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Abstract. We propose a new cryptographic primitive, calledextractable per-
fectly one-way (EPOW) functions. Like perfectly one-way (POW) functions,
EPOW functions are probabilistic functions that reveal no information about their
input, other than the ability to verify guesses. In addition, an EPOW function,f ,
guarantees that any party that manages to compute a value in the range off
“knows” a corresponding preimage.
We capture “knowledge of preimage” by way of algorithmic extraction. We for-
mulate two main variants of extractability, namely non-interactive and interactive.
The noninteractive variant (i.e., the variant that requires non-interactive extrac-
tion) can be regarded as a generalization from specific knowledge assumptions to
a notion that is formulated in general computational terms. Indeed, we show how
to realize it under several different assumptions in the literature. The interactive-
extraction variant can be realized from certain POW functions.
We demonstrate the usefulness of the new primitive in two quite different set-
tings. First, we show how EPOW functions can be used to capture, in the stan-
dard model, the “knowledge of queries” property that is so useful in the Ran-
dom Oracle (RO) model. Specifically, we show how to convert a class of CCA2-
secure encryption schemes in the RO model to concrete ones by simply replacing
the Random Oracle with an EPOW function, without much change in the logic
of the original proof. Second, we show how EPOW functions can be used to
construct 3-round ZK arguments of knowledge and membership, using weaker
knowledge assumptions than the corresponding results due to Hada and Tanaka
(Crypto 1998) and Lepinski (M.S. Thesis, 2004). This also opens the door for
constructing3-round ZK arguments based on other assumptions sufficient for
constructing EPOW functions.

1 Introduction

The Random Oracle methodology [15, 5] consists of two steps. The first step involves
designing a protocol and proving security in an idealized model called the Random
Oracle (RO) model. In the RO model, all parties have oracle access to a public random
function,O. The oracle answers are uniform and independent with only one constraint,
specifically, that all answers to the same query are identical. The second step involves
“moving” the protocol from this idealized model to the real world. This is done by
“replacing” the RO with a cryptographic hash function such as SHA1 [16] or MD5
[26]. In other words, every oracle call is replaced by a function call to some publicly
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known cryptographic hash function. This transformation is known as an instantiation of
Random Oracles.

Although the first step of the RO methodology is rigorous, the second step remains
a heuristic for the most part. While most results in this area provide proofs in the RO
model, they lack even informal justification as to why the instantiated protocols may
be secure. Such justification is of dire need given the fact that the RO methodology is
not sound in general. Specifically, it was shown that there are schemes secure in the RO
model without any secure instantiations (instantiation in the way described earlier) [9,
24, 17]. Furthermore, there exist natural primitives that are realizable in the RO model
but can not be realized at all in the standard model, regardless of the computational
assumptions used [25].

Given the general impossibility results mentioned above, one may resort to consid-
ering a proof in the RO model as a “stepping stone” towards a proof in the standard
model. However, there is a severe flaw with this point of view: When it comes to secu-
rity properties, proofs in the RO model use the Random Oracle somewhat like a Swiss
Army knife. Random Oracles satisfy many cryptographic properties including collision
resistance (it is hard to find two queries with the same RO answer), uniformity (the an-
swer to any query is uniformly distributed), unpredictability or correlation intractability
[9], programmability [25] and knowledge of queries (any machine that computesO(q)
“knows” q). Furthermore, works that use the RO methodology do not often highlight the
specific properties of Random Oracles that are used or needed for the current proof. This
makes translating a proof from the RO model to the standard model a harder task. And
indeed, proofs in the RO model usually follow different lines from the corresponding
ones in the standard model. This is contrary to the intuition behind the RO methodol-
ogy, which is to use the randomness in the RO model to come up with simple proofs
and then replace the Random Oracle by an appropriate function while maintaining the
overall proof structure.

In light of the above discussion, it is interesting to identify specific properties of
Random Oracles that are essential for the security of specific protocols. Once these
properties are identified, it may then be possible to capture them with concrete func-
tions that can be used to replace Random Oracles. Such an approach motivated the
introduction of perfectly one-way (POW) functions in [8] as functions that capture the
hiding property of Random Oracles and are then used to instantiate Random Oracles in
a semantically-secure encryption scheme. In another attempt, Boldyreva and Fischlin
[7] introduce a strong variant of pseudorandom generators geared towards instantiating
OAEP.

However, attempts at instantiating encryption schemes secure against chosen cipher-
text attacks (IND-CCA2) in the RO model have failed. It seems that one main problem
is to translate a central property of Random Oracles, namely knowledge of queries,
to the standard model. This property proves essential for the security proof in the RO
model but it has not been previously formalized and captured by concrete functions.

1.1 Our Work

We formalize the “knowledge of queries” property mentioned above and cast it on a
concrete object in the standard model. We call the new object an extractable perfectly
one-way (EPOW) function. Then, we use EPOW functions not only to instantiate such
schemes but also use a proof of security that follows similar logic as the original proof.



The intended goal in this instantiation is not to try to achieve a more efficient construc-
tion than the existing ones in the literature but rather identify and realize the needed
properties of the random oracle so that the proof of security remains the same in the
standard model in both its logic and simplicity. In addition, we show that EPOW func-
tions are useful in other contexts. We go into more detail shortly.

Extractable perfectly one-way functions.In the RO model, the knowledge of queries
property means that any machine that computes an RO answer,O(q), “knows” q. Even
though such a property is easy to formalize and satisfy in the RO model if the range
of O is sparse, defining it in the standard model while maintaining hiding properties is
tricky. Towards this end, we build on the notion of perfect one-wayness presented in [8]
to introduce a new class of functions calledextractable perfectly one-way(EPOW)
functions. These are functions that hide all information about the input but any machine
that computes a valid image, “knows” a corresponding preimage. We also require a
similar property to hold with respect to auxiliary information which may include other
images. The corresponding statement is any machine that computes anewvalid image,
even in the presence of other images, knows a corresponding preimage. Although using
extractability with a weaker hiding property may be sufficient for certain applications,
it is of particular interest when combined with POW functions since it gives a better
approximation of the properties expected from a Random Oracle.

From one angle, extractability can be interpreted as saying that the only way to
produce a point in the range of this function is by taking a point in the input domain
and then applying the algorithm that computes this function to the input. From another
perspective, an EPOW function is an obfuscation of a point function [1, 30] with the
additional property that the original source program, that computes the point function
in the clear, can be extracted from the view of any potentially adversarial obfuscator.
This property can in fact be defined with respect to any function family.

We define two variants of EPOW functions, namely noninteractive and interactive.
Noninteractive extraction is captured by the existence of a (nonblackbox) preimage
extractor. In more detail, every adversary, that tries to output a point in the range, has
a corresponding extractor that gets the view of the adversary and outputs a preimage.
We emphasize that the extractor gets the view of the adversaryincluding any private
random coins.The interactive variant is discussed later on.

On the relation between noninteractive EPOW functions and NIZK.Superficially, EPOW
functions resemble noninteractive zero-knowledge (NIZK) arguments of knowledge
[29, 28] in that an image can be viewed as a proof of preimage knowledge. However,
EPOW functions and NIZK arguments of knowledge differ in three aspects, namely se-
crecy, verification, and knowledge extraction. First, NIZK secrecy, i.e., zero knowledge,
holds over the choices of the Common Reference String (CRS) while EPOW functions
require secrecy to hold without a CRS. Second, EPOW functions are not required to
have efficient verification, that is deciding whether a given point belongs to the range of
the function. (Contrast this with the verification requirement on POW functions, where
it is easy to check that a given output is an image of a given input.) We mention that our
noninteractive EPOW constructions satisfy a weaker form of verification, which seems
to be needed for the ZK application but not for our Random Oracle instantiation. On
the other hand, our interactive EPOW constructions are not known to satisfy this form
of verification. Third, NIZK arguments of knowledge require auniversal blackboxex-



tractor to recover a witness with the help of auxiliary information about the CRS. On
the other hand, EPOW functions only require a nonblackbox extractor for every adver-
sary. However, this extractor has to recover a preimage from the view of the adversary
without any extra information that is not given to the adversary. The latter formulation
may better capture our intuition about knowledge because it clearly demonstrates that
an adversary “knows” a preimage by recovering it from its view alone.

On the relation between noninteractive EPOW functions and other knowledge assump-
tions. From another angle, extractable functions look similar to other knowledge as-
sumptions such as the knowledge of exponent (KE) assumption [12, 20] and the proof
of knowledge (POK) assumption [23]. In fact, we viewextractable functions as an ab-
straction away from specific knowledge assumptions, much like a one-way function is
an abstraction of specific one-way assumptions, such as the discrete logarithm (DL)
assumption. In other words, the DL assumption gives us a one-way function but it may
even give us more, e.g., a one-way permutation in certain group or certain algebraic
properties. However, we abstract away from these particularities and identify the essen-
tial property needed. Likewise, we use extractable functions as a step towards capturing
the abstract knowledge assumption - it provides a relatively simple primitive that is de-
fined only in terms of its general computational properties, that seems to be useful in a
number of places, and that can be realized by a number of different assumptions. (We
show later that either the KE or the POK assumption, when combined with a hardness
assumption such as the DDH assumption, is sufficient for constructing EPOW func-
tions).

On the constructions.We give three simple constructions of EPOW functions. The first
one uses a POW function and a “strong” notion of NIZK proof of preimage knowl-
edge. In addition, we provide another construction from the POW construction in [8]
and the KE assumption. At a high level, the KE assumption guarantees preimage ex-
traction, while hiding can be based on a strong variant of the DDH assumption. The
third construction is similar to the second one but it uses the POK assumption (with
the same DDH assumption mentioned above). However, all three constructions are not
completely satisfactory. In particular, they do not satisfy all of our requirements. A
notable weakness is that they are indistinguishably perfectly one-way instead of pseu-
dorandom. While the former is sufficient for some applications, such as the3-round
zero-knowledge argument, other applications, specifically, RO instantiation, require the
latter. Thus, in the absence of a construction that meets all our requirements, we turn
our attention to EPOW functions with interactive extraction.

Interactive EPOW Functions.These are POW functions with interactive extraction. In-
formally, interactive extraction means that if a party interactsconsistentlywith a chal-
lenger, then it “knows” a preimage. Interaction between the prover and the challenger
is restricted to Arthur-Merlin games. Furthermore, the messages sent by the prover are
restricted to images of the interactive EPOW function. For instance, in a3-round game
of this type, the prover computes hashes of the preimage using different random coins
for the EPOW function,H, chosen by the challenger. In more detail, the prover sends
y = Hk(x, r0) in the first round, the challenger then responds with a uniform string,
r1, and the prover sends the corresponding image,Hk(x, r1), in the last round. Here,
extractability means that if the images in the first and third round share a common



preimage, then the prover knows it. Similar to the noninteractive setting, knowledge of
preimage is captured by the existence of a preimage extractor.

We show how to transform any POW function to interactive EPOW function. Infor-
mally, our transformation imposes a structure on the new function so that a preimage
can be recovered from any two “related” images. Specifically, ifH is the old POW
function andx is the input, then an image under the new function,H′, consists of some
images of(x, 1) and of(x, xi) (xi is theith bit ofx) underH, for i = 1, ..., |x|. Note that
xi can be recovered fromHk((x, 1), r) andHk((x, xi), r), when the samer is used for
computing both images. So, the extractor uses rewinding to ask the prover to compute
images ofx (underH′) in multiple executions of the game, where the random coins for
H′ are specified by the extractor. These random coins are chosen such thatHk((x, 1), r)
appears in the output ofH′ in one execution of the game whileHk((x, xi), r) appears
in another.

We remark that a slightly different notion of interactive EPOW functions can be
constructed from any POW function,H, and a correspondingΣ-protocol [6, 11] for
proving preimage knowledge. However, this notion is weaker than the one used here
(for more details, refer to the full version of the paper).

1.2 Applications

Using EPOW functions to instantiate Random Oracles in Encryption Schemes.As men-
tioned before, POW functions are used in [8] to capture and realize CPA-security of
the encryption scheme in [5]. However, this is not sufficient for CCA2-security as the
security proof in the RO model uses knowledge of queries. Here, we use EPOW func-
tions to instantiate the second encryption scheme in [5] (recalled shortly), and translate
the proof to the standard model in a straightforward way. This scheme uses a trap-
door permutation,M , and two Random Oracles,O1, O2, to encrypt a message,m, as
c = (M(r), O1(r) ⊕ m,O2(r, m)), wherer is uniform. At a high level, it is CCA2-
secure because the hiding property of Random Oracles gives us semantic security while
knowledge of queries gives us knowledge of plaintext (the latter property is what en-
ables proving CCA2-security). The notion of a POW function alone is not enough for
CCA2-security as it may not guarantee extractability. So, an EPOW function provides
the missing link, namely extractability, for replacing a Random Oracle by a POW func-
tion. Thus, if we replace the Random Oracle by an EPOW function in the previous
scheme we get a CCA2-secure encryption scheme in the standard model. This scheme
can be either noninteractive or3-round depending on whether the EPOW function is
noninteractively or interactively extractable.

This approach can be utilized to realize other encryption schemes in the RO model.
In particular, we show how to instantiate some schemes that provably cannot be instan-
tiated using the standard instantiation prescribed in the RO methodology [9, 24], where
each RO query is replaced with a call to a specific function. Thus, the aforementioned
instantiation is different from the standard one and does not contradict the impossibility
results mentioned above. A detailed presentation of this result and the next one appears
in the full version of the paper.

On the connection to other approaches and CCA2 schemes.We remark that generic
transformations from any semantically-secure scheme to a CCA2-secure one have been



studied before [14, 27]. Also, the KE assumption has been used to prove that certain en-
cryption schemes are plaintext-aware, which when coupled with semantic security gives
CCA-secure schemes [4, 13]. Moreover, Katz [22] used the notion of proofs of plaintext
knowledge to construct efficient3-round CCA2-secure schemes. We emphasize that the
contributions of this work are not in giving better or more efficient constructions than
existing ones in the literature, but rather in the methodology of replacing Random Ora-
cles as described above.

Moreover, when we use interactive EPOW functions to instantiate Random Ora-
cles in encryption schemes, we do not achieve anything new that knowledge protocols,
e.g.,Σ-protocols, can not achieve. Yet, we find this interactive notion interesting for
two reasons. First, this primitive is interesting in its own right. It provides a simple
function, as opposed to a protocol, that has an inherent knowledge property. Moreover,
this knowledge property is actually slightly weaker than proofs of knowledge. This is
so because it is a proof of knowledge only if some consistency condition is satisfied.
However, this condition can not be efficiently verified. This by itself may seem useless.
However, embedding this function in a protocol, where verification can occur due to
other parameters, makes this primitive useful. Second, this notion allows for instanti-
ation of random oracles yielding interactive encryption schemes without much change
to the simplicity or the logic of the original proof.

Using EPOW functions to construct3-round ZK protocols.We give one more appli-
cation of EPOW functions in the context of Zero-Knowledge (ZK) systems. Current
3-round ZK arguments and proofs use strong and very specific number theoretic as-
sumptions [20, 21, 23, 4]. On the other hand, we construct3-round ZK arguments of
knowledge and membership assuming only the existence of a variant of EPOW func-
tions and noninteractive witness-indistinguishable (WI) arguments [3, 19]. This allows
for abstracting from specific number theoretic assumptions and opens the door for bas-
ing 3-round ZK arguments on other assumptions sufficient for constructing this variant
of EPOW functions. On the one hand, the existence of EPOW functions is an assump-
tion that is stated in general computational terms without resorting to specific algebraic
constructs. On the other hand, the assumption seems rather basic and in particular less
specific than current knowledge assumptions.

As a concrete example, we use our second EPOW construction to build such ZK
arguments. We remark that the KE assumption used here is weaker than the correspond-
ing knowledge assumptions used for constructing3-round ZK arguments in [20, 21, 4].
Specifically, we eliminate the need for the second KE assumption in [21] and later up-
dated in [4]. We note that both simulation and extraction are nonblackbox. Thus, this
result does not contradict the impossibility results in [2].

1.3 Organization

We introduce and define extractable functions in Section 3. We then highlight one non-
interactive and one interactive constructions in Sections 4 and 5. The last two sections
in the body discuss applications to Random Oracle instantiation and3-round ZK ar-
guments, respectively. A more detailed presentation, common definitions, and proofs
appear in the full version of the paper.



2 Preliminaries

A function, µ, is called negligible if it decreases faster than any inverse polynomial.
Formally, for any polynomialp, there exists anNp such that, for alln ≥ Np: µ(n) <

1
p(n) . We reserveµ to denote negligible functions. A distribution is calledwell-spread
if it has superlogarithmic min-entropy, i.e.,maxkPr[Xn = k] is a negligible function
in n. A probabilistic function family is a set of efficient probabilistic functions having
common input and output domains. Formally,Hn = {Hk}k∈Kn is a function family
with key spaceKn and randomness domainRn if, for all k ∈ Kn,Hk : In × Rn →
On. A probabilistic function family haspublic randomnessif for all k, Hk(x, r) =
r, H ′k(x, r) for some deterministic functionH ′k. A family ensemble is a collection of
function families, i.e.,H = {Hn}n∈N. An uninvertible function,f , with respect to a
well-spread distribution,X, is an efficiently computable function that is hard to invert on
X. Formally, for any PPT,A, Pr[x← Xn, A(f(x)) = x] < µ(n). If f is uninvertible
with respect toanywell-spread distribution, then it is called uninvertible.

2.1 Perfectly One-way Probabilistic Functions

A perfectly one-way (POW) function is a probabilistic function that satisfies collision
resistance and hides all information about its input. Due to its probabilistic nature, such
a function is coupled with an efficientverification scheme that determines whether a
given string is a valid hash of some given input [10].

One formulation of information hiding requires hardness of indistinguishability be-
tween hashes of the same input and hashes of different inputs [10], where the former
is taken from a well-spread distribution and the latter inputs are uniform and indepen-
dent. We also consider the presence of auxiliary information, which is represented as
an uninvertible function of the input. A notable special case of indistinguishability is
pseudorandomness, i.e., hashes of the same input are indistinguishable from uniform.
Moreover, thestatistical version of both definitions can be obtained by dropping the
requirements of auxiliary information and efficiency of the adversary. The formal defi-
nitions appear in the full version of the paper.

3 Extractable Functions

An extractable function is one for which any machine that “computes” a point in the
range, “knows” a corresponding preimage. As a starting point, we can formulate this no-
tion by requiring any efficient machine that computes an imagewithout auxiliary input
to “know” a preimage. Although, this requirement seems reasonable, it is not sufficient
for applications where auxiliary information is present. On the other hand, formulating
this notion in the presence of auxiliary information is tricky. As a toy example,A can
be a machine that receives an image as an input and copies it to its output. Moreover,
A may still receive an image hidden in its auxiliary input in a subtle way but can be
efficiently extracted from it. Yet, we do not think that this captures our intuition be-
causeA does not really compute the function, rather it decodes the image syntactically
from its input. Thus, we need a meaningful way of telling apart “copying” an image and
“computing” and image.



Following [18], we consider two types of auxiliary information. The first one, called
independent auxiliary information , consists of auxiliary information computed be-
fore a function is sampled from a family ensemble,H. We stress that this input is in-
dependent of the particular function currently used. This prevents hiding images in this
type of auxiliary input. The second type, calleddependent auxiliary information, is
restricted to images underH. This is a restricted form of dependent auxiliary informa-
tion but it is sufficient for our applications. Given these two types of inputs, we require
that no adversary can come up with anew image without knowing a corresponding
preimage. We capture knowledge of a preimage by requiring for everyA, that com-
putes a new image, a corresponding extractor,KA, that has access to the private input
of A and computes a preimage. We emphasize thatKA has to compute the preimage
from the view ofA without any additional information.

For clarity, we first formalize this notion in the presence of independent auxiliary
information alone before addressing the general case.

Definition 1. Let H = {Hn}n∈N be any verifiable family ensemble (with verifierVH).
Then,H is callednoninteractively extractableif for any PPT,A (with private random
coins denoted byrA), and polynomial,p, there exists a PPT,KA, such that for any
auxiliary information,z:

Pr[k ← Kn, y = A(k, z, rA), x← KA(k, z, rA) : VH(x, y) = 1 or (∀x′
, VH(x

′
, y) 6= 1)] > 1−

1

p(n)
−µ(n).

Note that we allow a noticeable extraction error. The constructions from the KE or
POK assumption have a negligible error. However, the error in our interactive construc-
tions is not known to be negligible. So, for uniformity, we adopt the weaker notion.

There are two possible ways to introduce dependent auxiliary information into Def-
inition 1. One can allow this auxiliary information to be images of any input while the
more restrictive way forces the images to correspond to inputs chosen from well-spread
distributions. Even though the former is more general, the latter is sufficient for our
applications. Thus, we use the latter notion in this work. The formal definitions are not
presented here due to space constraints.

Interactive extraction.In the interactive setting, we force an adversary,A, to compute
not only one image but a large fraction of the images ofx (recall, the function is prob-
abilistic). We then say that ifA can do so, thenx is extractable. We achieve the first
property by forcingA to use random coins for the probabilistic function that are chosen
by an external challenger. In more detail, we define a3-round game betweenA and
a challenger (or knowledge extractor).3 At the end of the game, if the interaction is
consistent (we say shortly what this means) then extraction is possible.

The game starts withA sending an image,y0. The challenger sends uniform strings,
r1, ..., rn, andA has to answer with images,y1, ..., yn, usingr1, ..., rn as random coins
for H. We call an interaction consistent if there is a common preimage,x, of y0, ..., yn

with r1, ..., rn as random coins for the lastn images. We then callH interactively ex-
tractable if for any adversary that plays this game consistently, there is a corresponding
extractor that recovers a common preimage ofy0, ..., yn. We also allowA to receive an
auxiliary input that can depend, in an arbitrary way, on the choice of the function from
the ensemble,H.

3 In the full version of the paper, we define a2-round version. However, realizing this notion
seems to require stronger assumptions.



4 A Noninteractive EPOW Construction

Before we present the EPOW construction, we show a simpler construction that achieves
extractability but satisfies a weaker notion of computational hardness, namely one-
wayness. Both constructions use the KE assumption to satisfy extractability. Informally,
the KE assumption says that it is hard to compute, on inputp, q, g, ga, a pair of elements
(gr, gra) without knowingr, wherep andq are primes,p = 2q+1, andg is a generator
for the quadratic residue group modulop. This assumption can be formulated with or
without independent auxiliary information (it can be shown that it does not hold with
respect to auxiliary information that depends on(p, q, g, ga)).

Note that the KE and discrete-log (DL) assumptions imply that the family ensem-
ble, F = {{fp,q,g,ga}(p,q,g,ga)∈PQGAn

}n∈N, wherefp,q,g,ga(x) = gx, (ga)x, is an
extractable one-way (EOW) family ensemble. We strengthen the previous construc-
tion into a POW function by maskingx with a uniform elementr as in [8]. Formally,
Hp,q,g,ga(x, r) = gr, gar, grx, garx.

Preimage extraction.If the KE assumption holds without auxiliary information then
for any PPT,A, that outputs a valid image(gr, gar, grx, garx), there are two PPT,K1

andK2, such thatK1 extractsr andK1 extractsrx. Consequently,H is extractable.
Moreover, if the KE assumption holds with respect to auxiliary information, thenH
is extractable with respect toindependentauxiliary information. However,H is not
extractable in the presence of dependent auxiliary information. On the other hand, we
note that extraction occurs here with negligible error.

Information hiding.The secrecy of this construction is similar to that of the correspond-
ing one in [8], specificallyHp,q,g(x, r) = gr, grx. In particular, secrecy of both con-
structions is based on a stronger version of the DDH assumption. Informally,ga, gb, gab

is indistinguishable fromga, gb, gz wherea is drawn from awell-spreaddistribution
instead of uniform. However, these secrecy notions differ in two ways. First, the [8]
construction is pseudorandom while this one is an indistinguishable POW function.
Second, secrecy in [8] holds for a randomly chosen function while we use secrecy that
holds for any function. While the former is sufficient in some applications, such as Ran-
dom Oracle instantiation in encryption schemes, the latter is needed in the ZK protocol
(see Section 7). Consequently, the DDH assumption used here is assumed to hold for
any(p, q, g) instead of a randomly chosen one [20].

5 Construction of Interactive EPOW Functions

The construction presented here is based on hardness assumptions and achieves both
interactive extraction and perfect one-wayness. However, it does not achieve perfect
one-wayness with auxiliary information. A second construction that satisfies the latter
property appears in the full version of the paper.

The idea behind both constructions is to have pairs of related images satisfy the
property that it is easy to compute a preimage if both of them are available. In more
detail, we identify for everyr, a related̂r, such thatO(x, r), O(x, r̂) revealsx. However,
O(x, r), O(x, r̂) is unlikely to appear in a single execution of the extraction game. So,
the extractor can recover a preimage by sendingr in the second round of the game to



getO(x, r), rewindingA, and then sendinĝr to getO(x, r̂). More details appear after
the construction.

Construction 1 Let H = {Hn}n∈N and G = {Gn}n∈N be two family ensembles.
Denote byO = {On}n∈N the family ensemble defined as:

Ok=(k1,k2,k3)(x, (r
1
0 , r

2
0 , r

3
0 , r1..., rn, rG)) = r

2
0 , r

3
0 , Hk1 (x, r

1
0), Hk2 (t1, r1), ..., Hk2 (tn, rn), Gk3 (x, rG),

where for alli, ti = Hk(x, r2
0) if xi = 1, andti = H(x, r3

0) otherwise.

Primage extraction.For simplicity, and to see why Construction 1 is extractable assume
thatA receives only a single challenge,rO, in the second round of the extraction game.
Informally,K tries to makeA output two “related” hashes that allows it to recoverx. To
this end,K sendsrO as a challenge toA, rewindsA, and then sendŝrO. So, if both inter-
actions are consistent,x can be recovered. In more detail,K sendsr1

0, r2
0, r

3
0, r1, ..., rn

to A in the first interaction, where all strings are uniform. In the second interaction,K
sendsu1

0,r
1
0, u3

0, u1, ..., un, whereu1
0, u

3
0, u1, ..., un are chosen uniformly butr1

0 (the
string in bold font) is the same as the one used in the first interaction. IfA answers both
challenges consistently, thenK can recoverx. This is so because the message in the last
round of the first interaction containst = Hk1(x, r1

0) in the clear, while the message
in the last round in the second interaction containsHk2(t, ui) if and only if theith bit
of x is 1. We remark that the technical proof requires thatH satisfies a strong form of
collision resistance. The formal definition and proof of extraction appears in the full
version of the paper.

Information hiding.This construction uses two functions,H andG, instead of one due
to the properties needed to prove perfect one-wayness and extractability. Specifically,
our proof of perfect one-wayness uses the assumption thatH is statisticallyperfectly
one-way. On the other hand, extractability assumes thatH satisfies strong collision re-
sistance. Currently, we do not know of any class of functions that satisfies this require-
ment except statistically binding functions. However, no single function can be both
statistically pseudorandom (hiding) and statistically binding. Therefore, we use two
functions. We assume thatG is strongly collision resistant, e.g., statistically binding, so
thatO is strongly collision resistance and consequently extractable. On the other hand,
H is assumed to be a statistically POW function. Therefore, ifG is computationally
perfectly one-way with auxiliary information (it is sufficient that the auxiliary informa-
tion be only a statistically hiding function), thenO is acomputationallyPOW function.
We emphasize thatO is a POW function but not necessarily with respect to auxiliary
information. In the full version of the paper, we modify the construction to meet this
requirement based on a strong POW assumption.

6 Overview of the Instantiation of the Second Encryption Scheme
in [5]

We use EPOW functions to instantiate Random Oracles in the second encryption scheme
of [5] while maintaining a similar proof of security. Extractable POW functions allow
us to do so because they capture two properties of Random Oracles essential for the
original proof, namely, pseudorandomness and knowledge of preimage.



The original scheme uses a family ensemble of trapdoor permutations,M, with key
spacePKn and trapdoorSKn, and two random oraclesO1 andO2. The encryption of
a message,m, is c = Mpk(q), O1(q)⊕m,O2(m, q), whereq is uniform.

Informally, this scheme is IND-CCA2 because it is IND-CPA and the decryption
oracle does not help the adversary,A. In more detail, without access to the decryption
oracle,A has a negligible advantage becauseM is one-way. On the other hand, any
valid decryption query,c1, c2, c3, thatA makes must be preceded by two Random Or-
acle queries,Msk(c1) andMsk(c1), O1(Msk(c1)) ⊕ c2. However, ifA makes any of
these two queries it can compute the plaintext on its ownwithout the decryption oracle.

Interactive instantiation.In the interactive setting, each oracle query is replaced by a
call to a function,H. Moreover, to encrypt a message,m, E sends a hash of a uniform
string,q, in the first round.D responds by sending random stringsr1, ..., rn. In the last
round,E sendsn hashes ofq usingr1, ..., rn as random coins forH. E also sends the
ciphertext ofm using the original scheme (withH in place of the Random Oracle) with
the sameq as the one used in the first round. We note that the first two messages are
independent of the plaintext and thus can be sent ahead of time.

The idea behind this instantiation is to make use of interaction to verify that the
sender actually knowsq. This utilizes the fact thatH satisfies interactive preimage ex-
traction. So that any adversary communicating with the decryption oracle knows what
the plaintext is. Hence, the decryption oracle does not really help the adversary. There-
fore, IND-CCA2 can be reduced to IND-CPA. Since this scheme can be shown to be
IND-CPA, it is IND-CCA2 in the interactive setting.

Noninteractive instantiation.A similar relation can be drawn between the existence of
noninteractive EPOW functions and noninteractive instantiation of this scheme. Specifi-
cally, if M is a trapdoor permutation andH is a extractable (with dependent auxiliary in-
formation) and pseudorandom POW function with public randomness, then the scheme,
E(m, pk′ = (pk, k1)) = r1,Mpk(q), y ⊕m,Hk1(q, m, r2), whereHk1(q, r1) = r1, y,
is IND-CCA2.4

7 Overview of the3-round Zero-Knowledge Protocol

EPOW functions can also be used to construct3-round ZK argument systems. Such
functions allow us to do so because of their knowledge and secrecy properties. In-
formally, the protocol starts with the prover sending an EPOW function. The verifier
responds with a corresponding image of a uniform string. The protocol ends with the
prover sending a noninteractive witness-indistinguishable (WI) proof that either the the-
orem is true or the prover “knows” a preimage of the verifier’s message. Intuitively, this
protocol is sound because the verifier’s message completely hides its preimage. Thus,
the (polynomially-bounded) prover does not “know” a preimage. Consequently, if the
verifier accepts the conversation then by the soundness property of the WI proof, the
theorem has to be true. On the other hand, this protocol is zero-knowledge because the
verifier “knows” a preimage of its message. In other words, a simulator can use the
extractor for the EPOW function to recover a preimage and produce a WI proof using

4 The construction in Section 4 is an indistinguishable POW function but is not known to be
pseudorandom. Realizing the latter requirement with noninteractive extraction remains open.



this preimage as a witness. In more detail, the simulator sends a random EPOW func-
tion in the first round. The verifier responds with an image under this function, and the
simulator uses the extractor to recover a corresponding preimage, and then uses it as a
witness in computing the noninteractive WI proof.

We emphasize that when using the construction of Section 4 in the above ZK pro-
tocol, we do not use any algebraic property of the discrete log in a direct way. This
opens the door for basing3-round ZK arguments on assumptions other than the KE
assumption as long as such assumptions prove sufficient for constructing such EPOW
functions.

We remark that using EPOW functions with arbitrary small but noticeable extraction
failure probability gives weak simulation, i.e., simulation fails with arbitrary small but
noticeable probability. On the other hand, if an EPOW function, such as construction of
Section 4, has negligible extraction error then simulation succeeds overwhelmingly.
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