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Abstract—Robots can provide assistance with activities of daily
living (ADLs) to humans with motor impairments. Specialized
robots, such as desktop robotic feeding systems, have been
successful for specific assistive tasks when placed in fixed and
designated positions with respect to the user. General-purpose
mobile manipulators could act as a more versatile form of
assistive technology, able to perform many tasks, but selecting a
configuration for the robots from which to perform a task can be
challenging due to the high number of degrees of freedom of the
robots and the complexity of the tasks. As with the specialized,
fixed robots, once in a good configuration, another system or the
user can provide the fine control to perform the details of the task.
In this short paper, we present Task-centric Optimization of robot
Configurations (TOC), a method for selecting configurations for
a PR2 and a robotic bed to allow the PR2 to provide effective
assistance with ADLs. TOC builds upon previous work, Task-
centric initial Configuration Selection (TCS), addressing some
of the limitations of TCS. Notable alterations are selecting
configurations from the continuous configuration space using
a Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
optimization, introducing a joint-limit-weighted manipulability
term, and changing the framework to move all optimization
offline and using function approximation at run-time. To evaluate
TOC, we created models of 13 activities of daily living (ADLs) and
compared TOC’s and TCS’s performance with these 13 assistive
tasks in a computer simulation of a PR2, a robotic bed, and a
model of a human body. TOC performed as well or better than
TCS in most of our tests against state estimation error. We also
implemented TOC on a real PR2 and a real robotic bed and
found that from the TOC-selected configuration the PR2 could
reach all task-relevant goals on a mannequin on the bed.

I. INTRODUCTION

Activities of daily living (ADLs), such as feeding and per-

sonal hygiene, are important for people, but these tasks can be

challenging for those with motor impairments. Many special-

ized assistive devices can help people with motor impairments

perform ADLs on their own. Specialized robots, such as

desktop feeding devices, have been successful for a narrow

range of assistive tasks when placed in fixed and designated

positions with respect to the user. General-purpose mobile

manipulators collaborating with robotic beds, wheelchairs, and

the user, have the potential to provide assistance across a wide

range of tasks, users, and environments. However, selecting a

configuration for the robotic devices from which to perform

the task can be challenging due to the high number of degrees

of freedom of the robots.

Hawkins et al. [1] observed that some assistive tasks require

that a mobile manipulator use multiple base positions, and

that manually choosing those positions can be difficult. They

Fig. 1: The Framework used in TOC.

presented a a human-in-the-loop system for the user to provide

the fine control to perform the details of self-care tasks around

the head once the robot is in a good configuration. Along those

lines, the method we present in this work selects the 4-DoF

configuration of a PR2 (X-Y base position, base orientation,

and Z-axis height) and the 2-DoF configuration of a robotic

bed (Z-axis height and head-rest angle), and leaves fine control

of the PR2 arms to perform the task to some other system.

In this work, each robot configuration consists of a PR2

configuration and a robotic bed configurations. Our system

can select up to two robot configurations for a single task.

Selecting good configurations has been previously addressed

in many ways. In our previous work, Kapusta et al. [2]

presented Task-centric initial Configuration Selection (TCS).

With a task-centric focus, TCS could use specifics of the

problem, such as the specific geometries and a task model

to aid the robot in finding collision-free solutions.

In this short paper, we briefly present Task-centric Opti-

mization of robot Configurations (TOC), which builds upon

and addresses some of the limitations of TCS. Unlike TCS,

TOC uses Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) to perform all optimization offline in continuous

configuration space, and uses Joint-Limit-Weighted Kinematic

Isotropy to penalize configurations near joint limits. TOC

takes advantage of things it can model in advance, such as

a geometric model of the human, models of a set of tasks,

and models of the robots and environment. It optimizes the

robot configuration for samples of the human’s pose on the

bed. It then approximates a function to estimate the optimal

robot configuration bed given an observed human pose. At run-



Fig. 2: From left to right: 1) goal poses for shaving task model; 2) optimized configuration of the PR2 and the robotic bed

for wiping the mouth; 3&4) real robots before and after moving to optimized configuration for wiping the mouth. Note: the

bed moved its height and angle.

time TOC applies the function. TOC’s framework is shown in

Figure 1 and described in Section II-A.

A. Related Work

Much prior research has investigated how to find good

configurations for a mobile robot. A more thorough survey

on related work can be found in our previous work [2]. Work

continues to be done in the field, such as that by Dong and

Trinkle [3], which uses a reachability map from Zacharias

et al. [4], adjusted to allow extension to tools in the robot’s end

effector and desired orientations. Reachability maps are task

generic and robot specific, facilitating application to new tasks.

In contrast, our work is task specific and robot specific. TOC

checks collisions, works in continuous task and configuration

space, and returns a solution of up to two configurations.

Diankov et al. [5] presented BiSpace, a method that uses

RRTs at run-time to find a path to a point in configuration

space where the robot can achieve a set of goal poses. Our

method performs little computation online, performing most

computation beforehand, uses an optimization framework, and

uses Task-centric manipulability to select configurations.

II. METHOD

A. Framework

Figure 1 shows the framework of TOC. TOC jointly opti-

mizes two 6-DoF robot configurations, each of which consists

of a 4-DoF configuration for the PR2 and a 2-DoF configura-

tion for the robotic bed. The optimization is run for samples

of the human’s pose on the bed, hi, given robot, human, and

environments models. It interprets the optimization results to

see if a single configuration is sufficient for the task, or if

there is value in using two configurations. It then associates

its choice, ri with its respective hi. These associations are

used to approximate a function that is used at run-time to

determine the estimated optimal configurations, r̂∗, given the

observed human’s pose on the bed, ĥ.

B. Implementation Details

1) Task Modeling: We created task models that are simple

representations, a sparse set of end effector poses (Cartesian

position and quaternion), that can allow a robot to efficiently

make decisions about its ability to perform a task. TOC

seeks one or two robot configurations from which the PR2

can not only reach the goal poses, but has high kinematic

dexterity when reaching those poses, suggesting that it could

also reach nearby poses relevant to the real task. We limited

tasks to one-handed tasks and used only the robot’s left arm

in our evaluation. We modeled 13 tasks, listed in Table I. For

example, Figure 2 shows the eight goal poses for the shaving

task.

2) A Measure of Kinematic Dexterity: We use two mea-

sures to estimate how well the PR2 will be able to per-

form the task from a configuration: task-centric reachabil-

ity (TC-reachability) and task-centric manipulability (TC-

manipulability). These differ from common terms.

TC-reachability, PR, is the percent of goal poses to which

the robot can find an IK solution from robot configurations,

rk, and can be found defined in [2].

TC-manipulability, PM , is related to the average kinematic

dexterity of the arm when reaching the goal poses. Its previous

definition can be found in [2].

Hammond III and Shimada [6] used a torque-weighted

global isotropy index to estimate the dexterity of a robotic arm

given joint torques and torque limits. We have similarly modi-

fied kinematic isotropy, used previously in TC-manipulability,

replacing it with joint-limit-weighted kinematic isotropy (JL-

WKI) by scaling with an nxn diagonal joint-limit-weighting

matrix T defined as:

T (qj , qmin, qmax) =




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0
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





where each element ti in T is defined as

ti = 1− 0.5|
1

2
(qmax,i−qmin,i)−qj,i−qmin,i|

qj is the arm’s full joint configuration; qi is the configuration

for joint i; qmax and qmin are the arm’s full joint max and

min limits; qmax,i and qmin,i are the max and min limits for

joint i.

We then compute JLWKI as:

JLWKI(qj) =
a
√

det(J(qj)T (qj , qmin, qmax)J(qj)T )

( 1
a
)trace(J(qj)T (qj , qmin, qmax)J(qj)T )

where a is the order of the robot arm’s workspace (6 in the

case of our 7-DoF arm).

3) The Optimization: Tan et al. [7] used CMA-ES to design

a controller for articulated bodies moving in a hydrodynamic

environment, inspiring our use of CMA-ES. We used CMA-

ES (from https://pypi.python.org/pypi/cma) to optimize the

robot configurations, ri, given the task, robot, human, and

environment models, c, and a pose of the human on the bed,

https://pypi.python.org/pypi/cma


TABLE I: Evaluation of performance of TOC vs TCS with

error introduced in 1000 Monte Carlo simulations. Values in

bold are statistically significant (p < 0.001 in Wilcoxon Rank

Sum tests).

Task TOC: mean (std) TCS: mean (std)

Shaving 99.6.% (2.1) 99.9% (1.0)

Bathing 86.7% (2.9) 76.9% (6.8)

Wiping Mouth 95.3% (10.) 100.% (0.0)

Feeding 99.9% (1.7) 99.8.% (2.2)

Scratching left upper arm 100.% (0.0) 100.% (0.0)

Scratching right upper arm 100.% (0.0) 100.% (0.0)

Scratching left forearm 100.% (0.0) 100.% (0.0)

Scratching right forearm 100.% (0.0) 100.% (1.6)

Scratching left thigh 99.6% (4.2) 100.% (0.0)

Scratching right thigh 100.% (0.0) 99.9% (2.2)

Scratching left knee 99.6% (3.3) 99.4% (4.4)

Scratching right knee 99.8% (3.0) 99.7% (3.3)

Scratching chest 99.5% (6.3) 72.4% (38.0)

hi, using the objective function shown in equation 1. The

optimization was run for each task for samples of the human’s

pose on the bed.

argmin
ri

−αPR(ri, hi, c)− βPM (ri, hi, c) (1)

The optimization simultaneously optimizes two robot config-

urations. Any configuration where the PR2 base would collide

with the robotic bed if shifted 2cm in either X or Y direction

was considered to be in collision. We used a heuristic when

both PR and PM are zero that pushes the objective function

toward configurations that may have non-zero PR and PM . All

values from the heuristic are larger than 0. We used a value

of 10 for α and values of 1 for β. TOC interprets the results

of the optimization to see if using one or two configurations

works best for the task.

4) Approximate Function: Offline, TOC approximates a

function that estimates the optimal configurations, r̂∗, given

an estimated pose of the human on the bed, h. At run-time,

TOC applies this function to the observed human pose, ĥ. For

this paper we used 1-nearest neighbor as the function, f .

III. EVALUATION

Figure 2 shows the simulation environment with a PR2 and

with a human on a configurable bed. We put a wall behind the

bed to simulate how beds are often positioned in rooms. We

compared the performance of TOC with TCS (as implemented

by Kapusta et al. [2] in the same environment) in Monte Carlo

simulations with introduced error in the human’s global X and

Y positions (translating around on the bed). The two systems

selected robot configurations for the task given the human is

positioned in the center of the bed. We evaluated how many

goal poses could be reached with the human position error

introduced. We did this analysis for all 13 modeled tasks.

The error introduced was normally distributed around 0 with

a standard deviation of 2.5 cm in the global X direction and

5 cm in the global Y direction.

The results are shown in Table I. TOC has comparable or

better performance in most tasks compared to TCS.

We also implemented TOC on a real PR2 and a real robotic

bed. The robotic bed is based on that presented by Grice et al.

[8]. We had the PR2 attempt the wiping mouth task for a

mannequin on the bed using TOC to select the configuration.

We manually checked that the PR2 could touch points all

around the mouth. Figure 2 shows the environment when TOC

starts and the configuration the PR2 and robotic bed moved

to, selected by TOC for the task, as well as the PR2 reaching

the task area.

IV. DISCUSSION AND CONCLUSION

TOC incorporates improvements from TCS:

• A reworked framework that separates the method into an

offline optimization and an approximated function at run-

time.

• Use of CMA-ES to search for configurations in contin-

uous configuration space instead of a brute force search

over discretized space.

• Use of Joint-Limit-Weighted Kinematic Isotropy (JL-

WKI) to mitigate problems due to joint limits.

TOC has equal or better performance than TCS in most

tasks in our evaluation. We have implemented TOC on a real

robot and demonstrated the feasibility of using it to select

configurations for a real PR2 and a real robotic bed.
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