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Abstract—A desirable capability of agents is to respond to goal-
oriented commands by autonomously constructing task plans.
However, such autonomy can add significant cognitive load and
potentially introduce safety risks to humans when agents behave
unexpectedly. Hence, one important requirement is for such
agents to synthesize plans that can be easily understood by
humans. While there exists previous work that studied socially
acceptable robots that interact with humans in “natural ways”,
and work that investigated legible motion planning, there exists
no general solutions for high level task planning. To address
this issue, we introduce the notion of plan explicability. To
compute this measure for plans, first, we postulate that humans
understand agent plans by associating abstract tasks with agent
actions, which can be considered as a labeling process. We learn
the labeling scheme of humans for agent plans from training
examples using conditional random fields (CRFs). Then, we use
the learned model to label a new plan to compute its explicability,
which are used to guide the search.

I. INTRODUCTION

Significant research efforts have been invested to build
robotic agents that are more autonomous. These agents re-
spond to goal specifications instead of basic motor commands,
which requires them to autonomously synthesize task plans
and execute those plans to achieve the goals. However, if
the behaviors of these agents are incomprehensible, it can
increase the cognitive load of humans and potentially introduce
safety risks to them. As a result, one important requirement
for such intelligent agents is to ensure that the synthesized
plans are comprehensible to humans. This means that instead
of considering only the planning model of the agent, plan
synthesis should also consider the interpretation of the agent
behavior from the human’s perspective. This interpretation is
related to our modeling of other agents. More specifically,
we tend to have expectations of others’ behaviors based on
our understanding (modeling) of their capabilities, mental
states and etc. If their behaviors do not match with these
expectations, we would often be confused. The reason for
this confusion is due to the fact that our understanding of
others’ models is often different from the actual models.
This is particularly true when humans interact with robots
since it is likely that we only have a partial (and potentially
inaccurate) model of these intelligent agents.

For example, to darken a room that is too bright, a robot
can either adjust the window blinds, switch off the lights, or
break the light bulbs in the room. While breaking the light
bulbs may well be the least costly plan to the robot under
certain conditions (e.g., when the robot cannot easily move
in the environment but we are unaware of it), it is clear that
the other two options are far more desirable in the context of

Fig. 1. From left to right, the scenarios illustrate the differences between
automated task planning, human-aware planning and explicable planning (this
work). In human-aware planning, the robot needs to maintain a model of the
human (i.e., MH ) which captures the human’s capabilities, intents and etc.
In explicable planning, the robot considers the differences between its model
from the human’s perspective (i.e., M∗

R) and its own model MR.

robots cohabiting with humans.
In this paper, we introduce the notion of plan explicability,

which is used by autonomous agents (e.g., robots) to syn-
thesize “explicable plans” that can be easily understood by
humans. As suggested in psychological studies [12, 5], we
assume that humans naturally interpret a plan as achieving
abstract tasks (or subgoals), which are functional interpreta-
tions of agent action sequences in the plan. For example, a
robot that executes a sequence of manipulation actions may be
interpreted as achieving the task of “picking up cup”. Based
on this assumption, intuitively, the easier it is for humans to
associate tasks with actions in a plan, the more explicable
the plan is. Since the association between tasks and agent
actions can be considered as a labeling process, we learn
the labeling scheme of humans for agent plans from training
examples using conditional random fields (CRFs). We then
use the learned model to label a new plan to compute its
explicability, which is used by agents to synthesize plans that
are more explicable without affecting the quality much.

II. RELATED WORK

A planning capability allows agents to autonomously syn-
thesize plans to achieve a goal given the agent model (MR in
Fig. 1). However, to work alongside of humans, these agents
must be “human-aware” when synthesizing plans. In prior
research, this issue is addressed under human-aware planning
[4, 3, 11, 13] in which agents take the human’s activities
and intents into account when constructing their plans. This
corresponds to human modeling in human-aware planning as
shown in the second scenario in Fig. 1.

While our work on plan explicability falls within the scope



of human-in-the-loop planning (which includes human-aware
planning), it differs significantly from the previous work. In
human-aware planning, the challenge is to obtain the human
model (MH in Fig. 1) which captures human capabilities [14],
intents [11, 3] and etc. The modeling here is one level deeper:
it is about the interpretation of the agent model from the
human’s perspective (M∗R). In other words, the robot needs to
understand the model of itself in the human’s eyes. Typically,
model learning is addressed in the context of learning from
demonstration [2], inverse reinforcement learning [1], and
tutoring systems [9]. These approaches are not suitable for
generating explicable behavior, since the robots need to learn
the behavior that is expected of them by the humans, which
may or may not reflect how the humans themselves would
behave. As we shall see, in our work, M∗R is learned through
traces of the robot labeled by the humans in a particular way.

There exists work on generating legible motions [6] which
considers a similar issue in motion planning. We are, on
the other hand, concerned with task planning. Note that two
different task plans may map to exactly the same motions
which can be interpreted vastly differently by humans. In
such cases, considering only motion becomes insufficient.
There also exists work on the concept of cross training
[10] which is to “cross-train” human-robot teams to reach a
model consensus. Our work is concerned with learning model
differences and how they influence the human’s understanding
of the robot behavior.

III. PLAN EXPLICABILITY

In our settings, an agent R needs to achieve a goal given
by a human who is in the same environment. In this paper,
we assume that the robot model MR is based on PDDL [7].
As we discussed, for an agent to generate explicable plans, it
must not only consider MR but also M∗R. Given a domain,
the problem is to find a plan for a given goal that satisfies:

argmin
πMR

cost(πMR
) + α · dist(πMR

, πM∗
R
) (1)

where πMR
is a plan that is constructed using MR (i.e., the

agent’s plan), πM∗
R

is a plan that is constructed using M∗R
(i.e., the human’s anticipation of the agent’s plan), cost returns
the cost of a plan, dist returns the distance (i.e., capturing the
differences) between two plans, and α is the relative weight.
The goal of Eq. (1) is to find a plan that minimizes a weighted
sum of the cost of the agent plan and the differences between
the two plans. Since the agent model MR is assumed to be
given, the challenge lies in the second part in Eq. (1).

If we know M∗R or it can be learned, the only thing left
would be to search for a proper dist function. However, as
discussed previously, M∗R is inherently hidden, difficult to
convey, and can be arbitrarily different from MR. Hence, our
solution is to use a learning method to directly approximate the
returned values. We postulate that humans understand agent
plans by associating abstract tasks with actions, which can be
considered as a labeling process. Based on this, we assume
that dist(πMR

, πM∗
R
) can be functionally decomposed as:

dist(πMR
, πM∗

R
) = F ◦ L∗(πMR

) (2)

where F is a domain specific function that takes plan labels as
input, and L∗ is the labeling scheme of the human for agent
plans based on M∗R. As a result, Eq. (1) now becomes:
argmin
πMR

cost(πMR
) + α · F ◦ L∗CRF (πMR

|{Si|Si = L∗(πiMR
)})

(3)
where {Si} is the set of training examples and L∗CRF is
the learned model of L∗. We can now formally define plan
explicability in our context. Given a plan of agent R as a
sequence of actions, πMR

(simplified below as π for clarity):
π = 〈a0, a1, a2, ...aN 〉 (4)

where a0 is a null action that denotes plan starting. Given the
domain, we assume that a set of task labels T is provided to
label agent actions:

T = {T1, T2, ...TM} (5)

Explicability is concerned with the association between
abstract tasks and agent actions; each action in a plan is
associated with an action label. The set of action labels (L)
for explicability is the power set of the task labels: L = 2T .
When an action label includes multiple task labels, the action
is interpreted as contributing to multiple tasks; when an action
label is the empty set, the action is interpreted as inexplicable.
When a plan is labeled, we can compute its explicability
measure based on its action labels in a domain specific way.

Definition 1 (Plan explicability): Given a domain, the ex-
plicability θπ of an agent plan π is computed by a mapping,
Fθ : Lπ → [0, 1] (with 1 being the most explicable).
Lπ above denotes the sequence of action labels for π. An
example of Fθ used in our evaluation is given below:

Fθ(Lπ) =
∑
i∈[1,N ] 1L(ai)6=∅

N
(6)

where N is the plan length, L(ai) returns the action label of
ai, and 1formula is an indicator function that returns 1 when
the formula holds or 0 otherwise. Eq. (6) basically computes
the ratio between the number of actions with non-empty action
labels and the number of all actions. Please also refer to [15]
for how this labeling process is used to learn the CRFs for
label prediction for computing the explicability measure.

IV. EVALUATION

Here, we evaluate our approach with human subjects using
physical robots in a blocks world domain. In this domain, the
robot’s goal (which is known to the human) is to build a tower
of a certain height using blocks on the table. The towers to be
built have different heights in different problems. There are
two types of blocks, light ones and heavy ones, which are
indistinguishable externally but the robot can identify them
based on the markers. Picking up the heavy blocks are more
costly than the light blocks for the robot. Hence, the robot may
sometimes choose seemingly more costly (i.e., longer) plans
to build a tower from the human’s perspective. We incorporate
the explicability measure as a heuristic into the FastForward
(FF) planner with enforced hill climbing [8] (for details see
[15]). We evaluate plans generated by the robot using our
planner (FF-EXPD) and a cost-optimal planner (OPT).



Fig. 2. Execution of two plans generated by OPT (left) and FF-EXPD
(right) for one out of the 8 testing scenarios (https://www.youtube.
com/watch?v=AAAwSVbAV7s). The top figure shows the setup where the
goal is to build a tower of height 3. The block that is initially on the left side
of the table is a heavy block. The optimal plan involves more actions with
the light blocks (i.e., putting the two light blocks on top of the heavy one)
while the explicable plan is more costly as it requires moving the heavy one.

We generated a set of 23 problems in this domain in which
towers of height 3 are to be built. The plans for these problems
were manually generated and labeled as the training set. For
4 out of these 23 problems, the optimal plan is not the most
explicable plan. We then generated a set of 8 testing problems
for building towers of various heights (from 3−5) to verify that
our approach can generalize. Testing problems were generated
only for cases where plans are more likely to be inexplicable.
For each problem, we generated two plans, one using OPT
and the other using FF-EXPD, and recorded the execution
of these plans on the robot. We recruited 13 subjects on
campus and each human subject was tasked with labeling two
plans (generated by OPT and FF-EXPD respectively) for each
of the 8 testing problems, using the recorded videos. After
labeling each plan, we also asked the subject to provide a
score (1 − 10 with 10 being the most explicable) to describe
how comprehensible the plan was overall.

In this evaluation, we only use one task label “building
tower”. For all testing problems, the labeling process results
in 77.8% explicable actions (i.e., actions with a task label) for
OPT and 97.3% explicable actions for FF-EXPD. The average
explicability measures for FF-EXPD and OPT are 0.98 and
0.78, and the average scores are 9.65 and 6.92, respectively.
We analyze the results using a paired T-test which shows a
significant difference between FF-EXPD and OPT in terms of
the explicability measure (using Eq. (6)) computed from the
human labels and the overall scores (p < 0.001 for both).
Furthermore, after normalizing the scores from the human

subjects, the Cronbach’s α value shows that the explicability
measures and the scores are consistent for both FF-EXPD
and OPT (α = 0.78, 0.67, respectively). These results verify
that: 1) our explicability measure does capture the human’s
interpretation of the robot plans and 2) our approach can
generate plans that are more explicable to humans. In Fig.
2, we present the plans for a testing scenario.

V. CONCLUSION

In this paper, we introduced plan explicability to synthesize
plans that are more comprehensible to humans. To achieve this,
robots must consider not only their own models but also the
human’s interpretation of their models. This enables agents to
synthesize plans that can be easily understood by humans. To
the best of our knowledge, this is the first attempt to model
plan explicability for task planning. The proposed measure
has a variety of applications (e.g., achieving fluent human-
robot interaction and ensuring human safety). To compute this
measure, we learn the labeling scheme of humans for agent
plans from training examples based on CRFs. We then use this
learned model to label a new plan to predict its explicability.

Finally, while we focus on robot task planning, our work
also has many other interesting applications. For example,
many defense applications use planning to create inexplicable
plans, which can help deter or confuse enemies and are also
useful for testing defenses against new or unexpected attacks.
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