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Abstract—In shared autonomy, the robot and human user both
share some level of control in order to achieve a shared goal.
Choosing the correct balance of control given to the user and
the robot can be a challenging problem, since different users have
different preferences and vary in skill levels when teleoperating a
robot. We propose using a Partially Observable Markov Decision
Process (POMDP) to represent a model of the user’s expertise in
controlling the robot. The POMDP uses observations from the
user’s actions and from the environment to update the belief of
the user’s skill and chooses a level of control between the robot
and the user. The level of control given between the user and the
robot is encapsulated in macro-action controllers, which are used
in place of the POMDP choosing a low-level action at each time
step. A small pilot study of three users is done to test the model
in a simulated robot driving environment. The results of the pilot
study show how the system successfully models the belief in the
user’s skill level.

I. INTRODUCTION

When using robots in the field, there are many advantages
to using shared autonomy, where both the human operator
and the robot have some level of control. Direct teleoperation
may be tedious or difficult, and assistance from the robot
may be able to take away a great deal of burden from the
human user. However, different users may have varying needs
when it comes to the level of autonomy the robot should be
given. A novice user may need a great deal of assistance in
performing even basic tasks in order to complete the goal
safely. On the other hand, a user with more experience may
be able to accomplish these tasks easily without as much
assistance from the robot, and may even dislike the lack of
control in certain situations. We propose a method of using
Partially Observable Markov Decision Processes (POMDPs)
to model user expertise and choose the optimal level of shared
autonomy. The shared control of the system is encompassed
by macro-action controllers. Rather than solving the POMDP
with many low-level actions, the macro-action controllers
encapsulate the shared autonomy control that maximizes the
performance based on the user’s expertise.

Previous work using shared autonomy has looked at the
arbitration between the user’s input and the robot’s assistance
[3] [4]. Such work has found that even when assistance from
the robot decreases the task completion time, some users still
preferred feeling in control of the robot. By encompassing the
user’s actions, both desirable and undesirable, the system can
choose behaviors that both optimize reaching the goal and
perform actions preferred by the user. There has also been

previous work developing robots to adapt to seek greater trust
from the user [6]. The user’s frustration and fatigue when
operating the robot can be decreased if they have greater trust
in the robot’s capabilities. Markov models have also been used
to model human behavior in human-robot teams. [5] models
the human’s willingness to adapt in order to improve the
effectiveness of the teams while retaining human trust in the
robot. We hypothesize that by modeling user expertise, the
user’s trust in the robot and the robot’s trust in the human can
both be used to find the appropriate level of shared autonomy
to accomplish the goal. This paper provides a system that will
be used in future work to test this hypothesis.

Fig. 1. As the user performs more actions expected from an expert, the
likelihood the user is classified as an expert increases. If the user performs
more actions expected from a novice, they will be more likely to be classified
as a beginner.

II. ALGORITHM DESCRIPTION

We propose using a POMDP to learn a human’s level
of expertise and choose the level of autonomy to give the
robot based on this level. The POMDP model is a tuple
<S,A,O,T ,Ω,R,bo,γ>. The set of states, S, encompasses
the user’s level of expertise and some low-level state of
the environment. The set of observations, O, includes the
observations from the environment as well as the observations
that may indicate a user’s level of expertise, such as how
many times the user came close to or hit an obstacle, how
quickly they completed the goal, or if they are staying at
constant speeds or rapidly accelerating. The actions, A, are
the macro-actions controllers. T , Ω, R, bo, and γ represent
the conditional transition probabilities between states, the
conditional observation probabilities, the reward function, the
initial belief, and the discount factor respectively.



The macro-action controllers can be set up for different
user levels and environmental states. By selecting macro-
action controllers rather than low-level motions, the number of
actions the POMDP must be solved for can be greatly reduced
[1]. In a human-robot system, some of the burden of modeling
the state of the world is taken over by the human rather than
relying on the POMDP alone. Our macro-action controllers
combine the actions of the user and the robot so that the
POMDP requires a fewer number of states and observations
to navigate through the environment.

For our initial experiments, we generated the POMDP
policy offline using hand-tuned values. A policy, π is computed
to maximize the expected total reward. The states of the world
represent the user’s expertise and the “difficulty” of the map.
Easy maps contained fewer, more spread out obstacles while
hard maps contained a greater number of obstacles which
require finer maneuvering to avoid. The observations in the
model represented the perceived difficulty of the map based on
the number of obstacles found and the amount the user collided
with an obstacle. Four controllers were created that provided
different levels of assistance to the user. These controllers
are described in more detail below. Table I shows the states,
actions, and observations chosen for our initial experiments.

TABLE I
POMDP FOR MODELING USER EXPERTISE

S
Beginner-Easy, Beginner-Hard, Expert-Easy, Expert-
Hard

A Controller1, Controller2, Controller3, Controller4

O
No Obstacles Hit-Easy, Few Obstacles Hit-Easy,
Many Obstacles Hit-Easy, No Obstacles Hit-Hard,
Few Obstacles Hit-Hard, Many Obstacles Hit-Hard

At each time step, the policy selects the macro-action
controller a ∈ A based on the current belief state b. The
controller provides some level of shared autonomy to the
user. When the time step completes, the observation o ∈ O is
received based on the user’s actions and the actions taken by
the controller as well as some observation of the environment.
The belief state is updated based on the current belief, the
controller used, and the observation given by b′ = τ(b, a, o)
and the process continues with the new belief state.

The macro-action controllers were created to help beginners
avoid obstacles and to help both beginners and experts navigate
through maps with many obstacles. Two controllers were made
with “expert” users in mind. One offers no assistance to the
user, while the other limits the acceleration to make driving
slightly slower, but also easier. The two controller’s created
with the “beginner” in mind use a potential field method
similar to the method presented in [2]. When obstacles are
within range of the robot, the controller attempts to slow the
robot down and steer it away from the incoming obstacle.
θR is the repelling angle from potential field of the obstacles.
U = [0, 1] is the amount of user influence. As the user presses
the control buttons on the keyboard, U increases. Once the
button is released, U decreases. θU is the angle of rotation
from the user’s control. θ = UθU +(1−U)θR is the final angle

of rotation for the robot leveraging both the user’s and the
robot’s steering commands. While the controllers designed for
the beginner states were able to avoid obstacles, they also took
away some of the control from the user and would decrease
the speed of the robot. This may be preferred by a beginner
who may require the robot to assist them, but could slow down
an expert user.

III. PILOT STUDY AND RESULTS

The algorithm was tested using a simple robot driving
simulation game developed in Python. The user drove the robot
through eight maps, trying to reach a marked goal position as
quickly as possible while avoiding obstacles. Once the user
reaches the goal, the next map loads and the user returns to
the start position. During a trial, the user drives through the
eight maps. After the eighth map is completed the user begins
the next trial starting back at map 1. A screenshot of one of
the maps is shown in Figure 2. For each user, the belief state
is set so that the user has an equal probability of being either
a beginner or expert. The belief state is updated once the user
reaches the goal. After the belief state is updated, the macro-
action controller to be used is chosen based on the update
belief state. For the first trial, the belief state is updated, but
the controller chosen never changes. The user was alerted by
a message on the screen when they hit and obstacle and when
the controller would change to provide less or more autonomy.

Fig. 2. The robot driving simulator created to test the algorithm. The user
and robot’s aim is to drive to the Goal position without hitting any of the
obstacles.

The pilot study was performed with three users to confirm
that our POMDP model could predict a user’s level of expertise
and chose a macro-action controller that provides the most
effective amount of assistance for a user with their skill. For
two users, it was the first time running the simulator, while the
third user had substantial prior experience with the simulator.
Figure 3 shows the number of times the user collided with an
obstacle during the trial. Except for the first trial, the number
of obstacles users 1 and 2 hit did decrease. Figure 4 shows the
probability of the user being a beginner after completing each
map. Users 2 and 3 follow similar trends for the belief of their
expertise level, while user 1 spends more time as a beginner.
Figure 5 shows the average time to complete the map over the
four trials. User 3 always took the shortest amount of time to
complete the maps while users 1 and 2 had similar times.



There are some interesting differences between the first two
users who were using the system for the first time versus user
3 who had prior experience with it. User 3 hit many more
obstacles initially, then hit fewer obstacles when the controllers
were changed by the POMDP policy, while on the other hand
users 1 and 2 showed the opposite. One possible reason for this
may be that user 1 and 2 may have been initially more cautious
in their control in the first trial since it was the first time seeing
the map and driving the robot. Another reason may be the first
two users were not used to using the controllers with more
assistance, and instead of using the robot’s autonomy to help
them, responded negatively to the robot’s help.
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Fig. 3. The number of times each user collided into an obstacle over all the
maps in each of the trials.
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Fig. 4. The probability of the user performing at beginner level based on
the belief state of the POMDP.

IV. CONCLUSION AND FUTURE DIRECTIONS

The results of the pilot trial gave some valuable insight into
how well the POMDP modeling worked and how to set up
future user studies. Even though user 3 had more experience
driving the robot in the simulation, the amount of time they
spent as a beginner was similar to the other users. User 3
reached the goal consistently more quickly. This first iteration
of modeling expertise using a POMDP only observed the
number of obstacles hit in cluttered or uncluttered maps. While
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Fig. 5. The average time to complete the map over all four trials from each
of the users. The first four maps were “easy” maps with fewer obstacles to
avoid, while the last four where “hard” maps. The “hard” maps took longer
to complete.

we were able to learn some information on how effective the
user was at avoiding obstacles, this is not sufficient to fully
encompass what makes a user a beginner or expert.

We are currently working on adding more observations to
the POMDP to better model the user’s expertise such as the
user’s time to complete the goal and the stability of the user’s
control. We also plan to implement the algorithm on a mobile
robot in order to test the algorithm’s ability to model user
expertise in the field. Currently the POMDP parameters are
hand-tuned and a policy is generated offline. In the future we
would like to incorporate reinforcement learning techniques so
that the parameters of the POMDP can be trained instead of
hand-tuned. A full-scale user study will also be performed with
a greater number of users with varying levels of experience
with video games and robotics. With this user study, we will
test our hypothesis that a model of user expertise can be used
to provide the most effective level of shared autonomy in
human-robot systems.
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