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Abstract— Learning from demonstrations has been shown to
be a successful method for non-experts to teach manipulation
tasks to robots. These methods typically build generative models
from demonstrations and then use regression to reproduce
skills. However, this approach has limitations to capture hard
geometric constraints imposed by the task. On the other hand,
while sampling and optimization-based motion planners exist
that reason about geometric constraints, these are typically
carefully hand-crafted by an expert. To address this technical
gap, we contribute with C-LEARN, a method that learns multi-
step manipulation tasks from demonstrations as a sequence of
keyframes and a set of geometric constraints. The system builds
a knowledge base for reaching and grasping objects, which is
then leveraged to learn multi-step tasks from a single demon-
stration. C-LEARN supports multi-step tasks with multiple end
effectors; reasons about SE(3) volumetric and CAD constraints,
such as the need for two axes to be parallel; and offers a
principled way to transfer skills between robots with different
kinematics. We embed the execution of the learned tasks within
a shared autonomy framework, and evaluate our approach
by analyzing the success rate when performing physical tasks
with a dual-arm Optimus robot, comparing the contribution of
different constraints models, and demonstrating the ability of
C-LEARN to transfer learned tasks by performing them with
a legged dual-arm Atlas robot in simulation.

I. INTRODUCTION

Planning and executing multi-step dexterous manipulation
tasks remains challenging in the field of robotics, particularly
with regard to robots with a high number of degrees of
freedom (DoF). We are interested in planning for functional
tasks, or manipulation tasks requiring multiple end effectors
to manipulate objects within an environment through a series
of defined steps that accomplish a goal within a specific
domain, such as the tasks illustrated in Fig.1. We are driven
by real-world applications in which dexterous manipulation
can play a key role in improving safety and efficiency during
time-critical operations, such as render-safe procedures in
explosive ordnance disposal (EOD); and disaster response
situations [1], such as the tasks designed for the DARPA
Robotics Challenge (DRC). There is a need within these set-
tings for better assisted planning and interaction techniques
to enable operators to efficiently and remotely control high-
DoF robots – offering rich situational awareness and capable
planning assistance while ensuring the manageability of the
mental and physical demands placed on the operator.
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The shared autonomy framework has been explored pre-
viously in the robotics community as a potential solution
for exploiting the symbiosis between human skills (such as
high-level cognitive understanding for planning) and robot
skills (such as rapid computation) for motion planning and
perception [2][3]. Results from prior work involving the
deployment of remote robots operating under this framework
have indicated the potential of this technique for assisting
in the execution of functional manipulation tasks [4][5].
However, the proposed solutions require a highly skilled
programmer with robotics experience to encode the sequence
of motions that the robot should execute for a given task
[6][7].

Techniques involving learning from demonstrations [8]
have proven to be a successful way for non-experts to
teach manipulation tasks to robots. However, this approach
has limitations with regard to learning tasks that require
the use of hard geometric constraints typically found in
functional tasks, such as extracting a cylinder from a larger
coaxial cylinder. In these approaches, robots typically learn
from variance within the demonstrations and then apply
regression over a generative model to compute new motion.
One limitation inherent to this approach, however, is its
inability to represent and guarantee satisfaction of explicit
geometric constraints.

On the other hand, sophisticated motion planning tech-
niques based on optimization exist [4][9] that make use of
geometric constraints for planning. Given a set of carefully
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Fig. 1: Optimus robot executing the test tasks: (a) Pick and transport
a cylinder. (b) Secure a box and extract a cylinder. (c) Open a door
and push a button in a confined space. (d) Transport a tray.



crafted set of constraints, these methods are capable of
whole-body planning for functional tasks involving multiple
manipulators with complex kinematics. There is currently a
technical gap between the benefits of learning from demon-
strations for non-experts to teach robots and the capabilities
of motion planners able to reason about explicit geometric
constraints. We are interested in augmenting learning from
demonstrations with support for use of hard geometric con-
straints.

In this paper, we present C-LEARN: a Constraints
LEARNing from demonstrations method for multi-step ma-
nipulation tasks with n effectors. It builds a knowledge base
(KB) of geometric constraints from multiple demonstrations
provided through teleoperation in a 3D interactive user
interface. Multi-step manipulation tasks are described as a
sequence of steps, or keyframes, and a set of constraints per
keyframe, which are inferred from a single demonstration by
matching it with entries in the knowledge base. In addition to
learning constraints as volumes in SE(3), we also introduce
the use of constraints that define the relations between objects
and end effectors in terms of perpendicular, parallel and
coincident axes, together with motion along an axis or within
a plane. We refer to these models as CAD constraints, due to
their similarity with the geometric and distance constraints
common to computer-aided design (CAD) software. Finally,
we embed the execution of the learned tasks into a two-step
workflow of planning and execution in which the system
suggests motion plans through visualization to the operator,
who can decide to execute the plans or perform modifications
using end effector teleoperation.

We argue that ordered sets of explicit geometric con-
straints are a canonical form for representing the information
necessary to reproduce a manipulation task in quasi-static
settings – we do not consider dynamic manipulation. This
paper contributes a method that (1) learns this representation
from demonstrations; (2) supports multi-step manipulation
tasks with n end effectors, and reasons about models of
volumetric and CAD constraints, and (3) offers a principled
way to transfer skills learned by one robot to other robot
with different kinematics.

Section II contains a summary of related work, and
Section III describes the learning and planning framework
in C-LEARN. In Sections IV and V, we elaborate upon the
algorithmic details of the learning components: building a
knowledge base of reaching and grasping affordances (IV),
and learning multi-step manipulation tasks from a single
demonstration by retrieving information from the knowledge
base (V). We embed our core technical contribution for learn-
ing constraints into an end-to-end system for planning and
execution using a shared autonomy approach, evaluate our
system by comparing planning performance across different
functional tasks using varied sets of constraints models, and
show the ability to transfer knowledge between robots with
different kinematics and balancing constraints. Our results
are presented in Section VI. Section VII presents a summary
and discussion.

II. RELATED WORK

Some techniques for learning manipulation tasks involve
learning trajectory segments in which constraints are likely
to exist by identifying low variance across demonstrations
[10][11][12]. One common approach is to model demonstra-
tions using Gaussian mixture model (GMM) and then gener-
ate new motion using Gaussian mixture regression (GMR).
This technique results in motion that is expected to remain
within the boundaries of the variance with some confidence,
but cannot guarantee satisfaction of a specific behavior, such
as strictly remaining parallel to an axis or moving within a
plane. Under this method, generalization to variants of tasks
with different initial or final positions of relevant objects typ-
ically employs some geometric transformation or similarity
metric; however, it is unclear what guarantees of satisfaction
of constraints exist under such transformations. Recognition
of these segments with low variance often depends upon the
performance of preprocessing steps, such as dynamic time
warping (DTW), to align the time series associated with the
demonstrations [13][14], and the selection of a number k of
components for the GMM, which can yield either under- or
over-constrained results. Task-parameterized variants of the
GMM (e.g. TP-GMM [15]) have been applied to encode ma-
nipulator position and orientation requirements for bimanual
tasks [16]. Other methods encode task constraints on a cost
metric to be minimized [12]; in this case, the model is based
on a Hidden Markov Model (HMM) and the planner is able
to avoid new obstacles by implementing an asymptotically
optimal, sampling-based motion planner. Here, we use the
variance in features across demonstrations to select from a
number of parametrized constraints models.

The use of hard geometric constraints has been explored
previously using optimization-based [4][9] and sampling-
based motion planners [17]. For sampling-based techniques,
Berenson et al. introduced a representation of geometric
constraints, named “task space regions” (TSR), along with a
planning algorithm (CBiRRT2) with sampling strategies to
satisfy the TSR constraints [17]. In their work, TSRs are
defined as a volume in SE(3) with a target frame (target
homogeneous transformation) and a tolerance in SE(3), using
the roll, pitch, yaw representation for orientation. More
recently, Li and Berenson presented a method for learning
TSRs in object space in order to plan in narrow passages
using a single human demonstration [18]. The authors used
sampling to analyze the space surrounding the demonstrated
trajectory of an object and reject samples where the object
would have been in collision. Since TSRs are a sufficiently
general representation for geometric constraints in SE(3),
we use this model to represent volumetric constraints in
SE(3) such that the end effector should live in this volume
for a given keyframe. TSRs can be handled not only by a
sampling-based planner [17], but also by optimization-based
planners, such as the one used in our work [4]. However,
unlike the work by Li and Berenson, in which TSRs were
filled with collision-free samples from the vicinity of the
continuous trajectory of the object during a single demon-



stration [18], our method to build TSRs is based on clustering
samples from multiple demonstrated keyframes.

The concept of keyframes was introduced by Akgun et al.
as a sparse set of poses that accomplishes a learned task if ex-
ecuted in sequence [19]. In that work, keyframes are learned
as the points in C-Space needed to recover the trajectory in
the demonstrations when using a spline method to generate
the new trajectory. Under this definition, keyframes provide a
convenient geometric feature for task reproduction but do not
necessarily encode regions where task constraints are present.
In more recent work, Kurenkov et al. extended the concept
to introduce constrained-keyframes as a sequence of position
and orientation constraints [20]. In that work, keyframes
are clustered using k-means from kinesthetic demonstrations,
or explicitly specified by the operator on a GUI. In our
work, we similarly incorporated the concept of keyframes
by defining manipulation tasks as a sequence of ordered
keyframes, wherein each keyframe has a set of simultaneous
geometric constraints that should be satisfied by the planner.
The sequence of keyframes and the set of constraints for
each keyframe are stored in a knowledge base for known
affordances [21] for reaching and grasping.

The method of learning from a single-shot demonstration
or single sample has been studied previously in the context
of robotics [18][22][23][24], as well as in machine learning
research [25]. Alexandrova et al. proposed learning multi-
step manipulation tasks from a single demonstration by
learning target frames (target position and orientation in
Cartesian space) with respect to relevant objects in the
demonstration, called “landmarks” [24]. Using this approach,
the operator has the opportunity to modify learned target
frames and landmarks a posteriori via an interactive GUI.
Motion during new scenarios of the same task is generated
by accordingly transforming the learned target frames and
planning by interpolating between poses with a velocity
profile using a PR2 robot. If the new transformed frames
are infeasible, the task is declared unexecutable.

In a similar spirit, our method of learning a multi-step
task also incorporates a single demonstration, but keyframes
for reaching and grasping motions leverage information from
a pre-learned knowledge base that incorporates information
about geometric constraints. The rest of the manipulation
steps are learned in a similar fashion, by learning target
frames with respect to landmarks, but with the added feature
of identifying constraints that remain active so that motions
such as “move in a line” are possible.

Multi-step manipulation has also been learned in prior
work from a set of kinesthetic demonstrations on a PR2 robot
using beta process autoregressive hidden Markov models and
dynamic movement primitives [26]. This approach does not
handle constraints, but focuses instead on the segmentation
of the demonstrations in time, which is a challenge that our
method avoids by collecting keyframe demonstrations, which
are discrete in nature.

Learning constraints is an active research topic. In work by
Phillips et al., articulated constraints (such as a door-opening
task), are learned and re-used as previous experiences during

planning through an “experience graph” – a collection of pre-
viously planned paths [27]. In our work, previous experience
is encoded in a knowledge base that specifies affordances,
keyframes, and geometric constraints, whereas Phillips et al.
encoded experience as previously planned paths. Articulated
constraints were also explored by Pillai et al. [28]; in their
work, a model of the articulated motion is learned from
visual demonstrations.

In a manufacturing context, parts assembly requires hard,
tight constraints, such as aligning objects or matching sur-
faces. With this problem in mind, Somani et al. developed
a method for planning robot motion given a set of specified
(not learned) constraints using CAD semantics, such as how
to assemble two parts given a specification of the CAD
relation between the two objects [29]. In our work, we
incorporate a parametric model of common CAD constraints
with an algorithm to decide when these constraints are
active in a given keyframe that has been identified in an
unsupervised manner. We demonstrate here how the use of
CAD constraints enables the planner to handle real-world
functional tasks with skills required in domains such as
manufacturing and EOD.

III. METHOD OVERVIEW

A. Learning Framework
The learning component consists of two phases. The first

phase incorporates a number of demonstrations to learning
constraints for approaching and grasping objects in different
modes. Modes are defined as different approach angles and
grasping positions that the operator might make use of for
various purposes, such as grasping a cylinder from the side
or from the top. These grasping and approaching constraints
are used to build a knowledge base (KB), which is indexed
by object type and mode. This KB is kept in memory as
the knowledge of the robot. For each (ob ject,mode) pair,
motion is described as a ordered sequence of keyframes and
a set of geometric constraints for each keyframe. The data
collected from the demonstration in Cartesian space is used
to select constraints from a catalog of constraints models,
including a volume in SE(3) to stay within, motion parallel
or perpendicular to an axis, and motion within a plane. We
present this learning phase in detail in Section IV.

The second phase has the goal of learning a multi-step
manipulation task using a single demonstration. This demon-
stration is matched with entries in the KB via a distance
metric, which enables retrieval of the appropriate set of
keyframes and constraints learned from prior demonstrations
of approaching and grasping motions. The remaining manip-
ulation steps involved in a task – transportation, location, or
release, for example – are learned from the single multi-
step demonstration while attempting to identify constraints
that might remain active during these steps. We present
this learning phase in detail in Section V. Once a multi-
step manipulation task has been learned, the sequence of
keyframes and set of constraints is used to reproduce the
task by invoking an optimization-based motion planner for
each keyframe in sequence.



B. Demonstrations Method

Previous work in learning from demonstrations has ex-
plored different methods of providing demonstrations [8].
Kinesthetic demonstrations, for example, are intuitive for a
novel user but generally require a robot with gravity com-
pensation that can be freely manipulated while the sensing
system is on. This capability is often unavailable in robots
designed for use in specialized domains and applications that
do not traditionally consider learning from demonstrations in
the design process, or in scenarios where a high number of
DoF and the use of multiple end effectors would complicate
the teaching process.

Another possible demonstration source is human motion,
which requires a motion capture system for tracking the hu-
man body and objects in the environment. A third method is
based on graphical user interfaces (GUI) for either providing
keyframes [20] or making modifications over the learned
model from kinesthetic demonstrations [20] [24].

Unlike previous works, we explored the idea of providing
demonstration through a GUI via end effector teleoperation.
In this method, the operator guides the end effector of the
robot while immersed in a 3D environment that represents
the task, either in simulation with virtual objects or while
operating the real robot with live sensing data. On one hand,
this method enables the operator to provide demonstrations
using any potentially relevant robot, without need for a back-
drivable robot. On the other, the controls for the interface
used to guide the end effector and manipulate the 3D view
while providing demonstrations causes the data to be very
noisy and non-uniform compared with data collected through
human motion or kinesthetic demonstrations. For this reason,
the application of time-based techniques intended to align
demonstrations in time to later identify constraints in space
proves to be unviable in this setting. Fig. 2 shows the process
for providing keyframe demonstrations on the interface.

In this work, we implement our system for providing
demonstrations, visualizing the results and operating the
robot in order to execute the learned tasks in Director, a
3D user interface designed for operation of remote robots
in shared autonomy, originally developed at MIT for the
DARPA Robotics Challenge [6]. Inverse kinematics (IK) is
computed using Drake [30].

C. Trajectory Motion Planning

We use an optimization-based motion planner available
in Drake [30] that uses an efficient SQP solver available in
SNOPT [31]. The motion planning problem is posed as a
trajectory optimization problem defined as follows [4] :

argmin
q1,...,qk

k

∑
j=1

(qnom, j−q j)
TW (qnom, j−q j)+ q̇T

j Wvq̇ j + q̈T
j Waq̈ j

sub ject to fi(q1, . . . ,qk)≤ bi, i = 1, . . . ,m, (1)

The cost function drives the set of joint angles q ∈ Rn

to deviate as little as possible from a nominal configuration
qnom ∈Rn. Some costs can be added optionally over velocity
and acceleration in order to promote smooth trajectories [4].

(a) KF1 (b) KF2 (c) KF3 (d) KF4

Fig. 2: User providing keyframe (KF) demonstrations for a multi-
step manipulation task. The tasks consists of extracting a cylinder
(dark blue) from a concentric external cylinder (light blue).

Throughout this work, we use a nominal configuration
and a seed configuration for the optimization equal to the
initial position of each segment of the demonstration (the
last configuration of the previous keyframe). The set of
constraints includes the joint limits, center of mass position
and quasi-static constraints (in the case of legged robots),
and position and orientation constraints for any link of the
robot with a user-specified tolerance.

A solution for this problem returns a trajectory from the
initial configuration keyframe to the desired final configura-
tion keyframe that satisfies the constraints. We refer to this
solution as a motion plan, which can either be feasible and
satisfy all constraints or return the best solution identified by
the solver while violating a subset of constraints (which are
explicitly listed by the solver).

In this paper, we generate a motion plan for each pair of
sequential keyframes learned through the demonstration. The
learned geometric constraints associated with each keyframe
are incorporated into the constraint set of Eq. 1 and used by
the Drake planner to compute robot motion.

D. Execution
The final learned task can be executed in shared autonomy

mode by suggesting a sequence of motion plans to the
operator, who can decide to either execute the plans or
make adjustments using teleoperation. The process begins
with a preview of a motion plan between two consecutive
keyframes. Similarly to [6], the operator is able to review
this plan and approve it for execution. The process repeats
for each step in the learned sequence of keyframes.

For the execution of the test tasks, we use the Optimus
robot, a 16-DOF dual-arm highly dexterous mobile ma-
nipulator that integrates a Highly Dexterous Manipulation
System (HDMS) by RE2, a Husky UGV by Clearpath, 3-
finger grippers by Robotiq and a Multisense SL by Carnegie
Robotics. We also experiment in simulation with an Atlas
robot, a 28-DoF humanoid robot by Boston Dynamics.

IV. LEARNING A KNOWLEDGE BASE OF CONSTRAINTS
FROM DEMONSTRATIONS

C-LEARN starts by learning a knowledge base (KB)
containing information for reaching and grasping objects.
Fig.3 depicts an illustration of the content of a KB. For each
object, a set of demonstrations is provided for reaching and
grasping the object in different modes. The KB stores the
list of modes, as defined in Sec.III.

The operator provides a number of demonstrations for
each pair (ob jecti,mode j), sometimes referred to as an



affordance. The position and orientation of the target object
are randomized across demonstrations to elicit variability in
features that are not constrained by the task. Each demon-
stration Dd for reaching and grasping requires the operator to
teleoperate the robot though a set of demonstrated keyframes
{dKF} to collect the following set:

Dd = {dKFk}k=1:Kd (2)

where d is the demonstration index and k is the demonstrated
keyframe index. During the demonstration, poses are marked
as keyframes by the user. Each demonstration Dd might
have a different number of total demonstrated keyframes
Kd . The demonstrations collector records the data associated
with each demonstrated keyframe. In this work, we use the
positions of the n end effectors with respect to the object as
features. The set of all demonstrations provided for a mode
is expressed as {Dd}d=1:Ndem .

An entry in the knowledge base KBi, j for (ob jecti,mode j)
consists of a set of learned keyframes {lKF} for that mode,
obtained by using k-means clustering over {Dd} in the space
of selected features, as summarized in Eq. 3. The number
of clusters used by the k-means algorithm, Nclusters, is the
rounded average number of keyframes per demonstration in
{Dd}.

KBi, j = {lKFl}l=1:Nclusters = {clusters({Dd}d=1:Ndem)} (3)

Each learned keyframe consists of the set of demonstrated
keyframes grouped into the same cluster by k-means. For
each learned keyframe, the algorithm identifies the geometric
constraints that describe it in a manner such that the task is
reproducible by planning motions that meet these constraints.
For this purpose, C-LEARN relies on a catalog of paramet-
ric constraint models to compare against the data in each
cluster and select them based on predefined criteria, such as
detecting that the variance in orientation of the end effector
with respect to a principal axis of the manipulated object
is smaller than a given threshold. The selected constraints
are then listed in the KB under the corresponding learned
keyframe, as illustrated in Fig.3. Note that this method
could produce representations that are either over or under-
constrained.

The described clustering approach is similar to that em-
ployed by Kurenkov et al. [20], but with the added capability
to cluster keyframes involving multiple end effectors by clus-
tering in a higher dimensional space that includes the features
of all end effectors. This supports constraints learning for
quasi-static manipulation with multiple end effectors that
move in sequence or simultaneously, as showcased by Task 4,
described in Sec.VI. The list of learned keyframes is ordered
to obtain the sequence of execution. For each cluster, the
system extracts the sequence number of each demonstrated
keyframe included in the cluster, and assigns a position in
the sequence according to the mode of that set.

The following is the catalog of parametric constraint
models we use in C-LEARN.

A. Posture Constraints
Our approach enables a user to implicitly specify through

demonstration the following constraints to characterize a
learned keyframe:

Task space regions (TSR)[17]: TSRs are defined as a
volume in SE(3), which is equivalent to a target frame
(target position and orientation of the end effector) and a
tolerance of position and orientation around that target frame.
TSRs are convenient for representing keyframes for which
demonstrations indicate the existence of a variance larger
than a predefined threshold. (We refer to this constraint also
as “volumetric constraint.”) The criteria for characterizing
a keyframe as a TSR constraint take into consideration the
variance in Cartesian space of the data points associated with
the learned keyframe. The learned keyframe is labeled as a
TSR constraint if the variance is greater than a user-specified
threshold TT SR in any of the dimensions.

CAD Posture Constraints: We introduce the use of hard
geometric orientation constraints that consider the cases in
which an axis of the end effector should be parallel (or
perpendicular) to an axis of an object within the environ-
ment. The criteria for characterizing a keyframe as a CAD
constraint takes the variance in SO(3) into consideration.
The three rotational DoF of the end effector are compared
with those of the object, and an orientation constraint is
created if the variation of one with respect to the other is
smaller than a predefined threshold TCAD. Intuitively, this can
be referred to as “locking” the rotation of the end effector
into alignment with an axis of the object if the variance of
the relative rotation between them is smaller than a given
threshold – similarly to user-assistance behavior common to
CAD software.

B. CAD Trajectory Constraints
The following constraints can be used to describe the

motion between keyframes:
Move-in-line Constraint: A move-in-line trajectory con-

straint is included in the motion plan between two consecu-
tive keyframes (dKFi,dKFi+1) if a posture CAD constraint
is active in both. This constraint connects the target frame of
dKFi with the target frame of dKFi+1 using a straight line
in Cartesian space along which the end effector orientation
should remain constant.

Fig. 3: Illustration of the content of the knowledge base for reaching
and grasping motions.



Fig. 4: Optimus robot performing the four test tasks autonomously. Motion plans for each keyframe are shown using still images of the
trajectory, with color ranging from gray (initial position) to light blue (end position). Tasks 1 to 4 are presented in row 1 to 4, respectively.

V. LEARNING A MULTI-STEP MANIPULATION TASK
FROM A SINGLE DEMONSTRATION

In the second phase of our learning framework, C-LEARN
leverages the KB to learn multi-step manipulation tasks
from a single demonstration. The form of the demonstration
consists of a single sequence of keyframes that accomplish
a given task. For example, Fig.2 illustrates a series of
demonstrated keyframes for extracting a cylinder from a
concentric external cylinder.

For keyframes associated with reaching and grasping
motions, the algorithm matches the keyframes with one of
the (ob jecti,mode j) entries in the KB, by selecting the entry
that minimizes a distance metric. In our work, we use a
simple Cartesian distance metric between ordered pairs (as
indicated by the sequence) of keyframes. The final keyframes
are retrieved from the KB.

For subsequent keyframes after grasping the object, we
rely only on the single demonstration to learn the rest of the
task. The algorithm includes each demonstrated keyframe in
the learned task sequence in coordinates relative to the last
previous keyframe (so that the entire sequence is susceptible
to displacements and rotations in a new environment with
different objects positions). This is essentially equivalent to
remember the keyframes after grasping the object in relative
coordinates, but with the additional benefit of analyzing what
constraints remain active between each pair of consecutive
keyframes (dKFi,dKFi+1). If a constraint is identified to
remain active according to the catalog criteria, the corre-
sponding trajectory constraint is added to the planner. For
example, in the case of the task illustrated in Fig.2, the
extraction trajectory should satisfy that the cylinders remain
concentric, which is expressed in our framework as a CAD
trajectory constraint (for example: “move in line between
two target frames with the same orientation”).

It is impractical to build a knowledge base containing
all tasks for all steps; instead, we restrict the KB to the
segment of the manipulation concerned with reaching and

grasping – which can be quickly demonstrated more than
once. We hypothesize that, while all possible objects in
the world cannot be individually considered in the KB, the
majority of the objects can be manipulated in practice with
a small variant of the basic forms known to the KB. This
topic is outside the scope of this paper, but offers an empiric
motivation for our selection of the KB representation.

VI. EVALUATION

We assess the benefits of C-LEARN by learning and
performing four functional tasks that incorporate geometric
constraints on motion, similar to those present in EOD
procedures or manufacturing. In this section, we present the
success rate when performing the tasks using the dual-arm
Optimus robot (VI-A); demonstrate in simulation the transfer
of learned tasks from the Optimus robot to the legged dual-
arm Atlas robot (VI-B); and analyze the relative contributions
of CAD posture constraints, CAD trajectory constraints and
TSRs towards task success (VI-C).

Manipulation Tasks: The four tasks are illustrated in
Fig.1. Tasks 1 is a single-arm pick and place task where
the goal is to pick up the cylinder and drop it inside the
container. Tasks 2 is a dual-arm task that requires grasping
the handle of the box with the right hand to secure the
box, and then extracting the cylinder with the left hand.
The goal of Tasks 3 is to open the door using the left hand
and then push a button in the interior of the box with the
right hand. Tasks 4 consists of grasping and lifting up a
tray with two hands while keeping the tray horizontal. Task
4 is distinguished from the other tasks in that it requires
simultaneous constrained motion of both end effectors.

A. Performance
Fig. 4 illustrates the Optimus robot performing the four

test tasks. Objects were tracked using April Tags and an on-
board camera (Multisense SL), and were rendered on the
interface as virtual objects. The knowledge base was learned
using seven (7) demonstrations of reaching and grasping



TABLE I: Number of successful trials of planning and execution
in 10 trials of each task using the Optimus Robot

Task ID Autonomous Shared Autonomy
Behavior # successful trials

(# of interventions)
1 9 10 (1)
2 8 10 (3)
3 8 10 (2)
4 10 10 (0)

motions per object per mode with a catalog of constraints that
included TSRs, CAD posture constraints and CAD trajectory
constraints. Each multi-step task was learned from a single
demonstration of the task. Table I presents the number of
successful executions of the four tasks for two cases: one
where the tasks were performed autonomously by executing
the sequence of learned keyframes, and a second where
the tasks were executed using the shared autonomy method
as described in Sec.III-D. For each trial, the objects were
located in a different initial position such that the task is
feasible for the kinematics of the robot. Otherwise the task
would require mobility, which is out of the scope of this
paper. Images of autonomous task execution are shown in
Fig. 4, including the motion plan for each keyframe and
selected images of the real robot executing the task.

Autonomous execution produced a success rate of 87.5%
on average across ten trials of each of the four tasks,
while the shared autonomy method resulted in an overall
success rate of 100%. C-LEARN produced the correct set
of queries (keyframe information) for the planner in each
trial. The success of the execution depends on the ability
of the particular robot’s controller to follow the motion plan.
Optimus’ position control accuracy varies in different regions
of the workspace, causing the execution to fail in a number
of trials. These cases can be handled using shared autonomy,
where small adjustment using teleoperation can compensate
for this limitation. The results are summarized in Table I.

B. Demonstration of Transfer Across Robots

Next we demonstrate the ability of C-LEARN to transfer
tasks learned using one robot to another robot with different
kinematics. This is achieved by invoking the planner in Eq.1
using the kinematics information of the target robot and using
the task representation (i.e sequence of keyframes and set
of constraints) learned for the source robot. Note that Eq.1
naturally allows one to incorporate the set of constraints
previously learned with any new set of constraints required
for motion planning with the target robot. For example, a
legged robot requires additional constraints to specify that
the center of mass must remain within the support polygon.
We test this procedure by transferring the tasks learned using
the stable Optimus robot to a balancing Atlas robot and
performing the tasks in kinematic simulation.

Motion plans shown for Atlas are guaranteed to be stable
and executable on the real hardware [6]. In simulation,
objects were located in different initial positions and Atlas
was able to perform the four test tasks in each trial out of
10 scenarios for each task. Fig. 5 shows snapshots of Atlas
planning for Tasks 2 and 4.

(a) Task 2 (b) (c) (d)

(e) Task 4 (f) (g) (h)

Fig. 5: Atlas planning in simulation for trasfered tasks. (a-d) Task 2;
(e-h) Task 4.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: Planning with different constraint types. (a,b,c,d) Planning
without CAD posture constraints; (e,f) Planning without CAD
trajectory constraints; (g,h) Planning using only TSR keyframes.

C. Contribution of Different Constraint Types
This section analyzes the utility of different constraint

types (CAD posture constraint, CAD trajectory constraint,
TSR) in the scenario where the Atlas robot performs a task
using the knowledge base and task learned for Optimus.

The results for planning when all constraint types were
available to the learner are presented in Fig.5. When perform-
ing the same test, but removing the CAD posture constraints
from the knowledge base, we obtain the plans shown in Fig.
6 (a,b,c,d). Note that the orientation of the hands with respect
to the objects in the reaching and grasping phases exhibits
larger angular deviation with respect to the perpendicular to
the cylinder principal axis when compared to Fig. 5. This
variance is permitted by the TSR constraints, but results
in the production of keyframes that do not lock into strict
perpendicularity with respect to the objects.

The reaching phase and cylinder extraction show the utility
of the CAD trajectory constraint for in-line motion. When
CAD posture constraints are available to the learner but
CAD trajectory constraints are not, the planner produces
trajectories that fail to accomplish the task, as illustrated in
Fig. 6 (e,f). Similarly, if only TSR keyframes are available,
the planner fails to accomplish the task, as illustrated in Fig.
6 (g,h).



VII. CONCLUSIONS

This paper presents C-LEARN, a method of learning
from demonstrations that supports the use of hard geometric
constraints for planning multi-step functional manipulation
tasks with multiple end effectors in quasi-static settings.
By combining machine learning and motion planning tech-
niques, this approach allows non-experts to teach robots a
new class of manipulation tasks not covered by previous
approaches. Specifically, this paper explores how to learn
explicit geometric constraints that can be listed as the set of
constraints in an optimization-based motion planning prob-
lem. In addition to SE(3) volumetric constraints (TSRs), we
introduce the use of parametric models of CAD constraints,
which enables the descriptions of parallel or perpendicular
axes and moving in a line. We evaluated this method through
execution of four multi-step tasks with multiple end-effectors
using a shared autonomy framework using the Optimus robot.
We demonstrated the capability of transferring the learned
task to an Atlas robot with different kinematics without
providing new demonstrations. Accompanying this paper, we
present a video of the execution of the tasks, available online
at https://goo.gl/fAVm3z.

Our work is limited in certain aspects, which represent
potential avenues for future research. Functional tasks often
involve articulated constraints, such as opening a door, but
our method does not explicitly reason about articulation.
The motion planner we used in this implementation does
not handle collision avoidance. Exploring other optimization-
and sampling-based planners is the next step in this line of
research. Finally, we will conduct a user study to further
evaluate the performance of C-LEARN with end users in
shared autonomy mode.
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