully trust” only one of
the services (the one it registered with), and in addition it is willing to “partially trust” all other
ones. More specifically, the service that the party registered with is trusted to keep its secret key
secret. The only trust put in other services is that they agree to record only “well-formed public
keys” that were computed based on some secret key. The keys can be copies of each other, and the
secret keys can be made public. Again, Fkr can be realized even in such a setting via essentially
the same protocol.

Realizing Fkr using traditional proofs of knowledge. Finally, we consider the case where
the registration service is similar to that of Fkrk, except that the parties do not provide the seed r
explicitly to the service. Instead, each registering party provides f(r), and in addition engages with
the service in a traditional (non-UC) zero-knowledge proof of knowledge of r. This protocol does
not realize Fkr in the plain UC framework. Still, if we assume that there is no network activity
during the execution of each zero-knowledge proof (formally, if we assume that the environment
does not interact with the adversary for the duration of the zero-knowledge proof with Fkrk), then
this protocol does realize Fkr. Such an assumption may be reasonable in some cases.

4 Realizing any well-formed functionality

We show how to realize any well-formed functionality in the Fkr-hybrid model. By the following
result from [CLOS02] it suffices to realize Fmcom (presented in Figure 3) in the Fkr-hybrid model.

Theorem 4 If there exists augmented non-committing encryption, then any well-formed function-
ality can be realized in the Fmcom-hybrid model.2

Functionality Fmcom

Fmcom proceeds as follows, running with parties P1, P2, ... and an adversary S.
1. Upon receiving a value (Commit, sid, cid, Pi, Pj , x) from Pi, where x ∈ {0, 1}, record the tu-
ple (cid, Pi, Pj , x) and send the message (Receipt, sid, cid, Pi, Pj) to S. On a subsequent mes-
sage (Receipt, sid, cid, Pi, Pj) from S, send (Receipt, sid, cid, Pi, Pj) to Pj and ignore subsequent
(Commit, sid, cid, Pi, Pj , ...) values.
2. Upon receiving a value (Open, sid, cid, Pi, Pj) from Pi: If the tuple (cid, Pi, Pj , x) is recorded
then send the message (Open, sid, cid, Pi, Pj , x) to Pj and S. Otherwise, do nothing.

Figure 3: The multi-instance commitment functionality. Each commitment instance within the protocol
has a unique commitment identifier (cid).

2An augmented non-committing encryption scheme is a realization of the ideal functionality for secure message
transmission meeting an extra technical requirement. Such a protocol can be constructed from any trapdoor permu-
tation family where it is possible to generate a function from the family without its trapdoor. Such families exist e.g.
under the DDH or RSA assumptions.



Realizing Fmcom. All known UC commitment schemes [CF01, CLOS02, DN02] are for the CRS
model. We provide a general technique for adapting all of these schemes to the Fkr-hybrid model.
We demonstrate this technique for the scheme in [CLOS02]. See [BCNP04] for a treatment of all other
schemes.

The CLOS scheme. The protocol from [CLOS02], which is a variant of the scheme in [CF01],
uses a CRS v = (c, e), where c is a commitment key for a statistically hiding trapdoor commitment
scheme and e = (ecca, eprc) is an encryption key for an encryption scheme of the form Ee(m) =
Eprc

eprc(Ecca
ecca(m)), where Eprc has pseudo-random ciphertexts (PRC)3 and Ecca is CCA secure;

Below we call such an encryption scheme a CLOS encryption scheme. A commitment to a bit x is
of the form (C,E0, E1), where C = commitc(x; r), Ex = Ee(r; s) and E1−x

R← {0, 1}|Ex|; Here r and
s are the random bits used by commitc and Ee, respectively. To open the commitment one sends
(x, r, s). The scheme is binding since an opening to x includes an opening of C to x. It is hiding
by the hiding property of commitc and the CCA security of Ee. In addition to being binding and
hiding, a realization of Fmcom should have the following two properties: Simulation equivocality:
The simulator should be able to produce equivocal commitments for which it can open to both 0 and
1. Simulation extractability: The simulator should be able to extract the contents of any openable
commitment, even after supplying an adversary with arbitrary many equivocal commitments and
their openings.

Simulation equivocality is achieved using the trapdoor of commitc, which allows to compute
(C, r0, r1) such that commitc(0; r0) = C = commitc(1; r1). Specifically, the simulator computes
the “fake commitment” (C,E0 = Ee(r0; s0), E1 = Ee(r1; s1)); This looks like a real commitment by
the PRC assumption. To open the commitment to bit x the simulator sends (x, rx, sx). Simulation
extractability is achieved using the decryption key d of Ee. When the simulator receives a commit-
ment (C,E0, E1) from the adversary it computes r0 = Dd(E0) and r1 = Dd(E1). If (C,E0, E1) is
openable with either r0 or r1, then either C = commitc(0; r0) or C = commitc(1; r1), which allows
the simulator to determine the bit x. Since the adversary does not know the trapdoor of commite,
both possibilities happen simultaneously only with negligible probability.

Two observations allow adopting the above scheme to the Fkr-hybrid model. First of all, each
property of the primitives used to build the UC commitment scheme is in the interest of either
the sender or the receiver, never both. Second, some of the properties hold even if the keys are
only well-formed, i.e. e is some encryption key and c is some commitment key. We go over the
properties and observe which parties are interested in which and when they hold: Computational
binding of commitc: Prevents double openings; In the interest of the receiver; Holds when c is a
random key. Equivocality of commitc: Used to construct equivocal commitments; In the interest
of the sender; Holds when c is well-formed and the simulator can access the trapdoor. Statistical
hiding of commitc: Needed for the overall commitment to be hiding; In the interest of the sender;
Holds when c is well-formed. Computational hiding of Ee: Needed for the overall commitment to
be computational hiding; In the interest of the sender; Holds when e is random. Decryption of
Ee: Ensures extractability; In the interest of the receiver; Holds when e is well-formed and the
simulator can access the decryption key. Pseudo-random ciphertext of Ee: Needed for equivocal
commitments to look like real commitments; In the interest of the sender; Holds when e is random.
We learn that the trust is asymmetric: The sender is interested in e being random and c being

3In a PRC encryption scheme E all ciphertexts under an encryption key e have the same length le, and an
encryption C ← Ee(m) of a chosen message m is computationally indistinguishable from a uniformly random string

C′ R← {0, 1}le . Such an encryption scheme exists given any trapdoor predicate with some special structure. For
instance, they exist under the DDH or RSA assumptions.



well-formed, and the receiver is interested in e being well-formed and c being random. This can be
guaranteed by the sender generating and registering e and the receiver generating and registering
c. The resulting scheme is presented in Figure 4.

Protocol CLOS-KR

CLOS-KR proceeds as follows, running with parties P1, P2, ... in the Ff
kr-hybrid model, where

f(r) = (e, c) with e being an encryption key for a CLOS encryption scheme and c being a key
for a statistically hiding trapdoor commitment scheme.

1. Upon its initial activation with session id sid the party Pi inputs (register, sid) to Ff
kr,

waits for a value (sid, pi = (ei, ci)) from Fkr and stores pi.

2. Upon receiving an input (Commit, sid, cid, Pi, Pj , x), where x ∈ {0, 1}, the party Pi inputs
(retrieve, sid, Pj) to Ff

kr and waits for a value (sid, Pj , pj) from Fkr. If pj = ⊥ then Pj

terminates the protocol with commitment id cid. Otherwise, it lets pj = (ej , cj), computes
C = commitcj

(x; r), Ex = Eei
(r; s) and E1−x

R← {0, 1}|Ex|, stores (sid, cid, x, r, s) and sends
(sid, cid, C,E0, E1) to Pj .

3. Upon receiving a value (sid, cid, C,E0, E1) from Pi, where cid was not used before, the party
Pj inputs (retrieve, sid, Pi) to Ff

kr and waits for a value (sid, Pi, pi) from Fkr. If pi = ⊥
then Pj terminates the protocol with commitment id cid. Otherwise, it lets pi = (ei, ci), stores
(sid, cid, Pi, ei, C, E0, E1) and outputs (Receipt, sid, cid, Pi, Pj).

4. Upon receiving an input (Open, sid, cid, Pi, Pj), where a value (sid, cid, x, r, s) is stored, the
party Pi sends (Open, sid, cid, x, r, s) to Pj .

5. Upon receiving for the first time a value (sid, cid, x, r, s) from Pi, where a value
(cid, sid, Pi, ei, C, E0, E1) is stored and C = commitcj (x; r) and Ex = Eei(r; s), the party
Pj outputs (Open, sid, cid, Pi, Pj , x).

Figure 4: The UC commitment scheme for the key registration model

Proposition 5 If there exist CCA secure encryption, PRC secure encryption and statistically hid-
ing trapdoor commitments, then the above protocol realizes Fmcom in the Fkr-hybrid model.

4.1 Keying only one party

In the above commitment scheme both parties must register public keys. Using a tool from [DN02],
called a mixed commitment scheme, we can get a scheme where only the sender needs to have
registered a public key. Furthermore, we use this type of commitment to realize any two party
functionality even when just one of the two parties has a registered public key. This property may
be useful, for instance, in client-server interactions, where only the server has a public key. 4

A mixed commitment scheme is a commitment scheme (genE, genX, commit) with a usual
commitment function commit and two key generators genE and genX. A key generated as
K = genE(r) is called an E-key and r is called the E-trapdoor. A key generated as K = genX(r) is

4Realizing any functionality can be done as follows: Having a UC commitment scheme where P1 commits to P2

allows P1 and P2 to realize FD
crs for the distribution where D is a uniformly random string, by running a Blum coin-flip

protocol. Having realized FD
crs the parties can then run the protocol from [CLOS02], which is for the FD

crs-hybrid
model. Details on the coin-tossing protocol can be found in [CR03].



called an X-key and r is called the X-trapdoor. When K is an E-key, commitK is computationally
hiding and Equivocal (given the E-trapdoor). When K is an X-key, commitK is perfectly binding
and eXtractable (given the X-trapdoor). The term mixed refers to the key indistinguishability re-
quirement that random keys sampled using genE and genX are computationally indistinguishable.
The main motivation for considering mixed commitment schemes is that the equivocation property
of a commitment scheme is predominantly a property that is solely needed in simulation. A mixed
commitment scheme allows to use a perfectly binding commitment scheme in the real-world and
then indistinguishably replace it by an equivocal commitment scheme for the sake of simulation
and/or analysis. We demonstrate this technique.

Recall that the receiver picks the commitment key in the CLOS scheme to guarantee binding
and that the commitment scheme was statistically hiding to guarantee that it is hiding even when
the receiver picks the key. If instead we let the sender register also the commitment key c, but now
as an X-key for a mixed commitment scheme, then commitc is perfectly binding and the receiver
is again guaranteed that commitc is binding (in fact, now the obtained UC commitment scheme is
perfectly binding). To get back simulation equivocality, the simulator simply picks the registered
key c to be a random E-key instead of a random X-key. This is possible as the simulator simulates
Fkr, and by the key indistinguishability this change of key space will go unnoticed by the adversary.
After the change of key space commitc is again a trapdoor commitment scheme, and the overall
scheme is identical to the original CLOS-KR scheme. The analysis then follows that of the CLOS
scheme. In [BCNP04] we show how to realize mixed commitment schemes based on PRC encryption,
giving us the following result.

Proposition 6 If there exist both CCA secure encryption and PRC secure encryption, then there
exists a sender-keyed realization of Fmcom in the Fkr-hybrid model. Furthermore, any two-party
functionality can be realized even when only one of the parties has a registered key.

5 Non-interactive UC zero-knowledge

In this section we show that, as in the CRS model, we can obtain a non-interactive UC zero-
knowledge argument system in the Fkr-hybrid model.5 More precisely, we show how to to realize
the multi-session extension of the ideal zero-knowledge functionality Fmzk (presented in Figure 5)
in the Fkr-hybrid model.

Functionality FR
mzk

FR
mzk proceeds as follows, running with parties P1, P2, ... and an adversary, given a binary relation R.

1. Upon receiving a value (ZK-prover, sid, ssid, Pi, Pj , x, w) from a party Pi: If (x,w) ∈ R, then
send (ZK-proof,sid, ssid, Pi, Pj , x) to Pj and the adversary. Otherwise, ignore.

Figure 5: The multi-session zero-knowledge functionality

The main components of our construction are a CCA secure encryption scheme (with errorless
decryption), and the ZAP system of Dwork and Naor [DN00], which is a two-round public-coins
witness indistinguishable (WI) proof system for NP. Protocol UC-NIZK (presented in Figure 6)

5As in the CRS model, we rely on erasures to obtain a protocol that is secure against adaptive adversaries.
Alternatively, without erasures our protocol (as well as known non-interactive zero-knowledge protocols in CRS
model) are only secure against static adversaries.



Protocol UC-NIZK

UC −NIZK proceeds as follows, running with parties P1, ..., Pn in the Ff
kr hybrid model.

Key Generation: The function f is given by f(1k, r) = (e, v, z), where f splits r into r0, v, y,
and r0 is used to generate a encryption/decryption key pair (e, d) = gen(1k, r0) for a CCA secure
encryption scheme (gen,E,D) with errorless decryption, v is the first message for a ZAP system,
and y is used to compute z = g(y), where g is a one-way function.
Initialization: Upon its initial activation with session identifier sid, party Pi sends the message
(register, sid) to Ff

kr and waits to receive back the message (sid, pi = (ei, vi, vz)) from Ff
kr. Pi

then stores pi. Parties retrieve keys of other parties as in Figure 4; Below we describe how the
protocol proceeds between Pi and Pj when both parties succeed in retrieving the other party’s key
(ej , vj , zj) respectively (ei, vi, zi).
Prover: On input (ZK-prover, sid, ssid, Pi, Pj , x, w) party Pi proceeds as follows:

1. compute c0 = Eei
(Pi, Pj , sid, ssid, w)

2. compute c1 = Eei
(Pi, Pj , sid, ssid, 0k)

3. compute a ZAP proof π for the statement that either c0 is an encryption, using ei as encryption
key, of the string (Pi, Pj , sid, ssid, w), where w is a witness for x (i.e., (x,w) ∈ R) or c1 is an
encryption, using ei as encryption key, of the string (Pi, Pj , sid, ssid, y) where zj = g(y). The
ZAP proof is computed with respect to vj

4. erase all randomness used to generate (c0, c1, π).

5. send (PROOF,sid, ssid, x, c0, c1, π) to Pj .

Verifier: Upon receiving (PROOF,sid, ssid, x, c0, c1, π) from party Pi, party Pj proceeds as follows:

1. Pj verifies that π is an accepting ZAP with respect to the message vj (i.e., the second part of
the verifier’s public key).

2. If the proof is accepting, Pj outputs (ZK-proof,sid, ssid, Pi, Pj , x).

Figure 6: The Non-Interactive UC Zero-Knowledge Protocol



is our non-interactive UC zero-knowledge protocol. Roughly speaking, the protocol proceeds as
follows: each party’s public key for the protocol consists of a triple (e, v, z), where e is a public
key for the encryption scheme, v is the first message of the ZAP system, and z = g(y), where g is
a one-way function and y is a uniformly chosen string. (e is used for the proofs where the party
is the prover, and v, z are used when the party is the verifier.) To prove that a statement x is in
some NP-language L, the prover first computes two encryptions c0, c1 using the encryption key
specified by the first part of its own public key: c0 is an encryption of a witness that x ∈ L, c1 is
an encryption of the string 0k. The prover then uses the ZAP system, with respect to the verifier
message specified by the second part of verifier’s public key, to prove that either c0 is an encryption
of a witness for x (i.e., c0 decrypts to w such that R(x, w) holds), or c1 is an encryption of some
y ∈ g−1(z) where z is the third part of the verifier’s public key. (That is, the prover shows that
either it knows a witness to the statement x, or that it knows part of the verifier’s secret key). In
order to obtain security also against adaptive adversaries we furthermore require that the prover
erases all random coins used to construct the proof. We show:

Theorem 7 Assume the existence of enhanced trapdoor permutations. Then, there exists a non-
interactive protocol that realizes FR

mzk in the Fkr-hybrid model with respect to static adversaries.
Furthermore, if secure data erasure is possible then the protocol is secure also against adaptive
adversaries.

The theorem is proven in [BCNP04]. Here we only sketch the intuition behind the security of the
protocol. Recall that to complete the proof we need essentially two properties: simulatability of
the verifier’s view, and extractability of the prover’s input. We sketch how these are demonstrated.

simulation: To simulate a proof, the simulator only needs to know a string y such that g(y) = z
(where g is the one-way function, and z is the third part of the verifier’s public key). Thus,
it is not hard to simulate given the randomness used to construct (this part of) the verifier’s
public key. Note that only the verifier’s secret key is used in this process. Also, we do not
require that the verifier’s key is random but only that it is well formed.

extraction: To extract a witness, the simulator simply decrypts c0 using the prover’s secret key.
Once again, we only use the fact that the prover’s key is well formed.

Since both CCA secure encryption schemes, with errorless decryption, and ZAP systems are known
to exist under the assumption of enhanced trapdoor permutations [DDN00, DN00], we thus obtain
the above theorem.

6 Handling failures gracefully

The CRS model is a very clean and useful model. However, as mentioned above, when the CRS
model fails it fails spectacularly. By this we mean that if the common reference string is gener-
ated by a corrupted authority, then this authority is able to completely break the security of the
system, compromising completely both the secrecy and the integrity of the system in a way that
is completely undetectable by the honest parties. In contrast, we show that in our model it is
possible to construct protocols that enjoy a more “graceful” security analysis. These protocols will
be UC-secure in the case that our assumptions about the other parties’ public keys are satisfied
(essentially, in the case that other parties’ public keys are well-formed). However, even if these
assumptions are not satisfied, we will still be able to analyze these protocols and show that they



are stand-alone secure as in, say, [C00].6 We note that without some kind of setup assumptions, it
is not possible to obtain UC security, and thus in some sense this is the best that we can hope for.

The crucial observation for constructing such protocols is that the commitment scheme in
Figure 4 is actually stand-alone secure. By this we mean that the binding property only requires
the receiver’s public key to be generated at random (and does not require the sender’s key to be
even well-formed), and the hiding property only requires the sender’s public key to be safe (i.e.,
generated at random and kept secret) and does not require the receiver’s key to be even well-
formed.7 Thus this commitment scheme already enjoys the kind of “graceful” analysis we were
looking for. We call such a commitment scheme (i.e., a commitment that is stand-alone secure
whenever the honest party’s key is safe, and in addition is UC secure if the adversary’s key is
well-formed) a graceful commitment scheme.

We use a graceful commitment scheme to construct a “graceful” protocol for any functionality.
The key step is constructing a “graceful” zero-knowledge argument system for NP (since then
we can implement the “commit-and-prove” functionality which can be used to implement any
functionality by the results of [CLOS02]). For this, we use the results of Canetti and Fischlin
[CF01] on how to use a UC secure commitment to construct a UC secure zero knowledge protocol.8

Thus, if we take a zero-knowledge protocol, such as the one of Feige and Shamir [FS89], and use
there our graceful commitment scheme as the underlying commitment scheme, we get a protocol
that is at the same time (a) stand-alone zero-knowledge if the honest party’s keys random by the
standard analysis of the zero-knowledge protocol and (b) UC-secure zero-knowledge if in addition
the adversary’s key is guaranteed to be well-formed. Thus, we get a graceful zero-knowledge
protocol. Using such a zero-knowledge protocol, we can follow the approach of [CLOS02] to construct
a graceful protocol for realizing any functionality. See more details in [BCNP04].
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