
Fast Target Prediction of Human Reaching Motion for Cooperative
Human-Robot Manipulation Tasks using Time Series Classification

Claudia Pérez-D’Arpino1 and Julie A. Shah2

Abstract— Interest in human-robot coexistence, in which
humans and robots share a common work volume, is increasing
in manufacturing environments. Efficient work coordination
requires both awareness of the human pose and a plan of action
for both human and robot agents in order to compute robot
motion trajectories that synchronize naturally with human
motion. In this paper, we present a data-driven approach that
synthesizes anticipatory knowledge of both human motions and
subsequent action steps in order to predict in real-time the
intended target of a human performing a reaching motion.
Motion-level anticipatory models are constructed using multiple
demonstrations of human reaching motions. We produce a
library of motions from human demonstrations, based on a
statistical representation of the degrees of freedom of the
human arm, using time series analysis, wherein each time
step is encoded as a multivariate Gaussian distribution. We
demonstrate the benefits of this approach through offline
statistical analysis of human motion data. The results indicate
a considerable improvement over prior techniques in early
prediction, achieving 70% or higher correct classification on
average for the first third of the trajectory (< 500msec).
We also indicate proof-of-concept through the demonstration
of a human-robot cooperative manipulation task performed
with a PR2 robot. Finally, we analyze the quality of task-
level anticipatory knowledge required to improve prediction
performance early in the human motion trajectory.

I. INTRODUCTION

In the manufacturing setting, robots increasingly coexist
with human workers on the same factory floor. Significant
productivity benefits can be achieved if the human and robot
can fluently share the same work volume and function in
close proximity to one another. This new work paradigm is
of particular interest for automotive final assembly, where
much of the work is dexterous and must still be performed
by humans, but where robots can reduce task completion
time by concurrently positioning tools and parts for human
workers. Successful execution of this coexistence requires
that the robot reliably anticipate human motions and subtly
adjust planned trajectories in real-time, as a human would
do. In this work, we present an approach that synthesizes
anticipatory knowledge of both the human’s motions and the
next action steps in order to predict the intended target of a
human performing a reaching motion in real-time.

Our primary contribution is a method to conduct real-time
online prediction of the target of a human reaching motion
using time series analysis, wherein each time step of the

1Claudia Pérez-D’Arpino is with Department of Electrical Engineering
and Computer Science, Computer Science and Artificial Intelligence Labo-
ratory, Massachusetts Institute of Technology cdarpino@mit.edu

2Julie Shah with the Department of Aeronautics and Astronautics, Com-
puter Science and Artificial Intelligence Laboratory, Massachusetts Institute
of Technology julie a shah@csail.mit.edu

motion is encoded as a multivariate Gaussian distribution
over the degrees of freedom of the human arm. Early
prediction is accomplished through Bayesian classification
using a partial initial segment of the trajectory of the human
arm. Our approach involves an offline training phase, during
which motion-level anticipatory models are constructed using
multiple demonstrations of human reaching motions. Each
demonstration is represented as a reaching motion from the
initial pose of a human arm to the target of the manipulation
action. Quantities necessary for fast online prediction are
cached for quick reference during online data processing.
The online stage consists of the execution of the human-
robot cooperative task. The statistical models representing a
learned library of motions serve as the set of possible motion
classes for the real-time classification algorithm.

This approach outperforms prior art [1][2] by achieving
considerably higher prediction performance very early in the
trajectory execution. We demonstrate 70% or higher correct
classification on average for the first third of the trajectory
(< 500msec), and use this anticipatory signal to adjust the
robot’s next action to avoid conflict between human and robot
motions. We also discuss the generalization of the approach
to synthesize both task-level and motion-level anticipatory
information. At the task level, we use the prior term in
the Bayesian model to represent the prior probability of
the human’s next task step, which can be derived from
task procedures. We establish the performance requirements
for task-level prediction in relation to the quality of the
motion-level prediction, such that synthesis of the two results
improved prediction performance early in the human motion
trajectory. Finally, we demonstrate proof-of-concept of the
approach using a tabletop manipulation task, during which
the human and robot collect parts from and/or bring parts to
a shared workspace, as illustrated in Fig.1a.

(a) (b)

Fig. 1: (a) Tabletop task. (b) Coordinate systems used to recover
the trajectory of the kinematic chain during a demonstration.

II. RELATED WORK

A manipulation planning framework for human-robot col-
laboration was recently presented in [1], wherein the authors
developed a prediction algorithm at the motion level using
Gaussian mixture models (GMM) and an adaptive path
planning algorithm for the robotic manipulator based on the
STOMP algorithm [3]. In that work, a library of human
motions was built from real Kinect data (30Hz) and then
tested together with the motion planning algorithm using a
PR2 robot in simulation. On the motion prediction side, the
algorithm achieved 92% correct classification after having
processed 80% of the test trajectory on average. However,
neither the prediction nor the motion planning processing
time achieved sufficient real-time performance to be used
online for a real application, and the average correct classifi-
cation at early stages of the trajectory was still very low, with
50% correct classification achieved after processing 43% of
the motion trajectory.

The learning-from-demonstration (LfD) community has
also utilized GMMs [4][5][6] to learn a set of robot motions
from human demonstrations. However, these works do not
specifically address the online prediction problem, and the
known limitations of GMM make its application for motion
prediction problematic [7][2]. GMM is an exchangeable
model meaning that the temporal order of the data is not
taken into account, as the sequence of observations can
be modified without affecting the algorithm result. This
drawback is usually handled by introducing the time of the
observations as another dimension of the GMM; we have
found that this improves the accuracy with respect to time-
myopic GMM, but still does not encode the time dependence
explicitly.

We contribute an algorithm for motion prediction that is
able to run online in real-time during the execution of a task,
with considerably better rates of correct classification at early
stages of the human motion trajectory than those exhibited
in prior work. We achieve this by adapting the Bayesian
approach developed in [7][2] and exploiting its capability of
reporting partial results as trajectories are being processed.

In [2], the probabilistic flow tubes (PFT) algorithm was
designed to learn and recognize (or classify) tasks demon-
strated by a human operator who is physically moving the
end-effector of a robotic manipulator. The main goal is to
teach the robot how to execute manipulation tasks in variable
environments. This prior work only addressed classification
using the full motion trajectory offline, once the robot motion
had been completely executed. The demonstration was repre-
sented as the sequence of the end-effector positions through
the trajectory. Here, we pose the prediction problem as one
of classification, using a partial segment of the trajectory, and
instead use human motion trajectories as features comprised
of the full degrees of freedom of the human arm.

There are challenges associated with using human motion
instead of human-guided robot motion to build the motion li-
brary. Motion tracking may be less reliable and the algorithm
must be robust with regard to noise in the data; a larger set

of features results in increased algorithmic complexity and
greater difficulty in extracting relevant features. The differ-
ences in learning via demonstrations from human motion vs.
human-guided robot motion are described in [8].

Other works aim to utilize anticipatory information derived
from task procedures for the prediction of subsequent action.
These works analyze the discrete action sequence of human
and robot task steps [9][10][11][12]; however, they do not
take advantage of geometric or kinematic information. Ap-
proaches include the prediction of subsequent human action
through inference in a Bayesian network [9], and considera-
tion of task ambiguity and sensor uncertainty [10] during
an assembly task similar to ours. Other techniques, such
as simple temporal problems (STP) and nonlinear program-
ming, have been used to produce optimal flexible schedules
for human-robot collaboration [11]. One case [12] utilized a
Markov decision process (MDP) model to encode informa-
tion about the roles of the human and the robot during a task,
and allowed for the inference of a subsequent action using
entropy rate in the MDP. Another related approach sought
objects in the environment to identify affordances that could
potentially be the targets of human manipulation actions
[13]. This method for anticipating the target incorporates
a combination of knowledge about the affordances and the
motion itself to build temporal conditional random fields.
However, it does not take into account the temporal sequence
of actions or task procedures for multi-step action prediction.

The aforementioned works approach the problem from the
robot’s point of view, by trying to predict human motion and
adapt to it by planning the robot motion in spatio-temporal
synchronization. This is also our approach; however, it is
also interesting to consider the problem from the human per-
spective, as it is also relevant that the human understand the
robot’s motion. This perspective was explored in [14], where
the concepts of legibility (the ability to predict the goal)
and predictability (the ability to predict trajectory) of the
motion were introduced. A functional gradient optimization
technique for generating legible motion was proposed in [15],
and this technique yielded favorable performance within a
region containing the expected trajectory. We believe these
two points of view should be combined in future applications,
with a robot both aware of the future actions of a human
and capable of taking this information into account in the
generation of legible motion.

III. LEARNING A LIBRARY OF MOTIONS

The first step of the proposed algorithm involves learning
a library of motions through the observation of human
demonstrations. This library then serves as a reference data
set to perform online classification of trajectories in order
to predict an intended target. Stochastic modeling allows
the library to store information about both the nominal
trajectory of features and about a sense of variability across
demonstrations. In this section, we formally describe a data
representation of this library of motions.

The generatrix form of this representation begins with the
data D taken from one demonstration d, which consists of

a set of vectors vi, with each vector containing a sampled
version, of length Ksamplesi,d , of the process of each of the
Nvariables sensed variables. The number of samples can be
different for each variable, given different sampling rates
from different devices; moreover, the number is different
across different demonstrations. The discrete notation for
time [k] is used to refer to time step k.

Dd = {vi[k]}k=1:Ksamplesi,d ,i=1:Nvariables
(1)

This collection of raw data is then used to generate a set Fd

of features fi that are more suitable to represent the motion
and environment state. The features are derived from the
original variables, and can also include signal processing
steps, such as re-sampling and filtering, to improve the
quality of the data.

Fd = { fi[k]}k=1:Ksamplesi,d ,i=1:N f eatures
(2)

Then, a data set T t , containing all the Ndemonstrationst

demonstrations of the same task t, is allotted to serve as
the learning source (training set). The length of the features
varies between demonstrations since each demonstration can
have a different duration in time. For this reason, full
dynamic time warping (DTW) [16] is used during this step to
determine an optimal alignment among the demonstrations
that preserves the waveform of each time series. Full DTW
requires the complete time series to be aligned, as we do at
the library stage, and runs in O(n2) time and space. Then,
from T t , we build a library at the motion level, L, with a
probabilistic representation for each task Lt based on the
mean, µ , and the covariance, Σ, of all the features, as opposed
to the task-level probabilistic flow tubes used in [2].

T t =
{

Fd
}

d=1:Ndemonstrationst

Lt = {(µi[k],Σi[k])}k=1:Ksamplest ,i=1:N f eatures

L =
{

Lt}
t=1:Ntask

(3)

Finally, the library in Eq.(3) provides a probabilistic model
of human motion. In this work, we record the following
DOFs of the human arm: roll, pitch and yaw of the upper
arm (shoulder rotation); yaw of the lower arm with respect
to the upper arm (elbow rotation); roll and pitch of the
hand (due to elbow and wrist rotation); and the position
of the right hand, (x,y,z), with respect to a defined base
reference system (origin). This reference system can be static
or dynamic, such that the variables are measured in a global
frame or according to a moving system attached to the user,
respectively. For rotational joint variables, we attached the
origin to the back of the user, and for position variables,
such as the position of the hand, we set references in the
coordinate frames of the targets, such that the overall system
is independent of particular locations but is referenced to
the subject and objects of interest. Alternatively, we can use
a dimensionality reduction technique to avoid the curse of
dimensionality problem by using a smaller but relevant set
of features that can be constructed via the collected raw data.

The evolution of all of these features over time can be
represented as a multivariate time series, as shown in Fig2,
where multiple demonstrations for a task have been drawn,
together with the mean and variance, at a given time step.
Finally, the model consists of a multivariate Gaussian per
time step with mean and covariance computed as shown in
Eq.4.

µi[k] =
1

Ndemt

Ndemt

∑
i=1

fi[k],

Σi[k] =
1

Ndemt −1

Ndemt

∑
i=1

(Xi[k]−µi[k]) (Xi[k]−µi[k])
T

(4)

(a) (b)

Fig. 2: (a) Raw trajectories of the shoulder’s yaw component during
20 demonstrations of four tasks (by color). (b) Modeling of the
trajectories of the right hand (x), where the solid line represents
the mean and the shaded area represents the variance per time step.

IV. TIME SERIES CLASSIFICATION ALGORITHM

The objective of the algorithm is to receive the time series
of the features corresponding to the human motion to be
classified, and to make a decision about what motion class
the human is currently executing. The proposed algorithm
runs in real-time, iteratively receiving a new set of values
corresponding to the features per time step f l [k] and process-
ing them using the previously collected library of motions L.
(We will refer to features stored in the library as fl , and to
features being generated by the human motion as fh, and will
use the bold notation fl [k] to represent a vector of features at
time step k, instead of the scalar notation fi[k], i= 1 : N f eatures
used in Eq.2).

We compute the log posterior to determine the motion
class t that best corresponds to the human trajectory encoded
in fh. We adapt the Bayesian approach proposed in [2] to
compute the probability of being in the presence of one
of the motion classes t, given the partial segment of the
trajectory being executed by the human f h[1 : k], as expressed
en Eq.5 using the Bayes rule. We further incorporate task-
level knowledge through the inclusion of a hyperparameter
that leverages structured information from a customized task
level predictor T (·), which takes the set of previous actions a
and computes a distribution over the possible motion classes
t.

P(t | f h[1 : k],T (a)) ∝ P(t | T (a)) ·P(f h[1 : k] | t), (5)

where P(t | T (a)) is the prior probability of the motion class
t given by a task level predictor T (a), and P(fh[1 : k] | t) is
the likelihood, which can be modeled as the product of the
probability functions of each multivariate Gaussian per time
step stored in the library of motions, as expressed in Eq.6.
Note we assume that task-level prior is not influenced by the
current trajectory fh[1 : k], and the likelihoods of the motion
classes t are independent of the previous set of actions a.

P(f h[1 : k] | t) =
K

∏
k=1

[N (µ t [k],Σt [k])]
1
K (6)

From the log of Eq.5, combined with Eq.6, the log
posterior of each motion class at time step k =K, is obtained:

log(P(t | T (a)))+
1
K

K

∑
k=1

[
−log

(
(2π)

Nf
2 |Σt [k]|

1
2

)
− 1

2

(
δ

T [k]Σt
−1[k]δ [k]

)]
,

(7)

where δ [k] is the difference between fh[k] and µl [k] at a
time step k defined by an online DTW algorithm [17] [18]
[19].

Unlike the full DTW algorithm used to build the library
that requires complete signals, online DTW computes a time
alignment between the time series in the library and the
partial trajectory being classified. It runs in linear time, O(n),
when used to match a segment of trajectory, and runs in con-
stant time, O(1), when using an incremental implementation:
at each time step we find a temporal alignment only for the
new samples of the partial trajectory [18].

Notice that in Eq. 7, the first term of the sum (g for
short) can be computed when building the library of motions
offline, as well as the inverse of the covariance matrix in
the second term of the sum (h for short), reducing the
computation time needed online [2]. Eq.8 reforumations Eq.
7 as a function of g and h and diagrams the task-level and
motion-level contributions to the prediction computation.

In Section V we evaluate the motion-level predictor on
real data and present a set of tests designed to assess the
impact of the task-level prior over the overall performance
of the algorithm and establish its performance requirements.

Prediction

log(P(t | T (a)))
Task Level

+
1
K

K

∑
k=1

[g(Σ[k])+h
(
Σ
−1[k],δ [k]

)
]

Motion Level

(8)

A. Complexity and Scalability

We found that the PFT algorithm in [7][2] is not scalable
with respect to the number of features (the number of
DOF in this application) and the number of motion classes
even when using incremental online DTW. The classification
algorithm runs incremental online DTW per each class per
each DOF to find the best time step at which to query
the log likelihood value. This drives the DTW complexity
from O(1) for the alignment of each new observation to

O(nclass×ndo f). However, we found that this result does not
typically enable real-time classification for more than three
classes. Our application requires up to twelve classes. Given
that the likelihood computation of each class is independent,
in this work we parallelize the algorithm by querying each
class concurrently using a multi-threaded implementation.

V. PERFORMANCE

In order to evaluate the performance of the classification
algorithm, we collected human reaching motion data and
evaluated performance offline using repeated random sub-
sampling validation (RRSV). This process involves recording
NDem demonstrations per motion class and randomly splitting
the data into training and test sets in order to learn the
library of motions via the former and run the classification in
real-time via the latter (each random split forms a ”random
library”). This allows us to explore the effect of using
different sizes for the training set without biasing the results,
as can occur with k-fold cross-validation. We observed no
relevant Monte-Carlo variations throughout experimentation.

In the following two subsections, we present the results
of this offline validation using real data from a tabletop
manipulation task set along one axis (four targets along a
line) and two axes (a 2x2 grid of targets in the plane).

A. Manipulation Task Along One Axis

This task required the collection of parts from a table, with
four possible targets located along a single axis. Fig.3 shows
the 3D trajectories of the right hand of the human operator
performing Ndem = 20 demonstrations of each motion class.

Each motion class is defined by an initial position and
a target object to be reached. For this experiment, three
different initial positions and four different target objects
were used, as indicated in the plot of Fig.3, for a total of 12
possible motion classes. We fully explored this task at the
motion level in order to show the internal behaviors of time
series classification and prediction (with uniform prior).

In this experiment, target objects were separated by a
distance ranging from 25-30 cm. The subject stood 30 cm
away along an axis perpendicular to that of the objects. The
different initial positions of the subject were separated from
the objects by 35 cm along a parallel axis. The initial position
of the hand and posture of the arm were not necessarily
repeated across demonstrations.

Fig. 3: 3D trajectories of the right hand in the single-axis task.

The confusion matrix is depicted in Fig.4a. Each entry is
defined as the average of the percentage of time the algorithm
selected a particular motion class W (vertical axis), given
an actual correct class C (horizontal axis), while processing
each trajectory over the entire library of motions. This result
indicates that the algorithm was successful at identifying
the correct class. When the classification was incorrect, the
chosen class was frequently one of the adjacent classes in
space (immediate neighbor object), confining the result to
one of the nearest options.

A typical evolution of the log likelihood of each class
while the algorithm processes a test trajectory online is
depicted in Fig. 4b. The log likelihoods are initially similar,
and remain stable or decay as the trajectory is processed.
Motion classes that are further from the correct class in the
geometric space decay rapidly compared with the correct
class and the neighboring classes.

The average processing time per time step was 0.96msec
when the classification was performed without using DTW.
Processes time increased to 12.63msec when using incremen-
tal on-line DTW without the multi-threaded implementation.
As mentioned in Sec.IV-A, this time does not satisfy the
on-line requirements. In contrast, the multi-threaded version
achieved an average time of 4.96msec. In this work, we used
a Vicon motion capture system with a sampling frequency
of 120 Hz, requiring the algorithm to process each new set
of samples in fewer than 8.3msec in order to run online. The
processing time per time step across the entire library was
less than 60% of the time requirement. Comparative results
of this and other performance metrics used in previous work
are presented in Table I. All tests were performed using an
Intel Core i7-3920XM (2.90 GHz, 8MB L3, 1600MHz FSB)
and 16 GB of RAM.

(a)

(b)

Fig. 4: (a) Confusion matrix for 1D task. (b) Behavior of the log
likelihood of each motion class.

Validation was performed using 25 random libraries of
motions per training set size (ranging from 4-14 training
trajectories) to record the percentage of correct classification
per time step across all 12 motion classes in the 25 random
libraries and five random test trajectories, for a total of
125 tests per class. The results are plotted in Fig. 5a as a
performance surface, indicating the evolution over time of
the average correct classification per time step as a function
of the number of demonstrations used. Fig.5b shows one
transversal slide of the surface at one third of the trajectory
processed.

The result suggests that a large number of human demon-
strations is not needed for this technique, making it a viable
option for real implementation. Previous work in this area [1]
[2] had not defined the amount of data required for achieving
a goal performance using a partial segment of the trajectory
(online early prediction).

(a)

(b)

Fig. 5: Results of the motion-level classification for the single-
axis task, using position (x,y,z) of the hand as features. (a)
Performance surface; (b) bar graph with error bars (SEM) of the
average performance after processing one third of the trajectory, as
a function of the training set size.

The selection of the features for each task type is informed
by a preliminary PCA analysis. However, strict PCA-based
feature selection is not guaranteed to work due to nonlinear-
ity within the data [20].

B. Manipulation Task Along Two Axes

Similar performance can be achieved with a two-axes task
setup consisting of target objects distributed on a plane. As
a study case, we present a task with four motion classes

corresponding to a 2x2 grid. In this experiment, the four
target objects were located on a 30 x 40 cm grid, and the
subject stood 30 cm away from the first row of objects.

As a baseline comparison, performance was tested using
the position of the right hand in three dimensions as the
feature set for the classification path. This test resulted in the
performance surface shown in Fig.6b(left), which achieved
70% performance with one third of the trajectory, using
nine demonstrations. However, in this case, PCA analysis
suggested the use of all the DOF of the arm, as opposed
to hand position alone. The results of this test are presented
in Fig.6b(right), which indicates that the algorithm required
a bigger training set (approximately 14 demonstrations)
to achieve similar performance, due to the larger feature
space. Once enough data were made available, the algorithm
outperformed the previous case.

(a)

(b)

Fig. 6: (a) 3D trajectories of the right hand during 20 demonstrations
for each of the four targets in the two-axes task. (b) Performance
surface results from the motion-level classification for the task in (a)
from 25 random libraries, using position (x,y,z) of the right hand
(left), and the improved results incorporating all DOFs (right).

C. Study of performance requirements for the task-level
prior algorithm

In this section, we analyze the performance requirements a
task-level prediction algorithm should meet in order to offer
a positive contribution when used to set the prior probability
of Eq.8. The evaluation method consisted of multiple simula-
tions of real motion data using random subsampling to build
libraries of motions, where the confidence of the task-level
algorithm ranged from 10% to 90%. The libraries were then
tested using sequences of trajectories.

(a)

(b)

Fig. 7: Performance improvement of using both motion- and task-
level information, as a function of the hit rate of the task-level
component (right column), for the case of: (a) the single-axis task;
and (b) the two-axes task with a nine-target grid. Trajectories are
shown in the left column for reference.

The evaluation was performed using the single-axis task
presented in SectionV-A, the trajectories for which are
plotted in Fig.7a(left). We used a fixed training set size
of 10 trajectories, which provided a balance of data size
and performance, and present the evolution of performance
with respect to the executed fraction of the trajectory. We
compared the result of motion-level classification against
adding the task-level prior in Fig.7a(right), where the red
dotted line is motion-only and the set of all other curves
correspond to a hit rate range of 10%-90% for task predic-
tion. Note that in the presence of 12 possible motion classes,
a predictor with a hit rate of 8.3% would be comparable
to uniform random prediction. In this case, the predictors
with hit rates of 10% and 20% actually resulted in a decay
of overall performance, as the poor prediction caused the
correct motion-level prediction to be neglected according to
the probabilities of each side. By contrast, task predictors
with a performance over 30% contribute positively to overall
performance.

It is important to note that the performance of the dual
approach is such that task-level contribution is very relevant
during the initial stages of the trajectory, when it is crucial
for early prediction of the motion class, before converging to
motion-level performance as the trajectory reaches its end.
The results also reveal that the contribution of information
added by the task prior is asymptotically upper-bounded by
the motion level information once the complete trajectory
has been processed by the proposed algorithm.

In order to further test the contribution at the task level,
we studied a two-axes case with nine possible motion classes

that frequently overlapped. The 3D trajectories of the right
hand for these motion classes are shown in Fig.7b(left). As
previously indicated, this type of task is not well-suited for
the proposed motion classification. However, we show that
the use of the task prior can increase performance to levels
comparable to successful cases of motion-level prediction. In
Fig. 7b(right), the results are presented in the same format
as in the previous study case, and indicate similar behavior.
The percent improvement ab initio from the use of task-level
information is approximately 29% and 144% for the single-
axis and two-axes cases, respectively, using task predictors
with confidence of over 70%. Other cases in which the task-
level contribution may be relevant, apart from the nature
of the trajectories themselves, include when sensing is not
reliable for the tracking of the human DOF, such as current
algorithms that use 3D point clouds [21].

D. Summary of Results and Comparison With Related Work

A summary of the results described in Sections V-A
and V-B is presented in Table I. We present the following
performance metrics, using the ones that are also reported in
previous work.
• M1 The percentage of trajectories correctly classified at the

end of the human trajectory.
• M2 The percentage of time that the classification is correct

during the analysis of a trajectory, averaged over all test
trajectories.

• M3 - Processing time per time step [msec], on average.
• M4 - Partial performance, defined as the percentage of tra-

jectories correctly classified at a given time step. Reported in
pairs {% of correct class. / at given % of traj. processed }

Table I shows results reported in previous work (1st and
2dn rows), as well as a direct comparison with GMM under
the same test conditions (task, data, number of demonstra-
tions, host machine) in rows 3 to 6. We implemented the
GMM classification algorithm as reported in the literature
[1], using the expectation maximization (EM) algorithm to
fit one mixture of Gaussians per motion class in the library
seeded by the output of K-means clustering. We improved
upon that implementation by adding a regularizer to avoid
singularities, using the Bayesian information criterion (BIC)
to select the number of components per model and DTW
for temporal alignment [6], and using the same level of
optimization as in PFT by pre-computing and storing in the
library the quantities that are available in advance, such as
the inverse of the covariance matrix.

The proposed method performed better than GMM when
the number of Gaussian components in the GMM was limited
so that the GMM likelihood computation ran in real-time
comparable to PFT. The improvement was most pronounced
during the initial segment of the trajectory, and decreased
as more observations of the trajectory were processed. Note
that early prediction requires high performance at the initial
state of the trajectory. The difference in average performance
between the two approaches is shown in Fig.8, where PTF
achieved 15% improvement in the initial part of the trajec-
tory.

TABLE I: Summary of performance metrics, including related
work, at both the motion level (ML) and task level (TL).

Method
Ndem
Nclass M1 M2 M3 M4

GMM, as
reported in [1]

24
8 92 – –

50/43
80/60
92/80

PFT as
reported in [2]

5
7 97 81.93 21.43 –

PFT 1-axis ML
7

12 97.16 92.03 4.96

73.26/20
89.55/43
95.76/60
98.06/80

GMM 1-axis ML
7

12 99.44 84.58 6.10

57.08/20
85.83/43
96.94/60
99.24/80

PFT 2-axes ML
13
4 97.38 94.37 5.01

80.00/16.6
90.12/54.44

PFT 2-axes ML &
TL(70%)

10
9 96.46 87.45 6.03

71.21/43.64
79.09/60.00
90.00/80.00

Fig. 8: Performance improvement of PFT over GMM for similar
runtime.

VI. HUMAN-ROBOT COOPERATIVE TASK APPLICATION

The motion-level classification algorithm was tested online
within the framework of a collaborative tabletop task with
a PR2 robot. As a proof of concept, we present single-
axis and two-axes tasks, as previously defined, in which a
human cooperated with a PR2 robot to organize different
manufacturing pieces in bins on top a common table. Fig. 9
presents a picture of the task setup. Accompanying this paper,
we present a video of the execution of the tasks, available
online at http://goo.gl/EiZybP

The implementation consisted of a multi-threaded system
that handled the streaming of data from the Vicon motion
capture system (120Hz), computed the human joint angles
using kinematic transformations, captured the set of features
per time step and queried the library of motions to compute
the log likelihood as described in Sec. IV.

The task has been designed to exhibit concurrent robot and
human motions, where the robot initializes the manipulation
motion as required by its task and adjusts its target bin
according to the result of the human motion predictor. The
human motion predictor runs from the beginning of the
human reaching motion up to 416.6msec (50 time steps),
the instant at which the classification decision is made
according to the current likelihood values of each motion

http://goo.gl/EiZybP

Fig. 9: Pictures of the experimental setup of the single-axis task
(left) and two-axes task (right).

class. The time limit for the predictor is set to the point
in the performance surface for which the classification is
expected to be correct more than 80% of the time for the
number of demonstrations used to build the library. The
sequence of events is as follows: (1) The initialization of
the task in asynchronous between human and robot. (2) The
robot starts the motion from the side table to an intermediate
fixed position while the prediction is received. (3) The
human starts the reaching motion. (4) The predictor runs
for 416.6msec and sends the decision. (5) The robot goes to
a target position at the common table that differs from the
prediction; and, finally the process is repeated.

The training set size was 10 demonstrations for each
experiment task. Note that our current experimental proce-
dure consists of recording the demonstrations from the same
person that executes the task. We intend to study the use
of a common library for multiple humans in future work.
Out of a total of 20 trials per task, the online performance
achieved 80% and 70% correct classification for single-axis
and two-axes tasks, respectively.

VII. CONCLUSION

In summary, the main contributions of this work include
the development of a real-time human motion prediction
method, with validated performance, that enables online use
within the planning loop to inform a path-planner algorithm.
This differs from previous work in that the performance of
the PFT prediction capability is explored as a function of
time in order to assess the feasibility of early prediction, and
the scalability of the algorithm is reached through a multi-
threading implementation. The approach also incorporates
data from real human motion instead of human-guided robot
motion to enable human-only demonstrations while using a
Vicon motion capture system running at 120Hz, instead of
Kinect data at 30Hz. This work also provides an analysis
of the performance requirements for a task-level predictor
and the behavior of this contribution with respect to the
motion-level component, showing its relevance, particularly
during the initial part of the trajectory. Future work will
involve the testing of different task-level predictors during
real task applications, and closing the loop with a path-
planner algorithm that interacts with the predictor online.
Other future improvement in the performance aspect will
include the implementation of a GPU version of the classi-
fication queries.

REFERENCES

[1] J. Mainprice and D. Berenson, “Human-robot collaborative manipula-
tion planning using early prediction of human motion,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on, pp. 299–306, 2013.

[2] S. Dong and B. Williams, “Learning and recognition of hybrid
manipulation motions in variable environments using probabilistic flow
tubes,” International Journal of Social Robotics, vol. 4, no. 4, pp. 357–
368, 2012.

[3] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pp. 4569–4574, 2011.

[4] S. Calinon, F. Guenter, and A. Billard, “On learning, representing,
and generalizing a task in a humanoid robot,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 37, no. 2,
pp. 286–298, 2007.

[5] S. Calinon and A. Billard, “A probabilistic programming by demon-
stration framework handling constraints in joint space and task space,”
in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ Inter-
national Conference on, pp. 367–372, IEEE, 2008.

[6] M. Muhlig, M. Gienger, S. Hellbach, J. J. Steil, and C. Goerick, “Task-
level imitation learning using variance-based movement optimization,”
in Robotics and Automation, 2009. ICRA’09. IEEE International
Conference on, pp. 1177–1184, IEEE, 2009.

[7] S. Dong and B. Williams, “Motion learning in variable environments
using probabilistic flow tubes,” in Robotics and Automation (ICRA),
2011 IEEE International Conference on, pp. 1976–1981, 2011.

[8] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469 – 483, 2009.

[9] K. P. Hawkins, N. Vo, S. Bansal, and A. F. Bobick, “Probabilistic
human action prediction and wait-sensitive planning for responsive
human-robot collaboration,” in IEEE Humanoids 2013, 2013.

[10] K. P. Hawkins, S. Bansal, and A. F. Bobick, “Anticipating human
actions for collaboration in the presence of task and sensor uncer-
tainty,” in Robotics and Automation (ICRA), 2014 IEEE International
Conference on, 2014.

[11] R. Wilcox, S. Nikolaidis, and J. Shah, “Optimization of temporal
dynamics for adaptive human-robot interaction in assembly manufac-
turing,” in Proceedings of Robotics: Science and Systems, 2012.

[12] S. Nikolaidis and J. Shah, “Human-robot cross-training: Computa-
tional formulation, modeling and evaluation of a human team training
strategy,” in Proceedings of the 8th ACM/IEEE International Confer-
ence on Human-robot Interaction, HRI ’13, pp. 33–40, 2013.

[13] H. Koppula and A. Saxena, “Anticipating human activities using object
affordances for reactive robotic response,” in Proceedings of Robotics:
Science and Systems, (Berlin, Germany), June 2013.

[14] A. Dragan, K. Lee, and S. Srinivasa, “Legibility and predictability of
robot motion,” in Human-Robot Interaction, March 2013.

[15] A. Dragan and S. Srinivasa, “Generating legible motion,” in Robotics:
Science and Systems, 2013.

[16] J. Kruskall and M. Liberman, “The symmetric time warping problem
from continuous to discrete.,” in Time Warps String Edits and Macro-
molecules The Theory and Practice of Sequence Comparison, pp. 125
– 161, 1983.

[17] S. Dixon, “Live tracking of musical performances using on-line
timewarping,” in Proc. of the 8th Int. Conference on Digital Audio
Effects (DAFx 05), (Madrid, Spain), 2005.

[18] S. Dixon, “An on-line time warping algorithm for tracking musical
performances,” in International Joint Conference on Artificial Intelli-
gence (IJCAII), 2005.

[19] S. Salvador and P. Chan, “Toward accurate dynamic time warping in
linear time and space,” in Intelligent Data Analysis, pp. 561 – 580.

[20] J. Wang, D. Fleet, and A. Hertzmann, “Gaussian process dynamical
models for human motion,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 30, no. 2, pp. 283–298, 2008.

[21] S. Knoop, S. Vacek, and R. Dillmann, “Sensor fusion for 3d human
body tracking with an articulated 3d body model,” in Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, pp. 1686–1691, 2006.

	Introduction
	Related Work
	Learning a Library of Motions
	Time Series Classification Algorithm
	Complexity and Scalability

	Performance
	Manipulation Task Along One Axis
	Manipulation Task Along Two Axes
	Study of performance requirements for the task-level prior algorithm
	Summary of Results and Comparison With Related Work

	Human-Robot Cooperative Task Application
	Conclusion
	References

