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Abstract. For many cryptographic protocols, security relies on the as-
sumption that adversarial entities have limited computational power.
This type of security degrades progressively over the lifetime of a pro-
tocol. However, some cryptographic services, such as timestamping ser-
vices or digital archives, are long-lived in nature; they are expected to
be secure and operational for a very long time (i.e., super-polynomial).
In such cases, security cannot be guaranteed in the traditional sense: a
computationally secure protocol may become insecure if the attacker has
a super-polynomial number of interactions with the protocol.
This paper proposes a new paradigm for the analysis of long-lived secu-
rity protocols. We allow entities to be active for a potentially unbounded
amount of real time, provided they perform only a polynomial amount
of work per unit of real time. Moreover, the space used by these entities
is allocated dynamically and must be polynomially bounded. We pro-
pose a new notion of long-term implementation, which is an adaptation
of computational indistinguishability to the long-lived setting. We show
that long-term implementation is preserved under polynomial parallel
composition and exponential sequential composition. We illustrate the
use of this new paradigm by analyzing some security properties of the
long-lived timestamping protocol of Haber and Kamat.

1 Introduction

Computational security in long-lived systems: Security properties of cryptogra-
phic protocols typically hold only against resource-bounded adversaries. Con-
sequently, mathematical models for representing and analyzing security of such
protocols usually represent all participants as resource-bounded computational
entities. The predominant way of formalizing such bounds is by representing
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all entities as time-bounded machines, specifically, polynomial-time machines (a
partial list of works representative of this direction includes [1–5]).

This modeling approach has been successful in capturing the security of pro-
tocols for many cryptographic tasks. However, it has a fundamental limitation:
it assumes that the analyzed system runs for only a relatively “short” time. In
particular, since all entities are polynomially-bounded (in the security parame-
ter), the system’s execution must end after a polynomial amount of time. This
type of modeling is inadequate for analyzing security properties of protocols that
are supposed to run for a “long” time, that is, an amount of time that is not
bounded by a polynomial.

There are a number of natural tasks for which one would indeed be interested
in the behavior of systems that run for a long time. Furthermore, a number of
protocols have been developed for such tasks. Examples of such tasks include
proactive security [6], forward secure signatures [7, 8], forward secure encryp-
tion [7, 9], and timestamping [10–12]. None of the existing models for analyzing
security against computationally bounded adversaries is adequate for asserting
and proving security properties of protocols for such “long-lived” tasks.

Related work: A first suggestion for an approach might be to use existing models,
such as the PPT calculus [13], the Reactive Simulatability [14], or the Univer-
sally Composable security frameworks [3], with a sufficiently large value of the
security parameter. However, this would be too limited for our purpose in that
it would force protocols to protect against an overly powerful adversary even
in the short run, while not providing any useful information in the long run.
Similarly, turning to information theoretic security notions is not appropriate in
our case because unbounded adversaries would be able to break computationally
secure schemes instantaneously. We are interested in a notion of security that
can protect protocols against an adversary that runs for a long time, but is only
“reasonably powerful” at any point in time.

Recently, Müller-Quade and Unruh proposed a notion of long-term security
for cryptographic protocols [15]. However, they consider adversaries that try
to derive information from the protocol transcript after protocol conclusion.
This work does not consider long-lived protocol execution and, in particular,
the adversary of [15] has polynomially bounded interactions with the protocol
parties, which is not suitable for the analysis of long-lived tasks such as those
we described above.

Our approach: In this paper, we propose a new mathematical model for ana-
lyzing the security of such long-lived systems. To the best of our knowledge our
work is the first one to tackle the issue of modeling computational security in
long-lived systems. Our understanding of a long-lived system is that some pro-
tocol parties, including adversaries, may be active for an unbounded amount of
real time, subject to the condition that only a polynomial amount of work can
be done per unit of real time. Other parties may be active for only a short time,
as in traditional settings. Thus, the adversary’s interaction with the system is
unbounded, and the adversary may perform an unbounded number of computa-
tion steps during the entire protocol execution. This renders traditional security



notions insufficient: computationally and even statistically secure protocols may
fail if the adversary has unbounded interactions with the protocol.

Modeling long-lived systems requires significant departures from standard
cryptographic modeling. First and foremost, unbounded entities cannot be mod-
eled as probabilistic polynomial time (PPT) Turing machines. In search of a suit-
able alternative, we see the need to distinguish between two types of unbounded
computation: steps performed steadily over a long period of time, versus those
performed very rapidly in a short amount of time. The former conforms with
our understanding of boundedness, while the latter does not. Guided by this
intuition, we introduce real time explicitly into a basic probabilistic automata
model, the Task-PIOA model [5], and impose computational restrictions in terms
of rates, i.e., number of computation steps per unit of real time.

Another interesting challenge is the restriction on space, which traditionally
is not an issue because PPT Turing machines can, by their nature, access only a
polynomially bounded amount of space. In the long-lived setting, space restric-
tion warrants explicit consideration. During the lifetime of a long-lived security
protocol, we expect some components to die and other new ones to become ac-
tive, for example, due to the use of cryptographic primitives that have a shorter
life time than the protocol itself. Therefore, we find it important to be able to
model dynamic allocation of space. We achieve this by restricting the use of state
variables. In particular, all state variables of a dormant entity (either not yet in-
voked or already dead) are set to a special null value ⊥. A system is regarded as
bounded only if, at any point in its execution, only a bounded amount of space
is needed to maintain all variables with non-⊥ values. For example, a sequen-
tial composition (in the temporal sense) of an unbounded number of entities is
bounded if each entity uses a bounded amount of space.

Having appropriate restrictions on space and computation rates, we then
define a new long-term implementation relation, ≤neg,pt, for long-lived systems.
This is intended to extend the familiar notion of computational indistinguishabil-
ity, where two systems (real and ideal) are deemed equivalent if their behaviors
are indistinguishable from the point of view of a computationally bounded en-
vironment. However, notice that, in the long-lived setting, an environment with
super-polynomial run time can typically distinguish the two systems trivially,
e.g., by launching brute force attacks. This is true even if the environment has
bounded computation rate. Therefore, our definition cannot rule out significant
degradation of security in the overall lifetime of a system. Instead, we require
that the rate of degradation is small at any point in time; in other words, the
probability of a new successful attack during any polynomial-bounded window
of time remains bounded during the lifetime of the system.

To capture this intuition, we extend the ideal systems traditionally used
in cryptography by allowing them to take some designated failure steps, which
allow an ideal system to take actions that could only occur in the real world, e.g.,
accepting forgeries as valid signatures, or producing ciphertexts that could allow
recovering the corresponding plaintext. However, if failure steps do not occur



starting from some time t, then the ideal system starts following the specified
ideal behavior.

Our long-term implementation relation ≤neg,pt requires that the real system
approximates the ideal’s system’s handling of failures. More precisely, we quan-
tify over all real time points t and require that the real and ideal systems are
computationally indistinguishable up to time t+ q (where q is polynomial in the
security parameter), even if no failures steps are taken by the ideal system in
the interval [t, t + q]. Notice that we do allow failure steps before time t. This
expresses the idea that, despite any security breaches that may have occurred
before time t, the success probability of a fresh attack in the interval [t, t+ q] is
small. Our formal definition of ≤neg,pt includes one more generalization: it con-
siders failure steps in the real system as well as the ideal system, in both cases
before the same real time t. This natural extension is intended to allow repeated
use of ≤neg,pt, in verifying protocols using several levels of abstraction.

We show that ≤neg,pt is transitive, and is preserved under the operations of
polynomial parallel composition and exponential sequential composition. The
sequential composition result highlights the power of our model to formulate
and prove properties of an exponential number of entities in a meaningful way.

Example: Digital timestamping: As a proof of concept, we analyze some security
properties of the digital timestamping protocol of Haber et al. [10–12], which was
designed to address the problem of content integrity in long-term digital archives.
In a nutshell, a digital timestamping scheme takes as input a document d at a
specific time t0, and produces a certificate c that can be used later to verify the
existence of d at time t0. The security requirement is that timestamp certificates
are difficult to forge. Haber et al. note that it is inadvisable to use a single digital
signature scheme to generate all timestamp certificates, even if signing keys are
refreshed periodically. This is because, over time, any single signature scheme
may be weakened due to advances in algorithmic research and/or discovery of
vulnerabilities. Haber et al. propose a solution in which timestamps must be
renewed periodically by generating a new certificate for the pair 〈d, c〉 using a
new signature scheme. Thus, even if the signature scheme used to generate c is
broken in the future, the new certificate c′ still provides evidence that d existed
at the time t0 stated in the original certificate c.

We model the protocol of Haber et al. as the composition of a dispatcher
component and a sequence of signature services. Each signature service “wakes
up” at a certain time and is active for a specified amount of time before be-
coming dormant again. This can be viewed as a regular update of the signature
service, which may entail a simple refresh of the signing key, or the adoption of
a new signing algorithm. The dispatcher component accepts various timestamp
requests and forwards them to the appropriate signature service. We show that
the composition of the dispatcher and the signature services is indistinguishable
from an ideal system, consisting of the same dispatcher composed with ideal
signature functionalities. Specifically, this guarantees that the probability of a
new forgery is small at any given point in time, regardless of any forgeries that
may have happened in the past.



2 Task-PIOAs

We build our new framework using task-PIOAs [5], which are a version of Proba-
bilistic Automata [16], augmented with an oblivious scheduling mechanism based
on tasks. A task is a set of related actions (e.g., actions representing the same ac-
tivity but with different parameters). We view tasks as basic groupings of events,
both for real time scheduling and for imposing computational bounds (cf. Sec-
tions 3 and 4). In this section, we review basic notations related to task-PIOAs.

Notation: Given a set S, let Disc(S) denote the set of discrete probability mea-
sures on S. For s ∈ S, let δ(s) denote the Dirac measure on s, i.e., δ(s)(s) = 1.
Let V be a set of variables. Each v ∈ V is associated with a (static) type type(v),
which is the set of all possible values of v. We assume that type(v) is countable
and contains the special symbol ⊥. A valuation s for V is a function mapping ev-
ery v ∈ V to a value in type(v). The set of all valuations for V is denoted val(V ).
Given V ′ ⊆ V , a valuation s′ for V ′ is sometimes referred to as a partial valua-
tion for V . Observe that s′ induces a (full) valuation ιV (s′) for V , by assigning
⊥ to every v 6∈ V ′. Finally, for any set S with ⊥ 6∈ S, we write S⊥ := S ∪ {⊥}.
PIOA: We define a probabilistic input/output automaton (PIOA) to be a tuple
A = 〈V, S, sinit, I, O,H,∆〉, where:

(i) V is a set of state variables and S ⊆ val(V ) is a set of states;
(ii) sinit ∈ S is the initial state;

(iii) I, O and H are countable and pairwise disjoint sets of actions, referred to
as input, output and hidden actions, respectively;

(iv) ∆ ⊆ S × (I ∪O ∪H)× Disc(S) is a transition relation.
The set Act := I ∪ O ∪H is the action alphabet of A. If I = ∅, then A is said
to be closed. The set of external actions of A is I ∪ O and the set of locally
controlled actions is O ∪ H. An execution is a sequence α = q0a1q1a2 . . . of
alternating states and actions where q0 = sinit and, for each 〈qi, ai+1, qi+1〉, there
is a transition 〈qi, ai+1, µ〉 ∈ ∆ with qi+1 ∈ Support(µ). A sequence obtained
by restricting an execution of A to external actions is called a trace. We write
s.v for the value of variable v in state s. An action a is enabled in a state s if
〈s, a, µ〉 ∈ ∆ for some µ. We require that A satisfy the following conditions.
– Input Enabling: For every s ∈ S and a ∈ I, a is enabled in s.
– Transition Determinism: For every s ∈ S and a ∈ Act , there is at most

one µ ∈ Disc(S) with 〈s, a, µ〉 ∈ ∆. We write ∆(s, a) for such µ, if it exists.
Parallel composition for PIOAs is based on synchronization of shared actions.

PIOAs A1 and A2 are said to be compatible if Vi∩Vj = Act i ∩Hj = Oi∩Oj = ∅
whenever i 6= j. In that case, we define their composition A1‖A2 to be 〈V1 ∪
V2, S1 × S2, 〈sinit

1 , sinit
2 〉, (I1 ∪ I2) \ (O1 ∪ O2), O1 ∪ O2, H1 ∪ H2, ∆〉, where ∆ is

the set of triples 〈〈s1, s2〉, a, µ1 × µ2〉 satisfying: (i) a is enabled in some si, and
(ii) for every i, if a ∈ Act i, then 〈si, a, µi〉 ∈ ∆i, otherwise µi = δ(si). It is easy
to check that input enabling and transition determinism are preserved under
composition. Moreover, the definition of composition can be generalized to any
finite number of components.



Task-PIOA: To resolve nondeterminism, we make use of the notion of tasks
introduced in [17, 5]. Formally, a task-PIOA is a pair 〈A,R〉 where A is a PIOA
andR is a partition of the locally-controlled actions of A. The equivalence classes
in R are called tasks. For notational simplicity, we often omit R and refer to the
task-PIOA A. The following additional axiom is assumed.
– Action Determinism: For every state s and every task T , at most one

action a ∈ T is enabled in s.
Unless otherwise stated, terminologies are inherited from the PIOA setting. For
instance, if some a ∈ T is enabled in a state s, then T is said to be enabled in s.

Example 1 (Clock automaton). Figure 1 describes a simple task-PIOA Clock(T),
which has a tick(t) output action for every t in some discrete time domain T.
For concreteness, we assume that T = N, and write simply Clock. Clock has a
single task tick, consisting of all tick(t) actions. These clock ticks are produced in
order, for t = 1, 2, . . .. In Section 3, we will define a mechanism that will ensure
that each tick(t) occurs exactly at real time t.

Clock(T)

Signature Tasks: tick = {tick(∗)}
Output: tick(t : T), t > 0 States: count ∈ T, initially 0

Transitions
tick(t)
Precondition: count = t− 1 Effect: count := t

Fig. 1. Task-PIOA Code for Clock(T)

Operations: Given compatible task-PIOAs A1 and A2, we define their composi-
tion to be 〈A1‖A2,R1∪R2〉. Note thatR1∪R2 is an equivalence relation because
compatibility requires disjoint sets of locally controlled actions. Moreover, it is
easy to check that action determinism is preserved under composition.

We also define a hiding operator: given A = 〈V, S, sinit, I, O,H,∆〉 and B ⊆
O, hide(A, B) is the task-PIOA given by 〈V, S, sinit, I, O′, H ′, ∆〉, where O′ =
O \ B and H ′ = H ∪ B. This prevents other PIOAs from synchronizing with
A via actions in B: any PIOA with an action in B in its signature is no longer
compatible with A.
Executions and traces: A task schedule for a closed task-PIOA 〈A,R〉 is a finite
or infinite sequence ρ = T1, T2, . . . of tasks in R. This induces a well-defined run
of A as follows.

(i) From the start state sinit, we apply the first task T1: due to action- and
transition-determinism, T1 specifies at most one transition from sinit; if
such a transition exists, it is taken, otherwise nothing happens.

(ii) Repeat with remaining Ti’s.
Such a run gives rise to a unique probabilistic execution, which is a probability
distribution over executions in A. For finite ρ, let lstate(A, ρ) denote the state



distribution of A after executing according to ρ. A state s is said to be reachable
under ρ if lstate(A, ρ)(s) > 0. Moreover, the probabilistic execution induces
a unique trace distribution tdist(A, ρ), which is a probability distribution over
the set of traces of A. We refer the reader to [5] for more details on these
constructions.

3 Real Time Scheduling Constraints

In this section, we describe how to model entities with unbounded lifetime but
bounded processing rates. A natural approach is to introduce real time, so that
computational restrictions can be stated in terms of the number of steps per-
formed per unit real time. Thus, we define a timed task schedule τ for a closed
task-PIOA 〈A,R〉 to be a finite or infinite sequence 〈T1, t1〉, 〈T2, t2〉, . . . such
that: Ti ∈ R and ti ∈ R≥0 for every i, and t1, t2, . . . is non-decreasing. Given a
timed task schedule τ = 〈T1, t1〉, 〈T2, t2〉, . . . and t ∈ R≥0, let trunc≥t(τ) denote
the result of removing all pairs 〈Ti, ti〉 with ti ≥ t.

Following [18], we associate lower and upper real time bounds to each task.
If l and u are, respectively, the lower bound and upper bound for a task T , then
the amount of time between consecutive occurrences of T is at least l and at
most u. To limit computational power, we impose a rate bound on the number
of occurrences of T within an interval I, based on the length of I. A burst bound
is also included for modeling flexibility.

Formally, a bound map for a task-PIOA 〈A,R〉 is a tuple 〈rate, burst, lb, ub〉
such that: (i) rate, burst, lb : R → R≥0, (ii) ub : R → R∞>0, and (iii) for all T ∈ R,
lb(T ) ≤ ub(T ). To ensure that rate and ub can be satisfied simultaneously, we
require rate(T ) ≥ 1/ ub(T ) whenever rate(T ) 6= 0 and ub(T ) 6= ∞. From this
point on, we assume that every task-PIOA is associated with a particular bound
map.

In the long version of this paper [19, Section 3], we formally define what
it means for a timed task schedule τ to be valid for an interval under a given
bound map. This definition states the technical conditions that simultaneously
ensure that: (i) Consecutive appearances of a task T must be at least lb(T ) apart,
(ii) Consecutive appearances of a task T must be at most ub(T ) apart, (iii) For
any d ∈ R≥0 and any interval I ′ of length d, τ contains at most rate(T ) · d +
burst(T ) elements with 〈T, t〉 with t ∈ I ′.

Note that every timed schedule τ projects to an untimed schedule ρ by
removing all real time information ti, thereby inducing a trace distribution
tdist(A, τ) := tdist(A, ρ).

In a parallel composition A1‖A2, the composite bound map is the union of
component bound maps: 〈rate1 ∪ rate2, burst1 ∪ burst2, lb1 ∪ lb2, ub1 ∪ ub2〉.

Example 2 (Bound map for Clock). We use upper and lower bounds to ensure
that Clock’s internal counter evolves at the same rate as real time. Namely, we
set lb(tick) = ub(tick) = 1. The rate and burst bounds are also set to 1. It is
not hard to see that, regardless of the system of automata with which Clock is



composed, we always obtain the unique sequence 〈tick, 1〉, 〈tick, 2〉, . . . when we
project a valid schedule to the task tick.

Note that we use real time solely to express constraints on task schedules. We
do not allow computationally-bounded system components to maintain real-time
information in their states, nor to communicate real-time information to each
other. System components that require knowledge of time will maintain discrete
approximations to time in their states, based on inputs from Clock.

4 Complexity Bounds

We are interested in modeling systems that run for an unbounded amount of real
time. During this long life, we expect that a very large number of components
will be active at various points in time, while only a small proportion of them
will be active simultaneously. Defining complexity bounds in terms of the total
number of components would then introduce unrealistic security constraints.
Therefore, we find it more reasonable to define complexity bounds in terms of
the characteristics of the components that are simultaneously active at any point
in time.

To capture these intuitions, we define a notion of step bound, which limits
the amount of computation a task-PIOA can perform, and the amount of space
it can use, in executing a single step. By combining the step bound with the rate
and burst bounds of Section 3, we obtain an overall bound, encompassing both
bounded memory and bounded computation rates.

Note that we do not model situations where the rates of computation, or
the computational power of machines, increases over time. This is an interesting
direction in which the current research could be extended.
Step Bound: We assume some standard bit string encoding for Turing machines
and for the names of variables, actions, and tasks. We also assume that variable
valuations are encoded in the obvious way, as a list of name/value pairs. Let A be
a task-PIOA with variable set V . Given state s, let ŝ denote the partial valuation
obtained from s by removing all pairs of the form 〈v,⊥〉. We have ιV (ŝ) = s,
therefore no information is lost by reducing s to ŝ. This key observation allows
us to represent a “large” valuation s with a “condensed” partial valuation ŝ.

Let p ∈ N be given. We say that a state s is p-bounded if the encoding of ŝ is
at most p bits long. The task-PIOA A is said to have step bound p if (a) the value
of every variable is representable by at most p bits, (b) the name of every action
name has length at most p bits, (c) the initial state sinit is p-bounded, (d) there
are probabilistic Turing machines able to (i) determine which tasks are enabled
in a given state of A, (ii) determine which action a of a given task is enabled in
a given state s of A, and output a new state of A according to the distribution
of ∆(s, a), (iii) determine if a candidate action a is an input action of A and,
given a state s of A, output a new state of A according to the distribution of
∆(s, a). Furthermore, those Turing Machines terminate after at most p steps on
every input and they can be encoded using at most p bits.



Given a closed (i.e., no input actions) task-PIOA A with step bound p, one
can easily define a Turing machine MA with a combination of nondeterministic
and probabilistic branching that simulates the execution of A. It can be showed
that the amount of work tape needed by MA is polynomial in p.

It can also be shown that, when we compose task-PIOAs in parallel, the
complexity of the composite is proportional to the sum of the component com-
plexities. The proof is similar to that of the full version of [5, Lemma 4.2]. We
also note that the hiding operator introduced in Section 2 preserves step bounds.

Overall Bound: We now combine real time bounds and step bounds. To do so,
we represent global time using the clock automaton Clock (Figure 1). Let p ∈ N
be given and let A be a task-PIOA compatible with Clock. We say that A is
p-bounded if the following hold:

(i) A has step bound p.
(ii) For every task T of A, rate(T ) and burst(T ) are both at most p.

(iii) For every t ∈ N, let St denote the set of states s of A‖Clock such that s is
reachable under some valid schedule τ and s.count = t. There are at most
p tasks T such that T is enabled in some s ∈ St. (Here, s.count is the value
of variable count of Clock in state s).

We say that A is quasi-p-bounded if A is of the form A′‖Clock where A′ is
p-bounded.

Conditions (i) and (ii) are self-explanatory. Condition (iii) is a technical con-
dition that ensures that the enabling of tasks does not change too rapidly. With-
out such a restriction, A could cycle through a large number of tasks between
two clock ticks, without violating the rate bound of any individual task.

Task-PIOA Families: We now extend our definitions to task-PIOA families, in-
dexed by a security parameter k. More precisely, a task-PIOA family Ā is an
indexed set {Ak}k∈N of task-PIOAs. Given p : N→ N, we say that Ā is p-bounded
just in case: for all k, Ak is p(k)-bounded. If p is a polynomial, then we say that
Ā is polynomially bounded. The notions of compatibility and parallel composi-
tion for task-PIOA families are defined pointwise. We now present an example
of a polynomially bounded family of task-PIOAs—a signature service that we
use in our digital timestamping example. The complete formal specification for
these task-PIOAs can be found in the long version of this paper [19].

Example 3 (Signature Service). A signature scheme Sig consists of three algo-
rithms: KeyGen, Sign and Verify. KeyGen is a probabilistic algorithm that out-
puts a signing-verification key pair 〈sk , vk〉. Sign is a probabilistic algorithm that
produces a signature σ from a message m and the key sk . Finally, Verify is a
deterministic algorithm that maps 〈m,σ, vk〉 to a boolean. The signature σ is
said to be valid for m and vk if Verify(m,σ, vk) = 1.

Let SID be a domain of service identifiers. For each j ∈ SID , we build a sig-
nature service as a family of task-PIOAs indexed by security parameter k. Specif-
ically, we define three task-PIOAs, KeyGen(k, j), Signer(k, j), and Verifier(k, j)
for every pair 〈k, j〉, representing the key generator, signer, and verifier, respec-
tively. The composition of these three task-PIOAs gives a signature service. We



assume a function alive : T → 2SID such that, for every t, alive(t) is the set
of services alive at discrete time t. The lifetime of each service j is then given
by aliveTimes(j) := {t ∈ T|j ∈ alive(t)}; we assume this to be a finite set of
consecutive numbers.

Assuming the algorithms KeyGenj , Signj and Verifyj are polynomial time,
it not hard to check that the composite KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j)
has step bound p(k) for some polynomial p. If rate(T ) and burst(T ) are at most
p(k) for every T , then the composite is p(k)-bounded. The family {KeyGen(k, j)‖
Signer(k, j)‖Verifier(k, j)}k∈N is therefore polynomially bounded.

5 Long-Term Implementation Relation

Much of modern cryptography is based on the notion of computational indistin-
guishability. For instance, an encryption algorithm is (chosen-plaintext) secure
if the ciphertexts of two distinct but equal-length messages are indistinguishable
from each other, even if the plaintexts are generated by the distinguisher itself.
The key assumption is that the distinguisher is computationally bounded, so
that it cannot launch a brute force attack. In this section, we adapt this notion
of indistinguishability to the long-lived setting.

We define an implementation relation based on closing environments and
acceptance probabilities. LetA be a closed task-PIOA with output action acc and
task acc = {acc}. Let τ be a timed task schedule forA. The acceptance probability
of A under τ is: Pacc(A, τ) := Pr[β contains acc : β ←R tdist(A, τ)]; that is, the
probability that a trace drawn from the distribution tdist(A, τ) contains the
action acc. If A is not necessarily closed, we include a closing environment. A
task-PIOA Env is an environment for A if it is compatible with A and A‖Env is
closed. From here on, we assume that every environment has output action acc.

In the short-lived setting, we say that a system A1 implements another sys-
tem A2 if every run of A1 can be “matched” by a run of A2 such that no
polynomial time environment can distinguish the two runs. As we discussed in
the introduction, this type of definition is too strong for the long-lived setting,
because we must allow environments with unbounded total run time (as long as
they have bounded rate and space).

For example, consider the timestamping protocol of [11, 12] described in Sec-
tion 1. After running for a long period of real time, a distinguisher environment
may be able to forge a signature with non-negligible probability. As a result, it
can distinguish the real system from an ideal timestamping system, in the tradi-
tional sense. However, the essence of the protocol is that such failures can in fact
be tolerated, because they do not help the environment to forge new signatures,
after a new, uncompromised signature service becomes active.

This timestamping example suggests that we need a new notion of long-term
implementation that makes meaningful security guarantees in any polynomial-
bounded window of time, in spite of past security failures. Our new implemen-
tation relation aims to capture this intuition.



First we define a comparability condition for task-PIOAs: A1 and A2 are
said to be comparable if they have the same external interface, that is, I1 = I2

and O1 = O2. In this case, every environment E for A1 is also an environment
for A2, provided E is compatible with A2.

Let A1 and A2 be comparable task-PIOAs. To model security failure events
in both automata, we let F 1 be a set of designated failure tasks of A1, and let
F 2 be a set of failure tasks of A2. We assume that each task in F 1 and F 2 has
∞ as its upper bound.

Given t ∈ R≥0 and an environment Env for both A1 and A2, we consider two
experiments. In the first experiment, Env interacts with A1 according to some
valid task schedule τ1 of A1‖Env, where τ1 does not contain any tasks from F 1

from time t onwards. In the second experiment, Env interacts with A2 according
to some valid task schedule τ2 of A2‖Env, where τ2 does not contain any tasks
from F 2 from time t onwards. Our definition requires that the first experiment
“approximates” the second one, that is, if A1 acts ideally (does not perform any
of the failure tasks in F 1) after time t, then it simulates A2, also acting ideally
from time t onwards.

More specifically, we require that, for any valid τ1, there exists a valid τ2 as
above such that the two executions are identical before time t from the point of
view of the environment. That is, the probabilistic execution is the same before
time t. Moreover, the two executions are overall computationally indistinguish-
able, namely, the difference in acceptance probabilities in these two experiments
is negligible provided Env is computationally bounded.

If τ is a schedule of A‖B, then we define projB(τ) to be the result of removing
all 〈Ti, ti〉 where Ti is not a task of B. Moreover, let ExecsB(A‖B, τ) denote the
distribution of executions of B when executed with A under schedule τ .

Definition 1. Let A1 and A2 be comparable task-PIOAs that are both compati-
ble with Clock. Let F 1 and F 2 be sets of tasks of, respectively, A1 and A2, such
that for any T ∈ (F 1 ∪ F 2), ub(T ) = ∞. Let p, q ∈ N and ε ∈ R≥0 be given.
Then we say that (A1, F 1) ≤p,q,ε (A2, F 2) provided that the following is true:
For every t ∈ R≥0, every quasi-p-bounded environment Env, and every valid
timed schedule τ1 for A1‖Env for the interval [0, t+ q] that does not contain any
pairs of the form 〈Ti, ti〉 where Ti ∈ F 1 and ti ≥ t, there exists a valid timed
schedule τ2 for A2‖Env for the interval [0, t+ q] such that:

(i) projEnv(τ1) = projEnv(τ2);
(ii) τ2 does not contain any pairs of the form 〈Ti, ti〉 where Ti ∈ F 2 and ti ≥ t;

(iii) ExecsEnv(A1‖Env, trunc≥t(τ1)) = ExecsEnv(A2‖Env, trunc≥t(τ2));
(iv) |Pacc(A1‖Env, τ1)−Pacc(A2‖Env, τ2)| ≤ ε.

It can be observed that the ≤p,q,ε is transitive up to additive errors [19].
The relation ≤p,q,ε can be extended to task-PIOA families as follows. Let

Ā1 = {(Ā1)k}k∈N and Ā2 = {(Ā2)k}k∈N be pointwise comparable task-PIOA
families. Let F̄ 1 be a family of sets such that each (F̄ 1)k is a set of tasks of (Ā1)k
and let F̄ 2 be a family of sets such that each (F̄ 2)k is a set of tasks of (Ā2)k,
satisfying the condition that each task of those sets has an infinite upper bound.



Let ε : N→ R≥0 and p, q : N→ N be given. We say that (Ā1, F̄ 1) ≤p,q,ε (Ā2, F̄ 2)
just in case ((Ā1)k, (F̄ 1)k) ≤p(k),q(k),ε(k) ((Ā2)k, (F̄ 2)k) for every k.

Restricting our attention to negligible error and polynomial time bounds, we
obtain the long-term implementation relation ≤neg,pt. Formally, a function ε :
N→ R≥0 is said to be negligible if, for every constant c ∈ N, there exists k0 ∈ N
such that ε(k) < 1

kc for all k ≥ k0. (That is, ε diminishes more quickly than the
reciprocal of any polynomial.) Given task-PIOA families Ā1 and Ā2 and task
set families F̄ 1 and F̄ 2, respectively, of Ā1 and Ā2, we say that (Ā1, F̄ 1) ≤neg,pt

(Ā2, F̄ 2) if ∀p, q ∃ε : (Ā1, F̄ 1) ≤p,q,ε (Ā2, F̄ 2), where p, q are polynomials and ε
is a negligible function.

Example 4 (Ideal Signature Functionality). In order to illustrate the use of the
relation≤neg,pt in our example, we specify an ideal signature functionality SigFunc,
and show that it is implemented by the real signature service of Section 4.

As with KeyGen, Signer, and Verifier, each instance of SigFunc is parameter-
ized with a security parameter k and an identifier j. It is very similar to the
composition of Signer(k, j) and Verifier(k, j). The important difference is that
SigFunc(k, j) maintains an additional variable history , which records the set of
signed messages. In addition, SigFunc(k, j) has an internal action failj , which sets
a boolean flag failed . If failed = false, then SigFunc(k, j) uses history to answer
verification requests: a signature is rejected if the submitted message is not in
history , even if Verifyj returns 1. If failed = true, then SigFunc(k, j) bypasses
the check on history , so that its answers are identical to those from the real
signature service.

Let us define RealSig(j)k = hide(KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j),
signKeyj) and IdealSig(j)k = hide(KeyGen(k, j)‖SigFunc(k, j), signKeyj). We de-
fine families from those automata in the obvious way: RealSig := {RealSigk}k∈N
and IdealSig := {IdealSigk}k∈N. We show that the real signature service imple-
ments the ideal signature functionality. The proof, which relies on a reduction
to standard properties of a signature scheme, can be found in [19].

Theorem 1. Let j ∈ SID be given. Suppose that 〈KeyGenj ,Signj ,Verifyj〉 is a
complete and EUF-CMA secure signature scheme. Then (RealSig(j), {}) ≤neg,pt

(IdealSig(j), {failj}).

6 Composition Theorems

In practice, cryptographic services are seldom used in isolation. Usually, different
types of services operate in conjunction, interacting with each other and with
multiple protocol participants. For example, a participant may submit a docu-
ment to an encryption service to obtain a ciphertext, which is later submitted
to a timestamping service. In such situations, it is important that the services
are provably secure even in the context of composition.

In this section, we consider two types of composition. The first, parallel com-
position, is a combination of services that are active at the same time and may



interact with each other. Given a polynomially bounded collection of real services
such that each real service implement some ideal service, the parallel composition
of the real services is guaranteed to implement that of the ideal services.

The second type, sequential composition, is a combination of services that are
active in succession. The interaction between two distinct services is much more
limited in this setting, because the earlier one must have finished execution before
the later one begins. An example of such a collection is the signature services in
the timestamping protocol of [12, 11], where each service is replaced by the next
at regular intervals.

As in the parallel case, we prove that the sequential composition of real ser-
vices implements the sequential composition of ideal services. We are able to
relax the restriction on the number of components from polynomial to exponen-
tial.5 This highlights a unique aspect of our implementation relation: essentially,
from any point t on the real time line, we focus on a polynomial length interval
starting from t.

Parallel Composition: Using a standard hybrid argument, as exemplified in [20]
for instance, it is possible to show that the relation ≤neg,pt is preserved under
polynomial parallel composition. The theorem contains a technicality: instead
of simply assuming ≤neg,pt relationships for all the components, we assume a
slightly stronger property, in which the same negligible function ε is assumed
for all of the components; that is, ε is not allowed to depend on the component
index i.

Theorem 2 (Parallel Composition Theorem for ≤neg,pt). Let Ā1
1, Ā1

2, . . .
and Ā2

1, Ā2
2, . . . be two infinite sequences of task-PIOA families, with Ā1

i compa-
rable to Ā2

i for every i. Suppose that Āα1
1 , Āα2

2 , . . . are pairwise compatible for
any combination of αi ∈ {1, 2}. Let b be any polynomial, and for each k, let
(Â1)k and (Â2)k denote ‖b(k)i=1 (Ā1

i )k and ‖b(k)i=1 (Ā2
i )k, respectively. Let r and s be

polynomials, r, s : N → N, such that r is nondecreasing, and for every i, k, both
(Ā1

i )k and (Ā2
i )k are bounded by s(k) · r(i).

For each i, let F̄ 1
i be a family of sets such that (F̄ 1

i )k is a set of tasks of
(Ā1

i )k for every k, and let F̄ 2
i be a family of sets such that (F̄ 2

i )k is a set of tasks
of (Ā2

i )k for every k, where all these tasks have infinite upper bounds. Let (F̂ 1)k
and (F̂ 2)k denote

⋃b(k)
i=1 (F̄ 1

i )k and
⋃b(k)
i=1 (F̄ 2

i )k, respectively.
Assume:

∀p, q ∃ε ∀i (Ā1
i , F̄

1
i ) ≤p,q,ε (Ā2

i , F̄
2
i ), (1)

where p, q are polynomials and ε is a negligible function.
Then (Â1, F̂ 1) ≤neg,pt (Â2, F̂ 2).

Sequential Composition: We now treat the more interesting case, namely, expo-
nential sequential composition. The first challenge is to formalize the notion of
sequentiality. On a syntactic level, all components in the collection are combined
5 In our model, it is not meaningful to exceed an exponential number of components,

because the length of the description of each component is polynomially bounded.



using the parallel composition operator. To capture the idea of successive invo-
cation, we introduce some auxiliary notions. Intuitively, we distinguish between
active and dormant entities. Active entities may perform actions and store infor-
mation in memory. Dormant entities have no available memory and do not enable
locally controlled actions.6 In Definition 2, we formalize the idea of an entity A
being active during a particular time interval. Then we introduce sequentiality
in Definition 3.

Definition 2. Let A be a task-PIOA and let reals t1 ≤ t2 be given. We say that
A is restricted to the interval [t1, t2] if for every t /∈ [t1, t2], environment Env
for A of the form Env′‖Clock, valid schedule τ for A‖Env for [0, t], and state
s reachable under τ , no locally controlled actions of A are enabled in s, and
s.v = ⊥ for every variable v of A.

Definition 3 (Sequentiality). Let A1,A2, . . . be pairwise compatible task-
PIOAs. We say that A1,A2, . . . are sequential with respect to the the nonde-
creasing sequence t1, t2, . . . of nonnegative reals provided that for every i, Ai is
restricted to [ti, ti+1].

Note the slight technicality that eachAi may overlap withAi+1 at the bound-
ary time ti+1.

Theorem 3 (Sequential Composition Theorem for ≤neg,pt). Let Ā1
1, Ā1

2, . . .
and Ā2

1, Ā2
2, . . . be two infinite sequences of task-PIOA families, with Ā1

i compa-
rable to Ā2

i for every i. Suppose that Āα1
1 , Āα2

2 , . . . are pairwise compatible for
any combination of αi ∈ {1, 2}. Let L : N → N be an exponential function and,
for each k, let (Â1)k and (Â2)k denote ‖L(k)

i=1 (Ā1
i )k and ‖L(k)

i=1 (Ā2
i )k, respectively.

Let p̂ be a polynomial such that both Â1 and Â2 are p̂-bounded.
Suppose there exists an increasing sequence of nonnegative reals t1, t2, . . . such

that, for each k, both (Ā1
1)k, . . . , (Ā1

L(k))k and (Ā2
1)k, . . . , (Ā2

L(k))k are sequential
for t1, t2, . . . Assume there is a constant real number c such that consecutive ti’s
are at least c apart.

For each i, let F̄ 1
i be a family of sets such that (F̄ 1

i )k is a set of tasks of
(Ā1

i )k for every k and let F̄ 2
i be a family of sets such that (F̄ 2

i )k is a set of tasks
of (Ā2

i )k for every k, where all these tasks have infinite upper bounds. Let (F̂ 1)k
and (F̂ 2)k denote

⋃L(k)
i=1 (F̄ 1

i )k and
⋃L(k)
i=1 (F̄ 2

i )k, respectively.
Assume:

∀p, q ∃ε ∀i (Ā1
i , F̄

1
i ) ≤p,q,ε (Ā2

i , F̄
2
i ), (2)

where p, q are polynomials and ε is a negligible function.
Then (Â1, F̂ 1) ≤neg,pt (Â2, F̂ 2).

This sequential composition theorem can be easily extended to the case where
a bounded number of components of the system are active concurrently [19].
6 For technical reasons, dormant entities must synchronize on input actions. Some

inputs cause dormant entities to become active, while all others are trivial loops on
the null state.



Application to Digital Timestamping: In this section, we present a formal
model of the digital timestamping protocol of Haber et al. (cf. Section 1). Recall
the real and ideal signature services from Sections 4 and 5. The timestamping
protocol consists of a dispatcher component and a collection of real signature
services. Similarly, the ideal protocol consists of the same dispatcher with a
collection of ideal signature services. Using the sequential composition theorem
(Thm. 3) and its extension to a bounded number of concurrent components, we
prove that the real protocol implements the ideal protocol with respect to the
long-term implementation relation ≤neg,pt. This result implies that, no matter
what security failures (forgeries, guessed keys, etc.) occur up to any particular
time t, new certifications and verifications performed by services that awaken
after time t will still be correct (with high probability) for a polynomial-length
interval of time after t.

Note that this result does not imply that any particular document is reliably
certified for super-polynomial time. In fact, Haber’s protocol does not guarantee
this: even if a document certificate is refreshed frequently by new services, there
is at any time a small probability that the environment guesses the current
certificate, thus creating a forgery. That probability, over super-polynomial time,
becomes large. Once the environment guesses a current certificate, it can continue
to refresh the certificate forever, thus maintaining the forgery.

Dispatcher: We define Dispatcherk for each security parameter k and set SID ,
the domain of service names, to be N. If the environment sends a first-time
certificate request, Dispatcherk requests a signature from signature service j,
where j is the service active at the time where this request is transmitted. After
service j returns the new certificate, Dispatcherk transmits it to the environment.

If a renew request for a certificate issued by the j-th signing service comes
in, Dispatcherk first checks to see if service j is still usable. If not, it sends a
notification to the environment. Otherwise, it asks the j-th signature verification
service to check the validity of the certificate. If service j answers affirmatively,
Dispatcherk sends a signature request to the j′-th signature service, active at the
time of this request. When service j′ returns, Dispatcherk issues a new certificate
to the environment.

Assume the following concrete time scheme. Let d be a positive natural num-
ber. Each service j is in alive(t) for t = (j − 1)d, . . . , (j + 2)d − 1, so j is alive
in the real time interval [(j − 1)d, (j + 2)d]. Thus, at any real time t, at most
three services are concurrently alive; more precisely, t lies in the interior of the
intervals for at most three services. Besides, signature service j accepts signature
requests for t = (j − 1)d, . . . , jd− 1.

Protocol Correctness: For every security parameter k, let SIDk ⊆ SID denote
the set of p(k)-bit numbers, for some polynomial p. Recall from Section 5 that
RealSig(j)k = hide(KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j), signKeyj) and
IdealSig(j)k = hide(KeyGen(k, j)‖SigFunc(k, j), signKeyj). Here we define Realk =
‖j∈SIDk

RealSig(j)k, Idealk = ‖j∈SIDk
IdealSig(j)k, and RealSigSysk :=

Dispatcherk‖Realk, IdealSigSysk := Dispatcherk‖Idealk. Eventually, define Real :=



{Realk}k∈N, Ideal := {Idealk}k∈N, RealSigSys := {RealSigSysk}k∈N and
IdealSigSys := {IdealSigSysk}k∈N. We show the following theorem.

Theorem 4. Assume the concrete time scheme described above and assume that
every signature scheme used in the timestamping protocol is complete and exis-
tentially unforgeable. Then (RealSigSys, ∅) ≤neg,pt (IdealSigSys, F̄ ), where F̄k :=⋃
j∈SIDk

{{failj}} for every k.

In order to prove this theorem, we first observe that certain components of
the real and ideal systems are restricted to certain time intervals, in the sense
of Definition 2: at most three RealSig(i)k and IdealSig(i)k services are alive at
the same time. Then, we observe that the task-PIOA families Real and Ideal are
polynomially bounded and apply the extension of our sequential composition the-
orem (Thm. 3) for bounded concurrency to show that (Real, ∅) ≤neg,pt (Ideal, F̄ ).
Eventually, using our parallel composition theorem (Thm. 2) with the Dispatcher
automaton, we obtain the relation (RealSigSys, ∅) ≤neg,pt (IdealSigSys, F̄ ), as
needed.

7 Conclusion

We have introduced a new model for long-lived security protocols, based on task-
PIOAs augmented with real-time task schedules. We express computational re-
strictions in terms of processing rates with respect to real time. The heart of our
model is a long-term implementation relation, ≤neg,pt, which expresses security
in any polynomial-length interval of time, despite of prior security violations. We
have proved polynomial parallel composition and exponential sequential compo-
sition theorems for ≤neg,pt. Finally, we have applied the new theory to show
security properties for a long-lived timestamping protocol.

This work suggests several directions for future work. First, for our particular
timestamping case study, it remains to carry out the details of defining a higher-
level abstract functionality specification for a long-lived timestamp service, and
to use ≤neg,pt to show that our ideal system, and hence, the real protocol, im-
plements that specification.

We would also like to know whether or not it is possible to achieve stronger
properties for long-lived timestamp services, such as reliably certifying a docu-
ment for super-polynomial time.

It remains to use these definitions to study additional long-lived protocols
and their security properties. The use of real time in the model should enable
quantitative analysis of the rate of security degradation. Finally, it would be
interesting to generalize the framework to allow the computational power of the
various system components to increase with time.
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