
Efficient MCMC Inference
for Remote Sensing of Emission Sources

by

Christopher L. Dean

B.S. Computer Science and Engineering
The Ohio State University, 2013

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science
in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

June 2015

c© 2015 Massachusetts Institute of Technology
All Rights Reserved.

Signature of Author:

Department of Electrical Engineering and Computer Science
May 20, 2015

Certified by:

John W. Fisher III
Senior Research Scientist

Thesis Supervisor

Accepted by:

Professor Leslie A. Kolodziejski
Chair, Department Committee on Graduate Students



2



Efficient MCMC Inference for Remote Sensing of Emission Sources

by

Christopher L. Dean

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2015 in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

A common challenge in environmental impact studies and frontier exploration is
identifying the properties of some emitters from remotely obtained concentration data.
For example, consider estimating the volume of some pollutant that a chemical refinery
releases into the atmosphere from measurements of pollutant concentrations. Previous
methods assume a known number of emitters, low ambient concentrations, or mea-
surements from a group of stationary sensors. In contrast, we use measurements from
a mobile sensor and detect source contributions that are several orders of magnitude
smaller than ambient concentrations.

Here, we develop and analyze a method for inferring the location, emission rate,
and number of emitters from measurements taken by an aircraft. We use Reversible-
jump Markov chain Monte Carlo sampling to jointly infer the posterior distribution of
the number of emitters and emitter properties. Additionally, we develop performance
metrics that can be efficiently computed using the sample-based representation of the
posterior distribution.

We investigate the expected performance of the inference algorithm with respect
to certain model parameters in a series of synthetic experiments and use these perfor-
mance metrics for evaluation. These experiments provide insight into subtleties of the
model, including the identifiability of source configurations, the effect of various path
geometries, and the effects of incorporating data from multiple flights. We also provide
intuition for best-case performance when running on real-world data using a synthetic
experiment. Finally, we demonstrate our ability to process and analyze real-world data
for which the true source configuration is unknown.

Thesis Supervisor: John W. Fisher III
Title: Senior Research Scientist
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Chapter 1

Introduction

Remote sensing is the science of obtaining information about objects or areas from
a distance, e.g. from an aircraft or spacecraft. A variety of data may be sensed re-
motely, including satellite imagery, radar, and airborne light detection and ranging
(LIDAR) measurements. These types of data are then processed and used for a wide
range of applications, including oceanography, disaster response, meteorology, and mil-
itary operations. In particular, one type of object that may be sensed remotely is an
emission source. These come in many forms, including chimneys, landfills, explosions,
and waste-water treatment exit areas. We can sense these objects remotely by record-
ing local concentrations of some pollutant and inferring emitter properties from these
measurements.

This corresponds to solving an inverse problem in the atmospheric sciences liter-
ature. In contrast, the forward problem pertains to mapping the flow of particles of
some pollutant after they are ejected by an emitter. Specifically, the forward problem
can be stated as follows: given the location and other properties of an emitter, what
is the concentration that would be measured by a sensor at some location downwind
of the emitter? A variety of methods and models exist to describe this mapping. The
inverse problem, and the one to which we will restrict our attention, asks the following
question: given a set of concentration measurements obtained at a set of locations,
where is the emitter and what are its properties? This problem provides a rich setting
for probabilistic inference.

Probabilistic inference is concerned with inferring the values of some unobservable
random variables given the observed values of some other variables. One commonly-
used approach to probabilistic inference is Markov chain Monte Carlo (MCMC) meth-
ods, which allows us to generate a set of samples from the posterior distribution and
compute statistics about these variables using this set of samples. One key issue in such
approaches is determining the convergence rate of the set of samples to the correct dis-
tribution. We apply an MCMC method to solve the aforementioned inference problem
efficiently. Critically, the approach described here is not restricted to the specific appli-
cation of atmospheric emissions. Instead, the results and modeling considerations may
be extended to any type of emissions propagating through any type of fluid, provided
an appropriate transport model is available.

To enable in-depth discussion of the atmospheric dispersion application, Chapter 2
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18 CHAPTER 1. INTRODUCTION

provides a primer on atmospheric dispersion models, an introduction to MCMC meth-
ods, and an overview of relevant prior work in solving the inverse problem. The prob-
abilistic model is formulated in Chapter 3 and inference on the model is discussed in
Chapter 4. Finally, Chapter 5 develops a set of performance metrics for analyzing
system performance. Chapter 6 uses these metrics and presents a series of synthetic
experiments that reveal certain properties of the model and inference procedure. We
also present the results from processing a real-world data set.



Chapter 2

Background

In this chapter we provide a brief primer on atmospheric dispersion models and previous
formulations of the emission source detection problem. Although the topics described
here are restricted to problems in the atmospheric sciences, and particle transport in
particular, we stress that the inference algorithms discussed can be applied to other
problem domains.

� 2.1 Atmospheric dispersion models

Atmospheric dispersion models attempt to capture the physical processes associated
with particle transport through the atmosphere. Gaseous particles, which are emitted
from some source, rise into the atmosphere due to both particle momentum, related
to the ejection velocity, and heat-related particle buoyancy. Particles eventually level
off due to the effects of gravity and cooling of the gasses. Transport and dispersion
through the atmosphere is caused by the wind, which consists of both large and small-
scale eddies, or currents. The large scale eddies are referred to as “wind” and transport
the particles in the downwind direction as a group. The smaller-scale eddies, called
“turbulence”, cause the particles to disperse randomly in the cross-wind and vertical
directions. This transport and dispersion process is affected by a variety of factors,
including the height of the atmospheric boundary layer—the layer of the atmosphere
in which most gasses are contained—and the roughness of the ground [8].

We first consider a plume emitted by some emission source. The emission source
may be located at altitude, in which case it is called a stack, or located at ground level.
As mentioned earlier, the plume rises and stabilizes at a certain height, fans out in
the horizontal and vertical directions, and has a shape that fluctuates randomly. This
fluctuation is due to the turbulence acting on the plume and is well-represented by a
random process. However, we can compute an ensemble average pollutant concentration
at some location averaged over some short period of time. This is the high-level goal
of atmospheric dispersion models, which predict the concentration of a pollutant at
some measurement time and location given an emitter with certain properties (e.g.
location and emission schedule) and information about the atmosphere through which
the diffusion occurs.

In this section we will introduce three different dispersion models of varying levels of

19



20 CHAPTER 2. BACKGROUND

complexity. We first discuss the Gaussian plume dispersion model, which represents the
concentration profile at a point downwind from the source as a Gaussian distribution.
Despite its simplicity, the Gaussian plume model can capture all the factors affecting
plume transport and diffusion with the exception of obstacles and changing landscapes.
Next we provide a review Lagrangian simulation, which samples particle trajectories
as a stochastic process and computes ensemble-averaged statistics over the simulated
trajectories. Finally, we will introduce a Computational Fluid Dynamics model which
implements the Navier-Stokes equations and includes some approximations of the small-
scale turbulence eddies. In subsequent chapters we utilize the Gaussian plume model;
the other two dispersion models are presented for context.

� 2.1.1 Gaussian plume model

In general, the release and transport of some pollutant through the atmosphere is
described by the advection-diffusion equation (ADE):

∂C

∂t
+ u · ∇C = ∇ · (K∇C) + S (2.1)

where C(x, t) gives the concentration observed at location x at time t, u is the wind
velocity, K is a diagonal matrix of turbulent eddy diffusivities, and S(x, t) gives the
source emission rate. A closed-form solution can be computed in many cases, depending
on boundary constraints and turbulence diffusivities. Stockie [31] steps through the
derivation of the Gaussian plume model from the ADE, Equation 2.1, by applying a
particular set of assumptions. In particular, the Gaussian plume model is only valid
under these assumptions:

• The source is emitting at a constant rate.

• The source is a mathematical point (i.e. has no area).

• Wind speed and direction are constant across space and time.

• Statistics of turbulence are constant across space and time.

• The wind speed is sufficiently strong such that dispersion in the downwind direction
is negligible compared to the advection (plume rise).

• Mass is conserved within the plume, or the pollutant neither deposits onto the
ground nor undergoes chemical reaction within the atmosphere.

Any practical application will see nearly all of these assumptions violated. However,
they are often approximately satisfied, in which case the Gaussian plume model is
expected to be accurate to within a factor of two [8].

The Gaussian plume model, shown in Figure 2.1, predicts the expected concentra-
tion at a measurement location given some emitter location. Since the plume shape
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Figure 2.1: An illustration of the Gaussian plume model. The source has height h and
the plume ascends to a stable height H. At some distance x downwind of the source,
the horizontal and vertical concentration profiles are modeled as independent Gaussians
with standard deviations σH(x) and σV(x), respectively. We also refer to these as σy
and σz when the y-axis is in the cross-wind direction.

fluctuates randomly due to turbulence, the Gaussian plume model computes an ensem-
ble average over some sample time. Given a long enough sample time, the ensemble
average of the concentration at some downwind distance x is represented by a Gaussian
distribution in both the crosswind (y) and vertical (z) direction. We cannot obtain an
instantaneous concentration measurement profile from the Gaussian plume model as
it cannot consider temporally-varying emission rates; more complicated models will be
described for this task in later sections. By convention we place the source at (0, 0, 0)
and assume the relative measurement location (x, y, z). The expected concentration at
this location, C(x, y, z) factors into the downwind, cross-wind, and vertical coordinate
directions as follows:

C(x, y, z) = φxφyφz, (2.2)

where the C(·, ·, ·) is unitless, φx has units of m3/m, and φy and φz both have units of
1/m.

In the x direction the plume is deterministically diluted by the wind. The source is
assumed to be emitting at some constant rate Q in m3/s. This concentration is diluted
downwind by a wind of speed u in m/s; thus, we model the amount of pollutant per
meter in the downwind direction by

φx =
Q

u
. (2.3)

The volume of pollutant φx is then randomly and independently distributed in both
the crosswind and vertical directions. This physically corresponds to the turbulence that
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causes the atoms to disperse. The extent of the diffusion is dictated by the parameters
σy and σz, the standard deviation of the ensemble average in both the crosswind and
vertical directions. A variety of methods exist for computing the values of these param-
eters. We will consider several common methods later in this section. In the crosswind
direction, at some distance y meters from the plume center-line, the ensemble-averaged
concentration profile is modeled by

φy =
1√

2πσy
exp

{
− y2

2σ2
y

}
. (2.4)

In the vertical direction the observed concentration is also distributed normally when
vertical diffusion is unbounded. In such unbounded cases the vertical concentration
profile is

φz =
1√

2πσz
exp

{
−(z −H)2

2σ2
z

}
(2.5)

where H = h+∆h is the effective source height, h is the physical source height, and ∆h
is the plume rise. In reality, the plume does not experience unbounded dispersion in
the vertical direction. The ground provides one such bound, and since most pollutants
deposit onto the ground very slowly, we can conservatively treat the pollutant as being
reflected off the ground. This manifests as a virtual source located at height −H, such
that the concentrations from this virtual source intersect the ground at exactly the
same downwind distance as the actual source. Equation (2.5) then becomes

φz =
1√

2πσz

(
exp

{
−(z −H)2

2σ2
z

}
+ exp

{
−(z +H)2

2σ2
z

})
. (2.6)

Using Equation (2.6) instead of (2.5) in (2.2) yields the classical Gaussian plume equa-
tion

a(x, y, z) =
Q

2πuσyσz
exp

{
− y2

2σ2
y

}(
exp

{
−(z −H)2

2σ2
z

}
+ exp

{
−(z +H)2

2σ2
z

})
. (2.7)

The vertical diffusion is also bounded from above by a physical phenomenon called
temperature inversion. The region between the ground and the temperature inversion
layer is often called the mixing layer. The depth D of this mixing layer is often greater
in the daytime than in the evening primarily due to atmospheric heating, but other
factors also play a role. When the plume is confined to this mixing layer, an infinite
number of reflections may occur. As such, we can further extend Equation (2.6) to

φz =
1√

2πσz

×
∞∑

j=−∞

(
exp

{
−(z − (H + 2jD))2

2σ2
z

}
+ exp

{
−(z + (H + 2jD))2

2σ2
z

})
. (2.8)
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Day Night

u (m/s) Strong Moderate Slight Cloudy (≥ 4/8) Clear (≤ 3/8)

< 2 A A–B B E F
2–3 A–B B C E F
3–5 B B–C C D E
5–6 C C–D D D D
> 6 C D D D D

Table 2.1: Criteria for Pasquill-Gifford stability classes. The above division into
“Cloudy” and “Clear” is based on the fractional cloud cover, (≥ 4/8) and (≤ 3/8)
respectively.

In practice only a few of the infinitely many terms in Equation (2.8) need be calculated.
In general, computing the terms for j from -2 to 2 is sufficient [8].

Concentrations obtained by the Gaussian plume equation are highly dependent on
accurate estimations of the dispersion parameters σy and σz. We will now present two
different approaches for computing these dispersion parameters.

Parameterizations based on stability classes

The first of the two methods classifies the environment into “stability classes” which
have different empirical estimates for σy and σz. Although stability-classes are no longer
the preferred method for computing dispersion parameters they are still commonly used
in many pollution screening applications. The most commonly-used notion of stability
classes was developed by Pasquill [24] and Gifford [11]. A table for computing the
stability class is shown in Table 2.1. Each stability class corresponds to curves of σy
and σz versus the downwind distance x. The dispersion parameter values were originally
read from graphs presented by Turner [32]; the graphs are reproduced here in Figure 2.2.

Many empirical equations have been set forth to describe these curves. Those pro-
posed by Briggs [2] have seen the greatest popularity. These equations take the form

σy =
ax

(1 + bx)c
(2.9)

σz =
dx

(1 + ex)f
(2.10)

where a,. . . ,f are empirical constants given in Table 2.2 and x is the downwind distance.
The measurement data used to derive the Briggs equations were based on 10-minute
averages, but they are usually treated as hour-long averages according to the standards
established by the U.S. EPA.



(a) (b)

(c) (d)

Figure 2.2: Horizontal and vertical dispersion parameters calculated with the Briggs
equation [2] based on the graphs by Turner [32].
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Rural
σy σy

Stability class a b c d e f

A 0.22 0.0001 0.5 0.2 0 —
B 0.16 0.0001 0.5 0.12 0 —
C 0.11 0.0001 0.5 0.08 0.0002 0.5
D 0.06 0.0001 0.5 0.03 0.0003 1
F 0.04 0.0001 0.5 0.016 0.0003 1

Urban
σy σy

Stability class a b c d e f

A–B 0.32 0.0004 0.5 0.24 0.0001 -0.5
C 0.22 0.0004 0.5 0.2 0 —
D 0.16 0.0004 0.5 0.14 0.0003 0.5
E–F 0.11 0.0004 0.5 0.08 0.0015 0.5

Table 2.2: Coefficients for the Briggs equations for computing σy and σz. For notes on
application see [8].

Continuous parameterization of dispersion parameters

The stability-class method for computing the dispersion parameters is tractable when
only the general atmospheric characteristics are known. However, in practice it is
common to collect additional data about the wind field. This allows for the computation
of much more accurate dispersion parameter values through incorporating statistical
knowledge of the turbulence.

Consider particles being ejected from a source at location (x, y, z) = (0, 0, 0) at time
t = 0. Particles are dispersed by a random wind vector with downwind component
u and crosswind component v, where v is distributed as a zero-mean Gaussian with
variance σ2

v . Neglecting wind speed fluctuation in the x direction, we have that all
particles will be at x = ūt after a very short period of time t where ū is the average
wind speed. Over the same period of time t, each of the particles is subject to a different
wind speed in the cross-wind direction leading to new cross-wind direction is y = vt,
assuming without loss of generality that the mean wind speed is along the x axis. We
can compute the standard deviation of the y position of the particles to be σy = σvt.
Due to the stochastic nature of the wind speed and direction, this is the maximum
value of σy. Over time, as the wind speed is less likely to be the same, this σy is some
fraction of σvt. This depends on how long the wind speed stays the same. The same
analysis applies in the vertical direction.

Many works attempt to describe the influence of cross-wind and vertical eddies,
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or turbulence, on the extent of the plume. Pasquill [25] proposed the following pa-
rameterization that includes computing the two non-dimensional functions fy(·) and
fz(·),

σy = σvtfy(t/TL) (2.11)

σz = σwtfz(t/TL) (2.12)

where t is the diffusion time and σv and σw are the standard deviations of the horizontal
and vertical wind components, which can be either measured or estimated using a
formula. The functions fy(·) and fz(·) slowing the rate of change of σy and σz as
the downwind distance grows very large. The scale at which this occurs is governed
by the Lagrangian time scale TL, a convenient measure of the average duration of
autocorrelation; TL is different in all three directions x, y, and z.

In practice we will usually want to estimate the dispersion parameters at some
downwind distance x instead of some diffusion time t. Draxler [9] reparameterizes
(2.11) and (2.12) as

σy = σθxfy(t/Ti) (2.13)

σz = σφxfz(t/Ti) (2.14)

We note that the diffusion time t = x/u, where x is the downwind distance and u is
the wind speed. Similarly Ti = 1.64TL is a normalization factor proportional to the
Lagrangian time scale in each direction that indicates the time required for fy(·) or
fz(·) to become equal to 0.5. Finally, we note that the standard deviations of wind
vector azimuth and elevation angles as σθ = arctan(σv/u) and σφ = arctan(σw/u). For
small angles we have σθ ' σv/u and σφ ' σw/u. Making the appropriate substitutions
in Equations (2.11) and (2.12) yield Equations (2.13) and (2.14).

We now turn our attention to the non-dimensional functions fy and fz, as well as
the Lagrangian integral time scales TL. For short distances the wind speed fluctuations
do not change much, so the dispersion is the maximum possible value. In other words,
for t� TL we have fy = fz = 1. As the diffusion time increases, the wind speed changes
along the path from the emitter to the measurement location and can be assumed to
follow a random walk in the crosswind and vertical directions. As such, for t� TL we
would expect fy < 1 and fz < 1. This results in a tapering-off of the standard deviation
as a function of the downwind distance. Draxler [9] notes that for downwind distance of
about 10 km, the dependence on the time scale parameter TL can be dropped, resulting
in an expression for σy and σz that are proportional to the downwind distance x. Others
have suggested additional modifications in the years since. Seinfeld and Pandis [29]
summarized the approaches, offering the following forms for unstable atmosphere:

fy(t/TL) =
1

1 + (t/TL)0.5 , fz(t/TL) =
1

1 + 0.9(t/TL)0.5 . (2.15)

Under stable conditions in the y direction the Lagrangian time scale is often taken
to be TL = 1000 s. For unstable conditions in the z direction the value TL = 500 s is
suggested; stable conditions in the z direction suggest using TL = 100 s.
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It is noted that once the functions fy and fz have been determined, σy and σz are
directly given by observations of σθ and σφ. These standard deviations of the wind
direction and wind elevation angle components are generally computed over 10 minutes
of observations. A comparison of methods for obtaining these values are given in [7].

Extensions of the Gaussian plume model

One of the primary deficiencies of the standard Gaussian plume model is an inability
to deal with changing wind directions. Several extensions to the Gaussian plume model
have been proposed to take a changing wind field into account.

The segmented Gaussian plume model accounts for a temporally-varying wind model
[4]. The wind field is assumed spatially constant so that at a given time all of the
plume is being acted on by the same field. The Gaussian plume is broken up into
segments, parameterized by time. Each segment is itself Gaussian and concentrations
are computed by the equations previously given.

The Gaussian puff model abandons the plume representation altogether, allowing
for nonstationary emissions in temporally and spatially varying wind conditions. The
emitter’s continuous emission at the rate Q is assumed to be broken up into segments
of length ∆t. After ∆t seconds the emitter injects a plume of mass ∆M = Q∆t into the
atmosphere. Each puff may be treated independently by any spatially or temporally-
varying wind conditions. Further information may be found in Zanetti [37]. This model
has been used for source estimation by Neumann et al. [23].

� 2.1.2 Lagrangian stochastic model

Gaussian plume models are deterministic in nature and represent an ensemble average
of the particles emitted from a plume. They work well in situations where the wind
speed is constant, but break down quickly as the particle dispersion becomes more com-
plicated. Lagrangian stochastic models manage to avoid such problems by simulating
the trajectories of emitted particles in a turbulent flow given statistical knowledge of
the velocity field. These particles represent a unit of “fluid” that is propagated through
the air by some wind field and is subject to random small-scale effects of turbulent
flows. We can then compute statistics over a large collection of simulated trajectories
to approximate the ensemble-average concentration measured at some point in space-
time.

Since they simulate actual particle motion through the wind field, Lagrangian
stochastic models tend to be more accurate than Gaussian plume models and even
Gaussian puff models. Plume model accuracy tends to degrade at about 30-50 km
downwind of the source and puff models tend to break down around 200 km. Lagrangian
particle models are accurate to much further distances provided that a sufficient num-
ber of particle trajectories are simulated [8]. One additional advantage of simulating
actual trajectories is that, unlike Gaussian plume models, Lagrangian stochastic models
do not assume that the system is at steady-state conditions. Hence, these models can
incorporate the time dependency in the expected concentration and sources that turn
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on and off. Unfortunately they also carry a much greater computational burden that
makes them less commonly used in iterative source estimation methods.

However, there still remain some situations in which Lagrangian stochastic models
fail to accurately estimate the concentration field. This is common in urban environ-
ments, where flow may be blocked by buildings and other obstacles. In such environ-
ments, one may resort to using even more complicated model that simulate motion from
first principles and predicts expected concentrations with a high degree of accuracy.

� 2.1.3 Computational fluid dynamics model

The Gaussian plume model and the Lagrangian stochastic model are both based on a
series of assumptions about the physical processes governing transport and diffusion.
For instance, they both assume that the wind speed and statistics of turbulence profiles
are known or can be classified as a stability class. It is also assumed that the terrain
is relatively smooth and that there are no large obstacles that would impact the flow
of fluids from the source to the sensor. When either of these assumptions are severely
violated, one may resort to simulating directly from the physical model of atmospheric
turbulence.

The Navier-Stokes equation and the mass conservation equation govern the physics
of turbulent flow; the energy balance equation is occasionally required as well. Numer-
ical simulation from these equations is called computational fluid dynamics (CFDs).
CFDs model effects on a huge range of scales, ranging from the Kolmogorov length
scale (millimeters) to the size of the planetary boundary layer (kilometers). This wide
range of scales precludes a naive implementation of the equations. Instead, to make
computation tractable, approximations are generally used for the smallest time scales.
Two common approaches are called Reynolds-averaged Navier-Stokes (RANS) and large
eddy simulation (LES). De Visscher [8] provides an overview of these two methods and
an introduction to the aforementioned equations governing particle motion.

CFD models are so computationally demanding that they are usually only applied
when more efficient methods would fail to correctly model the dispersion. For example,
Chow et al. [6] uses CFDs to estimate source locations within an urban environment
containing tall buildings. These tall buildings funnel the wind between them, caus-
ing horizontal gusts that could neither be captured in a Gaussian plume model nor
a Lagrangian stochastic dispersion model. Most applications in the source estimation
literature consider dispersion across a rural environment for which CFD models are
unnecessary, so these computationally intensive methods are rarely employed.

� 2.2 Markov chain Monte Carlo methods

In this section we shift topics from atmospheric dispersion to Bayesian inference. Specif-
ically, here we consider a particular method for approximate Bayesian inference called
Markov chain Monte Carlo methods. Suppose we are interested in the posterior distri-
bution p(x | y) of some scalar parameter x given some measurement y. We call this the
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target distribution and write it as p(x) for brevity. MCMC methods generate a Markov
chain of samples x(1), x(2), . . ., x(k) that converges (under mild regularity conditions) to
the target distribution p(x). Given a collection of samples from the posterior, we can
compute any desired statistic of p(x | y), including marginal distributions and maximum
a posteriori (MAP) estimates.

We can still sample from the target distribution even if we can only evaluate the
target up to some multiplicative constant. This is common in Bayesian inference where
we want to evaluate the posterior

p(x | y) =
p(y |x)p(x)∫
p(y |x)p(x) dx

=
p̃(x)

Z
(2.16)

and p(y |x) and p(x) are the data likelihood and parameter prior distributions. From
the generative model we can easily evaluate the numerator p̃(x) = p(y |x)p(x) but
computing the denominator Z =

∫
p(y |x)p(x) dx, known as the partition function or

evidence, is generally intractable.
Markov chain Monte Carlo methods are an iterative approach to approximating any

probability distribution by a set of samples. Excellent treatments of MCMC methods
are provided in [10], [12], and [27].

Most MCMC methods rely on the Metropolis-Hastings (MH) algorithm to construct
the chain of samples from the target distribution [14]. The MH algorithm is a method
for constructing the k-th sample from the distribution given the (k− 1)-th. It relies on
a proposal distribution q(x∗ |x(k−1)) from which we can easily sample. Generating the
k-th sample involves the following steps:

1. Sample a new state x∗ from the proposal distribution, i.e.

x∗ ∼ q
(
x |x(k−1)

)
. (2.17)

2. Compute the Hastings ratio

r =
p(x∗)q

(
x(k−1) |x∗

)
p
(
x(k−1)

)
q
(
x∗ |x(k−1)

) . (2.18)

3. Set

x(k) =

{
x∗ with acceptance probability α = min(1, r)

x(k−1) otherwise.
(2.19)

The MH algorithm, Algorithm 2.1, begins at at some arbitrary starting point x(0) for
which p(x(0)) > 0. If p(x(0)) = 0 the initial Hastings ratio is undefined. The above
steps are repeated as many times as desired. We note that the form of the Hastings
ratio means we can use p(x) or the unnormalized distribution p̃(x) when computing α.
The same holds for the proposal distribution q(· | ·).
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1: procedure MetropolisHastings(x0,K)
2: for k = 1, 2, . . . ,K do
3: x← xk−1

4: x′ ∼ q(x′ |x) . sample from proposal distribution

5: α← p̃(x′)q(x |x′)
p̃(x)q(x′ |x)

. compute acceptance probability

6: r ← min(1, α)
7: u ∼ U(u; 0, 1)
8: if u < r then
9: xk ← x′ . accept the proposed sample

10: else
11: xk ← xk−1 . reject the proposed sample
12: end if
13: end for
14: return {xk}Kk=1

15: end procedure

Algorithm 2.1: Metropolis-Hastings algorithm

It is known that samples obtained by the MH algorithm are guaranteed to converge
to the stationary distribution regardless of the choice of proposal distribution under
suitable regularity conditions [28]. As such, proposals are generally chosen to be con-
venient or easy to evaluate. One common class of proposal distributions are called
symmetric, i.e.

q
(
x′ |x

)
= q
(
x |x′

)
. (2.20)

For symmetric proposal distributions the Hastings ratio becomes the ratio of the target
distributions

r =
p(x∗)q

(
x(k−1) |x∗

)
p
(
x(k−1)

)
q
(
x∗ |x(k−1)

) =
p(x∗)

p
(
x(k−1)

) .
A subclass of symmetric proposal distributions are symmetric random walk proposals,
where

q
(
x′ |x

)
= N

(
x′;x, τ2

)
(2.21)

for some variance τ2. The rate at which our chain of samples converges to the stationary
distribution is usually tied to the acceptance rate E[α], which is generally computed
over some number of the most recent samples. An acceptance rate E[α] that is large
corresponds to not adequately exploring the target distribution and making very small
steps around the current state of the Markov chain due to a small proposal variance
τ2. Conversely, if E[α] is very low then most of the proposals are being rejected and
the variance τ2 is too large. The same intuition also applies to proposals that are not
symmetric random walks.
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The MH algorithm extends easily to a random vector of parameters x = (x1, . . . , xN ).
To sample from the target distribution p(x) we sample each component conditioned on
the other components being constant. To draw the (k)-th sample of x we perform

component-wise MH updates with the proposal distributions qi(x
∗
i |xi,x

(k−1)
−i ) where

x
(k−1)
−i =

(
x

(k)
1 , . . . , x

(k)
i−1, x

(k−1)
i+1 , . . . , x

(k−1)
N

)
.

The Hastings ratio for the ith component is

r =
p
(
x∗i ,x

(k−1)
−i

)
qi

(
x

(k−1)
i |x∗i ,x

(k−1)
−i

)
p
(
x

(k−1)
i ,x

(k−1)
−i

)
qi

(
x∗i |x

(k−1)
i ,x

(k−1)
−i

) . (2.22)

As long as we update each component xi at every iteration we are still guaranteed to
converge to the target distribution p(x).

Alternative methods exist for sampling the target distribution for multivariate pa-
rameter vectors. In one common method called Gibbs sampling, we sample each com-
ponent xi from its full conditional distribution p(xi |x−i). That is, we draw the (k)-th
sample from the (k − 1)-th using

x
(k)
i ∼ p

(
xi |x(k−1)

−i

)
(2.23)

and iterating from i = 1, . . . , N . This is commonly used when the full conditional
distributions can be written in closed form and sampled from.

We can show that Gibbs sampling is just a specific case of the MH algorithm for
which the acceptance probability α = 1 since the proposals are always accepted. Sam-
pling from the full conditional for some component xi corresponds to using the proposal
distribution

qi
(
x′i |xi,x−i

)
= p
(
x′i |x−i

)
. (2.24)

Plugging into Equation 2.22 we get

r =
p
(
x∗i ,x

(k−1)
−i

)
qi

(
x

(k−1)
i |x∗i ,x

(k−1)
−i

)
p
(
x

(k−1)
i ,x

(k−1)
−i

)
qi

(
x∗i |x

(k−1)
i ,x

(k−1)
−i

)
=

(
p
(
x∗i |x

(k−1)
−i

)
p
(
x

(k−1)
−i

))
p
(
x

(k−1)
i |x(k−1)

−i

)
(
p
(
x

(k−1)
i |x(k−1)

−i

)
p
(
x

(k−1)
−i

))
p
(
x∗i |x

(k−1)
−i

)
= 1,

which proves Gibbs sampling is a special case of the MH algorithm. As with component-
wise MH, Gibbs sampling is guaranteed to converge when all components are sampled
at each iteration. Gibbs sampling can also be used within component-wise MH by using
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the full conditional as the proposal distribution for some particular component or set
of components. Convergence to the target distribution can be accelerated by sampling
variables simultaneously, as in block Gibbs sampling.

Reversible-jump MCMC (RJ-MCMC) is a technique used when the size of the pa-
rameter set changes with the model order and the model order is one of the parameters
being inferred [13]. Its formulation is usually tightly coupled with the model of interest,
so we will postpone our introduction to this method until we apply it in Chapter 4.

� 2.3 Source estimation methods

In this section we will review existing approaches for source estimation. Source estima-
tion refers to solving an inverse problem with the following general structure. There
exist some number of static emission sources releasing a pollutant. We make concentra-
tion measurements using one or more possibly mobile sensors; each measurement has
an associated location and time. Based on this set of measurements we would like to
infer some properties of the emission sources, potentially including the location, rate of
emission, activation or deactivation time, and number of sources. Additionally, we may
know some of these properties a priori, or in advance. Another name for these inverse
problems is atmospheric dispersion event reconstruction problems.

There are many approaches to solving these inverse problems. Rao [26] divides them
into two main categories: forward modeling methods and backward modeling methods.
Forward modeling methods are generally iterative and use a forward-simulating dis-
persion model, i.e. concentrations are transported from source to receptor. Backward
modeling methods simulate transport backwards from the measurement location to pos-
sible emitter locations. They generally require only one run. We now provide further
description and recent work for each type of method.

� 2.3.1 Methods based on forward simulation models

Forward modeling methods are iterative models which generate candidate source con-
figurations upon each iteration. In each iteration, a forward atmospheric dispersion
model uses the candidate source configurations to obtain a set of predicted concentra-
tion measurements. The differences between the predicted and actual concentration
measurements are used to propose new source configurations, and the approach termi-
nates when some criteria is met. By far the most common methods for forward source
estimation are MCMC methods.

MCMC methods for a known number of emitters

Atmospheric dispersion event reconstruction problems attempt to quantify source prop-
erties which include a time component. For a chemical, biological, or radiological (CBR)
release time would be critical, since responders would want to know not just the loca-
tion and rate of emissions but also when the emissions began. In most works dealing
with this problem a single source is assumed and a sensor network monitors the survey
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area taking measurements at some time intervals. An MCMC formulation of this was
given in Johannesson et al. [19]. A variation on the Gaussian plume model was used
and the terrain was assumed to be smooth over the large survey area. These methods
were extended to smaller survey areas containing urban environments, which require
more complicated dispersion models. Neumann et al. [23] employed a Gaussian puff
model to take buildings into account. Similar work by Chow et al. [6] used a full
CFD model to estimate the concentrations observed by the sensor network. In both
cases, reasonable solutions to the event reconstruction problem were obtained from the
MCMC procedure.

When the emissions of a source are time-invariant, the forward dispersion model
can be restricted to the steady-state case. In Senocak [30] MCMC methods based on
[19] are used to infer the location and emission rate of a single source in a large rural
survey area. Since emissions are time-invariant, the standard Gaussian plume model is
used along with dispersion parameters given by Briggs curves. This work uses a more
complicated sensor model in which the sensors only issue a non-zero noisy concentra-
tion measurement when the observed concentration is above some detectable threshold.
MCMC efficiently provided reasonable results in the experiments shown, including one
that accommodated shifting wind fields using a segmented Gaussian plume mode.

It is often the case that there are multiple emission sources. Both Yee [34] and
Keats et al. [20] consider this case for CBR emission sources. Both assume that the
number of sources is known a priori and that each source has its own activation and
deactivation times. These properties are inferred along with the source locations and
emission rates are using efficient MCMC inference. In both cases the dispersion model
is solution to the adjoint ADE equation. Keats et al. additionally accounts for “highly
disturbed” flow fields, such as those seen in an urban environment.

In certain applications with time-varying emissions it is not sufficient to know just
the times when the emissions begin and end. Instead, it may be crucial to know how
the source is emitting over time. Hazart et al. [16] applies MCMC methods to estimate
the location, emission rate, and emission profile of a single source. The paper considers
seven different emission profiles, including a Dirac delta, a step function, a window
function, and a Gaussian signal shape. A variation on the Gaussian plume model is
derived and several different prior parametrizations are considered. Hazart et al. also
examines conditions under which some temporal release profiles closely approximate
others.

MCMC methods for an unknown number of emitters

When we don’t know the number of emitters, the standard MCMC approach breaks
down. We cannot simply append the number of sources to our parameter vector θ, since
now the dimensionality of θ, or the number of parameters we are estimating, changes
with the number of sources. Two methods currently exist for handling this: run MCMC
with a very large number of sources and then select a small subset at the very end, or
use a variation of MCMC that adaptively estimates the number of sources along with
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all of the parameters.
Following the first approach, Huang et al. [18] infers the location, emission rate, and

activation time for a number of sources using MCMC sampling. During the sampling
procedure the number of sources is assumed known. Following sampling the deviance
information criterion (DIC) is applied to select the number of sources. An alternative
approach by Wade and Senocak [33] extends the model developed in [30] by assum-
ing multiple sources. Here, Wade and Senocak use a composite ranking approach to
estimate the number of sources by combining multiple score functions.

An alternative approach embeds estimation of the number of sources into the MCMC
sampling procedure. Reversible-jump MCMC (RJ-MCMC) adds the number of sources
to the parameter vector and augments the sampling procedure with a trans-dimensional
proposal step to allow sampling models of different orders [13]. It was originally used for
the event reconstruction problem by Yee [35] which extends [34] to estimate the number
of sources. Here the trans-dimensional proposal step is uniformly selected from a source
creation proposal or a source annihilation proposal. Yee et al. compares RJ-MCMC to
importance sampling with progressive correction is given in [36].

Hirst et al. [17] also infers an unknown number of sources in the case of time-
invariant emissions. Unlike the previously-described applications with static sensors,
Hirst et al. collect data from an aircraft; consequently they only observe the concen-
tration at one instant of time per location, instead of how the concentration at that
location changes with time. To compensate they impose additional structure on the
ambient background concentrations that are also part of the measurement. RJ-MCMC
is implemented using the two trans-dimensional proposals from [35] along with source
splitting and merging proposals. Reasonable results are obtained for both real and
synthetic data.

Other forward-modeling methods

Genetic algorithms (GA) have also been used to solve the inverse problem in various
forms. GAs maintain populations of candidate source configurations that change over
time. Traditionally the populations change by the standard genetic operators of mu-
tation and crossover from Darwinian evolutionary theory and the suitability or fitness
of a candidate configuration is given by some score function. Allen et al. [1] first pro-
posed using GAs to solve the optimization problem associated with source estimation.
Haupt et al. [15] applied a continuous parameter GA to obtain an estimate of the source
location, emission rate, and wind direction using a Gaussian plume model for forward
modeling. This was extended by Long et al. [22] to estimate the source location,
height, strength, and release time based on the observed concentration measurements.
Another related method, called evolutionary strategies (ES), has recently gained pop-
ularity. Cervone et al. [5] develops an algorithm called Adaptive ES (AES) in the
context of source estimation. In AES the genetic operators of mutation and crossover
have been dispatched in favor of an optimization procedure with random perturbations.
This approach is used to identify the location, size, and emission rate of a single source
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over multiple iterations, where dispersion is accomplished through a single-reflection
Gaussian plume model.

Another forward-modeling method is a variant of the Expectation-Maximization
(EM) algorithm, applied to the inverse problem by Khemka et al. [21]. Here it is
assumed that a known number of sources is distributed over an survey area as a 2D
homogeneous Poisson process. Noisy measurements are taken at ground level by sen-
sors that only activate at a certain threshold. The applied Gaussian plume equation
is obtained as a solution to the ADE for ground-level observations. They formulate
the probability distribution of source locations over a grid where each cell may be a
source with some emission rate and obtain the MAP estimate using the Generalized
EM algorithm.

� 2.3.2 Methods based on backward simulation models

Backwards algorithms simulate transport and dispersion in the reverse direction. Back-
wards modeling methods often only use one run in the reverse direction from the re-
ceptors to find the unknown upwind source(s), hence they are computationally more
efficient and are often preferred when there are more sources than receptors or when
the number of receptors is limited and the number of sources is unknown. These meth-
ods include Kalman filtering, adjoint and tangent linear models, and variational data
assimilation. Rao [26] provides further details and references for each of these methods.
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Chapter 3

Model Description

In this chapter we present a mathematical model for the source estimation problem. It
is designed to make inference tractable for remotely-obtained measurements, but is also
flexible enough to fit any data acquisition process where measurements have a known
time and location. First we develop the observation model, and then we examine the
background model. We then examine the generative graphical model corresponding to
this problem. The model largely follows that of Hirst et al. [17].

Consider a collection of m ground-level emission sources (where m is unknown) that
emit some material at a constant rate. These emissions are then subject to atmospheric
transport and diffusion due to wind and turbulence. Our goal is to use some noisy
concentration measurements in order to infer the number, location, and emission rate
of the sources. For our purposes, we will assume that concentration measurements are
collected by an aircraft which introduces constraints on how the measurements can
be collected. Furthermore, it is generally the case that ambient background sources
introduce significant interference into the measurement process. Finally, uncertainty in
the wind direction and variability further complicates both modeling and inference.

The problem and approach specified here differ from much of the literature on source
estimation and event reconstruction. We recognize that we are modeling a source es-
timation problem and not the more general event reconstruction problem. This is due
to an assumption that the sources are emitting at a constant rate, hence we are not
concerned with the activation and deactivation times inferred for event reconstruction
problems. Another significant difference between this approach and much of the liter-
ature pertains to the types of measurements we consider. In most approaches, static
sensors are placed in set locations and take many measurements in time at their cor-
responding locations. This is possible when we have a small survey area in which we
“look” for sources; in our cases the survey area is usually very large, e.g. 40 km by
40 km. To survey this large area we collect measurements remotely via aircraft. In
contrast with the case of static sensors, our mobile sensor platform takes only a sin-
gle measurement at many locations through time and space. Since we only obtain
one measurement per location, we need to impose some additional structure on the
latent, or background, concentration levels to help our inference procedure differentiate
background concentrations from concentrations due to the sources.

We describe the emissions from our m sources as having a spatial distribution given

37
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by the two-dimensional Gaussian with mean locations x = {xj}mj=1 and isotropic co-

variance matrices w2
j · I2×2, where Id×d is the d × d identity matrix. Lt w = {wj}mj=1

denote the widths of the sources and s = {sj}mj=1 denote the source emission rates (i.e.

strengths), which are modeled as constant over time and are in units of m3/s.
By conceptualizing the emissions as particles, we can make an immediate physical

interpretation of this model. Consider the release of discrete particles of volume δv by
the j-th emission source. Every second the source releases Np = sj/δv particles and
the exact release location for each particle is drawn from a 2D Gaussian distribution
N (xj , w

2
j I2×2). This intuition generalizes to the continuous-emission case by letting

δv → 0, hence Np →∞.
Observations are made remotely from an aircraft flying a known trajectory and

carrying a sensor with a known sampling rate fs. This produces n scalar concen-
tration measurements z = {zi}ni=1 at measurement locations y = {yi}

n
i=1 and times

t = {ti}ni=1, also known. These n measurements contain contributions from the sources
defined above, plus the background contribution and measurement noise. The vector
of background contributions is b = {bi}ni=1, where bi is the ambient concentration at
measurement location yi and time ti. We model measurement noise as the uncorrelated
white Gaussian noise vector ε = {εi}ni=1 where εi ∼ N (0, σ2

ε). In general, the source
contributions are within an order of magnitude of 10−8; the measurement noise is on
the order of 10−9, however, the background contributions are on the order of 10−6. As
such, an accurate background model is essential for reliable estimation of source pa-
rameters. We note that this particular formulation can be easily applied to non-remote
settings where the sensors are stationary and take many measurements through time
by appropriately defining the measurement time and location vectors, t and y.

Our analysis uses wind and turbulence data defined at each measurement time and
location; we denote the set asW = {{ui}ni=1, γH, γV}. These parameters are used by the
dispersion model and as a part of the background model, which we will describe later
this chapter. We have a two-dimensional wind vector ui defined at each measurement
location, in addition to the wind direction standard deviation γH, also known as the
horizontal plume opening angle, and the vertical wind direction standard deviation γV,
or the vertical plume opening angle. We stress that although our model is in 3D, the
wind model is currently limited to 2D. When working with real data the wind field
measurements W are provided by the U.K. Meteorological Organization (UKMO) and
are treated as parameters; otherwise we generate a synthetic wind field.

� 3.1 Observation model

At each measurement location we make noisy observations according to

zi =

m∑
j=1

aijsj + bi + εi (3.1)
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where bi is the background contribution and measurement error is εi ∼ N (0, σ2
ε), as

mentioned above. The value aij is called the “coupling strength” between measurement
location i with each source j. This strength is given by aij = a(yi,xj , wj ;W), where a(·)
is the “coupling function” that gives the expected concentration measured at location
yi from a source with unit emission rate, location xj , and width wj subject to wind
field W. For conciseness, W is often omitted. We will often write Equation 3.1 in the
equivalent matrix form

z = As+ b+ ε (3.2)

where A = {aij}n,mi=1,j=1 is referred to as the “coupling matrix”.

� 3.1.1 Application of the Gaussian plume dispersion model

For simplicity we use the Gaussian plume model from Section 2.1.1 to model atmo-
spheric dispersion. This provides a closed-form expression for the expected concentra-
tion measured at location yi due to the source with a unit emission rate located at xj
with width wj . Transport is assumed to follow the wind vector at measurement loca-
tion i, ui =

(
ui1 ui2

)
, which has wind speed |ui| and direction θui . Additional wind

parameters are contained in W.
In our original development of the Gaussian plume equation our coordinate axes

were determined by the wind: we had the downwind distance x, the cross-wind distance
y, and the vertical distance z. In order to compute these wind-aligned quantities for
the distance between source xj and measurement yi we must rotate the difference into
coordinate axes defined by the wind ui:δR

δH

δV

 =

 cos(θui) sin(θui) 0
− sin(θui) cos(θui) 0

0 0 1

yi − xj
 (3.3)

where to avoid confusion we have renamed the downwind distance δR, the cross-wind
distance δH, and vertical distance to δV. As an approximation we model the wind
direction as constant between each measurement location and all source locations.

Recall that the original plume equation involved a point source, i.e. a source
for which wj = 0. The expected concentration profile in the cross-wind direction is
Gaussian-distributed about the emission location with some variance σ2

H that is a func-
tion of the downwind distance δR. In our case we do not know the emission location
exactly; instead the emission location is modeled as a Gaussian random variable with
mean xj and variance w2

j I2×2. As such, the expected concentration in the cross-wind
direction is the sum of two independent normally-distributed random variables, for
which the means and the variances add. Note that this only applies in the cross-wind
direction, as the Gaussian plume model assumes negligible diffusion in the downwind
direction. With regard to the dispersion parameters, or the standard deviations σH and
σV of the horizontal and vertical concentration distributions, we have

σ2
H = δ2

Rσ
2
θ + w2

j and σ2
V = δ2

Rσ
2
φ, (3.4)
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where the wind direction and elevation angle standard deviations σθ = tan(γH) and
σφ = tan(γV) are written in terms of the horizontal and vertical plume opening angles
γH and γV. This also corresponds to Equations 2.13 and 2.14, where the terms for
the nondimensional functions fy(·) and fz(·) have been dropped. As mentioned before,
these factors play little role for downwind distances less than 10 km. Although we are
generally interested in areas of up to 50 km by 50 km in size, we make multiple passes
through the survey area; thus, we almost always have at least one observation within 10
km of any given source and this should not degrade performance. Further, [17] showed
that including these factors in the forward model made a negligible difference for an
inference procedure and application very similar to ours.

After decomposing the distance into its axis-aligned components, we can now com-
pute the expected concentration at some measurement distance δ = (δR, δH , δV ) away
from a source with width wj and unit emission rate:

a(δ, wj ;W) =
1

2π|ui|σHσV
exp

{
−
δ2

H

2σ2
H

}
×

Nrfl∑
j=−Nrfl

exp

{
−(δV − (H + 2jD))2

2σ2
V

}
+ exp

{
−(δV + (H + 2jD))2

2σ2
V

}
, (3.5)

As before, H represents the source height above ground level and the ABL begins at
height D above ground level. For our application we can assume H = 0; different
values can easily be incorporated into the model. Further, for our purposes Nrfl = 2 is
sufficient. [17] discusses sensitivity of this choice.

We note that the coupling strength given by this model is an ensemble average, or
the average contribution over many different realizations of the turbulence and flow of
the wind field. Since it is efficiently computable in closed-form it is especially well-
suited for sampling-based inference methods that may need to compute the coupling
matrix A tens of thousands of times. Additionally, the form of this coupling equation
is reminiscent of the Gaussian distribution: the horizontal and vertical strengths fH

and fV are akin to the exponential terms in a multivariate Gaussian distribution; the
horizontal and vertical plume standard deviations σH and σV correspond to the standard
deviations of a Gaussian that factors completely.

� 3.2 Background model

The background contributions bi represent the ambient, or background, concentration
that is captured in measurement i. They are constrained to be positive and both spa-
tially and temporally smooth. Gaussian Markov random fields (GMRFs) are commonly
used to model spatio-temporally smooth fields. Before collecting measurements, we
cannot know the exact values of background measured at each measurement location;
however, we can characterize the relationships between the background contributions at
each point. A certain type of GMRF, a first-order intrinsic GMRF, is commonly used



Sec. 3.2. Background model 41

as a prior distribution when we lack strong prior information about the actual value.
A detailed treatment of these models is provided in [28].

� 3.2.1 Intrinsic Gaussian Markov random fields

Gaussian MRFs model a set of jointly Gaussian random variables. This model is often
applied to random variables that are related through some spatio-temporal process. In
our case these random variables are the background contributions bi measured at each
point; we use this model to encode spatio-temporal smoothness of the background.
Formally, we consider an undirected graph G = (V, E), where each the background
contribution from each measurement is represented by a node in the graph’s vertex
set V. The edge set E exactly defines the structure of a precision matrix J, which
specifies the dependencies between background contributions. Although in truth each
background values may be dependent on many neighboring background values, here we
restrict the number of dependencies to ensure a sparse J, which in turn allows efficient
inference. Since the background contributions are Gaussian distributed about some
mean b0 we can write the general form

b ∼ N
(
b; b0, (µJ)−1

)
(3.6)

where µ is a parameter that tunes how heavily we weight the smoothness of the back-
ground relative to the noise in the data. In our model we set the µ = 1.

In the absence of strong prior information about the background mean, we can write
this as an intrinsic GMRF of the first order. This implies that the precision matrix J
has rank n − 1, or exactly one zero eigenvalue, and that J1 = 0. We can equivalently
write this condition as

n∑
j=1

Jij = 0 for all i. (3.7)

Importantly, note that in an intrinsic GMRF the parameters b0 and J do not represent
the mean and precision, which formally no longer exist (although we will continue to
refer to them as such). As discussed in [28] the Markov properties of an IGMRF should
be interpreted as those obtained from the limit of a proper density.

We now elucidate why these models are commonly used in absence of prior infor-
mation about the mean of the distribution. The density of an intrinsic GMRF of the
first order with mean b0 and precision J ∈ Rn×n of rank n− 1 is defined as

p(b) = (2π)−
n−1

2 (|J|∗)1/2 exp

(
−1

2
(b− b0)>J(b− b0)

)
(3.8)

where |·|∗ denotes the generalized determinant. Recall that the generalized determinant
of a matrix A ∈ Rn×n of rank n− k > 0 is denoted |A|∗ and is the product of the n− k
non-zero eigenvalues of A. We note that the mean appears only in the term inside the
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exponent. If b0 = 1c for some constant c, this simplifies to

(b− b0)>J(b− b0) = b>Jb− b>0 Jb− b>Jb0 + b>0 Jb0

= b>Jb− 0>b− b>0 + b>0 0

= b>Jb

where Jb0 = J1c = 0c = 0 by the condition J1 = 0. The effect of this particular
precision structure is that the distribution of b is translation invariant; the precision
matrix only constrains the relationships between the different elements of the vector b.
This leads to the common use of intrinsic GMRFs in applications where the mean of
the distribution is unknown a priori.

In addition to being translation invariant, this model also allows us to encode ex-
actly the spatio-temporal smoothness constraint we wish to place on the background
contributions, distributed by

b ∼ N
(
b; 0,J−1

)
(3.9)

where the mean b0 = 0 without loss of generality. We now discuss how this smoothness
constraint is encoded through the precision matrix.

� 3.2.2 Defining the background precision matrix

In reality, the background concentration at every node is dependent with the background
concentration at every other node; fully modeling this would result in a matrix that was
dense and the corresponding inference algorithms would not be efficient. Instead, we
approximate the dense precision matrix by a sparse matrix that only includes a small
number of significant edges per node.

The precision matrix J is completely specified by the edges in E combined with the
wind field W and the measurement locations y and times t. As with all MRFs, the
edges in E correspond to nonzero elements of the precision matrix J. For two random
variables bi and bj , i 6= j,

{i, j} ∈ E ⇔ αij = Jij = Jji 6= 0 (3.10)

by the global Markov property. The edge strength αij is based on how correlated the
edges are—more correlated elements have higher values of αij . To impose the sum-
to-one constraint that results in the precision matrix having rank n − 1, the diagonal
elements are set as

Jii = −
∑
j:j∼i

Jij ∀i ∈ V, (3.11)

where {j : j ∼ i} is the set of nodes j which share an edge with node i. Hence, each
row sums to 0.

The correlation is approximated using heuristic expectations for how the background
concentration varies in space and time. We define the constant cT = 3× 10−15, which
is the expected change in concentration per unit time at a single measurement location,
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and cD = 10−12, the expected change in concentration per unit distance for simulta-
neous measurements. For two background contributions bi and bj , the edge strength
between them is defined as

αij =
1

(cT|∆T |+ cD∆D)2 (3.12)

where ∆T and ∆D are the distance in time and space, respectively. The difference in
time is simply ∆T = tj − ti, where ti and tj are the times when the measurements were
collected. In order to properly define the distance ∆D, we must consider the physical
processes through which background contributions are smooth across space and time.

Physically, similarity between background measurements arises in two ways. We
encapsulate these two ways by defining the full edge set E = Es ∪Et as the union of two
edge sets, each of which captures one of the mechanisms through which background
contributions can be correlated. The spatial distance between the two measurements,
∆D, is computed differently depending on which edge set {i, j} comes from.

Sequential measurement links

The first way in which highly-correlated background contributions will arise is if the
measurements are taken sequentially. Such measurements are both temporally and
spatially very close. We capture this effect through the set of edges between sequential
measurements, called Es.

Es =

n−1⋃
i=1

{i, i+ 1}. (3.13)

In this case, the distance used in computing the edge strength is simply given by
∆D = ‖yj − yi‖2, the Euclidean distance between the two measurement locations.

Wind-based measurement links

The second way in which background measurements can be similar stems from trans-
port by the wind field W. The background concentration present at one measurement
location can be transported downwind by the wind field to reappear at some subse-
quent measurement location. Due to diffusion, some background component may be a
mixture of the background components from multiple upwind measurement locations.
The set of edges between measurements due to wind transport is called Et. To keep |Et|
small, we only impose one transport-based edge per measurement:

Et =

n−1⋃
i=1

{i, j∗} (3.14)

where j∗ is the measurement that maximizes the edge strength between nodes i and j
subject to j being a distance of at least τ away from node i. This is meant to model the
strongest correlated measurement directly upwind or downwind of the measurement i.
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We have two cases to consider when computing the distance ∆D between some node i
and a candidate node j, although the equations used are exactly the same: (1) ti < tj
and (2) ti > tj .

The first case corresponds to ti < tj . In this case, we consider the future location of
a packet of air at location yi at time ti. The air packet would be acted on by the wind
vector ui for a time of ∆T = tj − ti > 0 seconds, giving the packet a location at future
time tj of

ỹi = yi + ui∆T. (3.15)

We then compute the distance as

∆D = ‖yj − ỹi‖2. (3.16)

The second case corresponds to ti > tj . In this case, we consider the previous location
of a packet of air at location yi at time ti, again transported by the wind vector ui
for ∆T = tj − ti < 0. This gives the packet a location at previous time tj of ỹi by
Equation 3.15 since ∆T < 0. Again the distance is computed via Equation 3.16. It
doesn’t matter whether the packet is blown upwind or downwind, since emissions are
considered to be at steady state and the background will be spatio-temporally smooth.
The node j∗ is chosen according to

j∗ = arg max
j∈V\ne(i)

(αij) (3.17)

which maximizes the link strength αij . The set V \ ne(i) restricts us to nodes suffi-
ciently far away from node i so that we are capturing the correct effect. Often this will
correspond to selecting nodes at least τ meters upwind or downwind from i. Several
other methods exist for choosing j∗, including that of [17].

Figure 3.1 shows an example of the structure of J plotted over a sample flight
trajectory. The trajectory is plotted; it is easily recognizable by the dark blue lines
indicating strong correlation between successive measurements, i.e. from the edge set
Es. The lighter, or weaker, edges shown come from the transport-based edge set, Et.

Several different interpretations exist for the background concentrations. One such
interpretation is that they are well-mixed contributions due to sources far removed from
the survey area. We note that the links imposed by the background are not exact. For
any given node i, it is assumed that the wind field ui holds over the entire survey
area. This is obviously not true for non-constant wind fields. More complex wind
models would allow us to pair nodes more accurately relative to the actual correlation
of concentration measurements.

� 3.3 Probabilistic model

Until now we have refrained from applying probability distributions to many of the
quantities involved in the source estimation model. We now describe the generative
model, which details the prior and conditional distributions over all of the random
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Figure 3.1: Wind links for a sample aircraft trajectory. The wind field is uniformly
pointed north-east (top-right). Lighter edges correspond to weaker correlations between
measurements.
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Figure 3.2: A graphical representation of the source estimation model. Shaded nodes
correspond to observed random variables.

variables previously mentioned. This generative model corresponds to the graphical
model in Figure 3.2.

First, note that we are omitting many parameters that are z depends on, including
measurement times t and wind parameters W, the wind field and the horizontal and
vertical opening angles at each measurement location. In reality the measurement
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locations are accurate up to several cm and the relative times between different elements
of t are accurate to a very small fraction of a second, so we can model each of these
as parameter values that are known exactly. The plate notation indicates that there
are multiple independent sets of the variables positioned on the plate, e.g. there are m
different x, w, and s values [3].

The number of sources is selected from a uniform prior,

p(m) = U(m; [0,mmax]), (3.18)

indicating no real prior information over the number of sources. Our model for source
distribution could be converted to a Poisson point process by simply modeling the
number of sources as a Poisson distribution with some rate parameter λ, which is the
average number of sources per unit area.

For the remainder of this section we assume that the number of sources m is fixed.
Developments in Chapter 4 will introduce the modeling assumptions used in Reversible-
jump MCMC, in which the model order m is treated as a parameter to be estimated.
That section will explicitly use the distribution p(m) over the number of sources.

� 3.3.1 Prior information of the target parameters

Each source j has a location xj , width wj , and emission rate sj . The sources are
uniformly distributed within the survey area Ix according to

p(xj) = U(xj ; C?(Ix,y,W)) and p(x |m) =

m∏
j=1

p(xj) (3.19)

where C?(Ix,y,W) pertains to the region of Ix where sources are actually observable,
i.e.

C?(Ix,y,W) =

{
xj : xj ∈ Ix ∧max

i
a(yi,xj , wj ;W) ≥ τ

}
, (3.20)

and the minimum observable source contribution is τ = 3 × 10−10. This allows us to
restrict our estimated sources to the region where we would actually be able to observe
concentrations from those sources. In the absence of such a condition there is no
probabilistic penalty for producing a source that is neither supported nor contradicted
by the observed measurements. The source widths and emission rates are constrained
loosely by uniform priors. The prior distribution on the source widths is

p(wj) = U(wj ; [wmin, wmax]) and p(w |m) =

m∏
j=1

p(wj) (3.21)

where usually wmin = 0 and wmax can range from 50 m to 100 m. Similarly we assume
that source emission rates are distributed as

p(sj) = U(sj ; [smin, smax]) and p(s |m) =
m∏
j=1

p(sj) (3.22)
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where smin = 0 and smax = 1 m3/s. We can write the full prior for the source parameters
as

p(x, s,w |m) =

m∏
j=1

p(xj)p(sj)p(wj). (3.23)

The density of the background given by Equation 3.9 gives the prior distribution

p(b) = (2π)−
n−1

2 (|J|∗)1/2 exp

(
−1

2
b>Jb

)
(3.24)

where |·|∗ is the generalized determinant. A procedure for sampling from an intrinsic
GMRF is given in [28].

From Equation 3.2 we recall that our measurements are observations of the quantity
As+ b, where the noise is independently Gaussian with variance σ2

ε . This corresponds
to the likelihood distribution

p(z |x,w, s, b, σε) = N
(
z; As+ b, Iσ2

ε

)
. (3.25)

For the sake of brevity we will sometimes group the parameters into two sets: the
true parameters θ = {x, s,w, b}, which we infer, and the auxiliary parameters φ =
{σε, θd, αH, αV}.

We can hence write the posterior distribution as a function of the likelihood and
the prior distributions by Bayes’ rule:

p(θ,φ | z) =
p(z |θ,φ)p(θ,φ)∫∫

p(z |θ,φ)p(θ,φ) dφdθ
∝ p(z |θ,φ)p(θ,φ). (3.26)

We can expand this notation to include the distributions described in the generative
model

p(x,w, s, b,φ | z) ∝ p(z |x,w, s, b,φ)p(x)p(w)p(s)p(b)p(φ). (3.27)

� 3.3.2 Modeling the auxiliary parameters

Auxiliary parameters include the measurement error standard deviation σε, a constant
additive wind direction bias θd and αH and αV. Although some of these quantities were
omitted from the original development of the model for brevity, we now describe them
here. For all of these parameters there was originally no prior distribution assumed
for them. We can, however, estimate them using the stochastic inference procedure
outlined in the following chapter. In many cases this allows us to better fit the data
compared to other methods that do not estimate these as parameters.

The measurement error standard deviation is currently uniformly distributed by

p(σε) = U(σε; [0, εmax]) (3.28)

where εmax = 1× 10−6. Usually σε = 1× 10−9, as dictated by the sensor specifications.
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We also stochastically estimate three parameters related to the wind measurements.
The first is an constant additive bias in our measurements of the wind direction; the
second and third are multipliers that act as coefficients of the horizontal and vertical
plume standard deviations σH and σV . As originally described, we receive wind mea-
surements ui corresponding the wind at each measurement location. The measured
wind vector ui could be derived from the true wind state u′i by

|ui| = |u′i| and θui = θu′i + θd. (3.29)

The default value for the measurement error bias is θd = 0. The dispersion parameter
multipliers modify the horizontal and vertical dispersion parameters from the “true”
values σ′H and σ′V as

σH = αHσ
′
H and σV = αVσ

′
V (3.30)

where the αH and αV are the horizontal and vertical plume dispersion multipliers,
respectively. The default value is 1. All three of these auxiliary parameters have
uniform prior distributions so that the inference procedure will select whichever best
matches the data. Such stochastic approaches were used successfully in both [17] and
[30].



Chapter 4

Inference Procedure

Inference involves reasoning about the posterior distribution p(θ|z). In some limited
cases, closed-form analysis is possible. However, for more complex models such as
ours, one must resort to alternative methods. Here, we consider Markov chain Monte
Carlo (MCMC) methods for inference. Such methods rely on drawing samples from
the posterior that, when regarded as a set, exactly describe the distribution. MCMC
methods generally require some start-up period, called “burn-in,” during which they
are converging to the true distribution.

In the case of our source estimation model, inference is non-trivial. First, we do not
know the number of sources a priori. This requires us to use more complex methods
to truly sample from the posterior. Another aspect of the source estimation problem
that makes inference challenging is that there is some ambiguity inherent in the model.
For instance, a source emitting at a low rate could produce measurement contributions
arbitrarily close to a source further away but emitting at a higher rate. Similar ambi-
guity pertains to the width parameter. Generally, such choices are made by the prior,
but our prior distributions are simply uniform over the range of valid parameter val-
ues. Additionally, we are using a dispersion model that provides an ensemble average.
The measurements that are realized in practice will be highly correlated, whereas the
Gaussian plume model assumes independent realizations in the forward predictions.

� 4.1 Initialization by optimization

The initial starting point for the sampling algorithm is obtained by an optimization
procedure over a reduced set of the variables. By using an optimization method to
obtain an initial solution we dramatically reduce the length of time required for our
MCMC procedure to converge to the stationary distribution. We impose an M × N
grid over the full survey area. At the center of each grid cell we assume a point source,
i.e. we have m̃ = MN sources with defined locations x and assign every source an
initial width winit. We also take as input the set of measurements z, measurement
locations y, and auxiliary parameters φ. In our experiments, M = N = 100 and we
initialize all sources to have a width of 20 meters. We set the grid dimensions so that it
roughly corresponds to the maximum expected density of sources, which increases the
likelihood that we can differentiate sources that are close together even at this early

49
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stage.
The objective of this optimization procedure is to find the configuration θ that

maximizes the posterior distribution. Since optimizing over all the parameters is non-
trivial and time-consuming, we instead optimize over a reduced parameter set containing
the background b and the source emission rates s, and condition on the observations z
and the fixed parameters x, w, and φ:

max
s,b

p(s, b | z;x,w,φ)

s.t. 0 ≤ sj ≤ smax, j = 1, . . . ,m

0 ≤ bi, i = 1, . . . , n

(4.1)

where the constraints will be denoted by (F). The above formulation is equivalent to

max
s,b

p(z | b, s;x,w,φ)p(b)p(s)

s.t. (F),
(4.2)

where we refer to data likelihood distribution from Equation 3.25

p(z | s, b;x,w,φ) ∝ exp

(
− 1

2σ2
ε

‖As+ b− z‖22
)

(4.3)

where z is n × 1, s is m̃ × 1, and A is n × m̃. We also have the background prior
distribution from Equation 3.24

p(b) ∝ exp

(
−1

2
b>Jb

)
. (4.4)

Following [17], we assume a sparse Laplace prior on the source emission rates only
during the optimization phase:

p(s) ∝ exp(−λ‖Qs‖1) (4.5)

where we set Q = I.
Since logarithms are strictly increasing we can rewrite Problem 4.2 as

min
s,b

− log p(z | b, s;x,w,φ)− log p(b)− log p(s)

s.t. (F)
(4.6)

where we have also converted the maximization to a minimization by negating the
objective function. Plugging in Equations 4.3-4.5 and the constraints (F) we get

min
s,b

Z(s, b) =
1

2σ2
ε

‖As+ b− z‖22 +
1

2
b>Jb+ λ

∑
i

si

s.t. 0 ≤ sj ≤ smax, j = 1, . . . ,m

0 ≤ bi, i = 1, . . . , n.

(4.7)
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where we have used the nonnegativity constraint on s to rewrite the L1-norm as a sum:

λ‖Qs‖1 = λ
∑
i

si.

Note that our objective function Z(s, b) is a convex function. It is obvious that the
likelihood term and the emission rate term are both convex functions. Since J is PSD
by construction we know that b>Jb, hence Z(s, b) is the sum of three convex functions
and is also convex. For minimization of a convex function, local optima are the global
optima, so any optimization routine that converges is guaranteed to converge to the
global optimum.

We first solve for the optimal background b, then for the optimal emission rates s,
and repeat until convergence. This is known as optimizing by alternation, a procedure
which is guaranteed to converge to a local optima. Further, since we are minimizing
a convex Z(s, b), this local minimum is also the global minimum. Importantly, we do
have several constraints on the values that s and b can take. These constraints define a
feasible solution set. Since our objective function is convex, there are only two possible
outcomes for our inference procedure: (1) the solution is unique and fully within the
feasible set, or (2) the solution is on the boundary of the feasible set and may not be
unique.

We begin by setting s = 0 for the sources defined at the center of each grid cell. The
optimization steps outlined above are repeatedly applied until we converge to a solution
is reached or we exceed some maximum number of iterations. The optimization proce-
dure moves towards convergence, at each iteration attributing a greater concentration
to the sources and less to the ambient background. We then initialize by sampling
without replacement minit sources, or grid cells, from the optimization solution. Each
cell has normalized weight

s̃j =
sj1(xj ∈ C∗)∑m̃
i=1 si1(xi ∈ C∗)

(4.8)

where 1(xj ∈ C∗) ensures that source j is inside the set of observable locations given
the measurement locations y and the wind direction u.

We now describe the two optimization steps in more detail.

� 4.1.1 Optimizing over the background

When solving for the optimal background we are attempting to solve the following
restricted version of Equation 4.7:

min
b

Z(b) =
1

2σ2
ε

‖As+ b− z‖22 +
1

2
b>Jb

s.t. bi ≥ 0, i = 1, . . . , n

(4.9)

First, assume that the constraints b ≥ 0 will be implicitly satisfied by any critical
point of our objective function Z(b). We will argue this momentarily. Since Z(b) is the
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sum of two squared forms we can find its critical point by writing it as a single squared
form:

Z(b) =
1

2σ2
ε

‖As+ b− z‖22 +
1

2
b>Jb

=
1

2σ2
ε

(b− (z −As))>(b− (z −As)) +
1

2
b>Jb

=
1

2
(b−m)>R(b−m) + C

where

R = Iσ−2
ε + J

m = R−1σ−2
ε (z −As)

=
(
Iσ−2
ε + J

)−1
σ−2
ε (z −As)

C =
1

2σ2
ε

(z −As)>(z −As)− 1

2
m>Jcm

=
1

2σ2
ε

(z −As)>(z −As)− 1

2σ4
ε

(z −As)>
(
Iσ−2
ε + J

)−1
(z −As).

We know that R is guaranteed to be positive definite (PD) since J is PSD but we add
σ−2
ε to the diagonal elements making it PD. It follows that

(b−m)>R(b−m) ≥ 0 (4.10)

for all b. Hence, the value of b that minimizes the quadratic term Z(b) is

b∗ = m =
(
Iσ−2
ε + J

)−1
σ−2
ε (z −As) (4.11)

For this to be the optimal solution to the above problem the constraints b∗ ≥ 0
must be satisfied. From above we know that R = Iσ−2

ε + J is PD, so we know that

R−1 =
(
Iσ−2
ε + J

)−1
is also PD. Therefore, b∗ ≥ 0 if z −As ≥ 0. We now show that

this is true based on the orders of magnitude of the terms involved. We recall that the
measurements are modeled as

zi = a>i s+ bi + εi (4.12)

where a>i s ≈ 10−8, bi ≈ 10−6, and εi ≈ 10−9. These are the magnitudes commonly
observed for these various quantities in practice. Hence, zi is also on the order of 10−6

and is at least one order of magnitude greater than the source contribution a>i s. Thus,
we know that z−As ≥ 0 and that the b∗ given in Equation 4.11 satisfies the constraints
b ≥ 0. Therefore, b∗ is the optimal solution.
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We note that although the matrix R is large (i.e. 1000×1000), it is also independent
of b and s so it only needs to be inverted once. This allows for very rapid optimization
of the background b.

An alternative approach to optimizing over the background parameters is to mini-
mize a quadratic form of the objective function for each individual component bi. This
allows us to explicitly verify that the background constraints are satisfied but it is much
slower to converge.

� 4.1.2 Optimizing over the source emission rates

The process of solving for s entails solving the following

min
s

Z(s) =
1

2σ2
ε

‖As+ b− z‖22 + λ
∑
i

si

s.t. 0 ≤ sj ≤ smax, j = 1, . . . ,m

(4.13)

which is a quadratic function of s. When optimizing Z(b) we recognized that the
constraints would almost never be active based on the initialization. This allowed us to
treat the problem as the unconstrained minimization of a convex function, and since we
could write the objective function as a quadratic equation we could obtain its critical
point in closed-form. Although we have a similar structure here and we can indeed
write Z(s) as a quadratic equation with a closed-form critical point, the constraints
will not be implicitly satisfied as before. We thus apply optimization by alternation
over the sources j to obtain the optimal s.

Since Z(s) has a quadratic form, Z(sj ; s−j) also has a quadratic form so we can
solve for the critical point in closed form and manually enforce the constraints. For
convenience of notation we will write A =

[
Aj A−j

]
where Aj is the j-th column of

A and A−j are all except the j-th column of A. Similarly we define s =
[
sj s>−j

]>
where s−j contains all except the j-th element of s.

The objective Z(sj ; s−j) has a critical point at the value

s∗j =
−b
2a

(4.14)

where

a =
1

2σ2
ε

(
A>j Aj

)
and b =

1

σ2
ε

(A−js−j + b− z)>Aj + λ.

This critical point is the solution to the unconstrained minimization of the objective
function. In the constrained problem the minimum may either be at this critical point
or a point on the boundary. Since Z(sj ; s−j) is a univariate function we can easily check
the three possibilities for the constrained minimization solution s′j :

s′j =


0 s∗j ≤ 0

s∗j 0 ≤ s∗j ≤ smax

smax s∗j ≥ smax.

(4.15)
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Derivation of the critical point

We now derive the expression for the critical point obtained for each source j. To begin
we expand the objective function

Z(sj ; s−j) =
1

2σ2
ε

‖As+ b− z‖22 + λ
∑
i

si

=
1

2σ2
ε

(As+ b− z)>(As+ b− z) + λ
∑
i

si

=
1

2σ2
ε

(s>A>As+ 2(b− z)>As+ (b− z)>(b− z)) + λ
∑
i

si.

We now write some of the terms in the above quadratic form as functions of sj :

As = Ajsj + A−js−j

s>A>As = A>j Ajs
2
j + 2s>−jA

>
−jAjsj + s>−jA

>
−jA−js−j

λ
∑
i

si = λsj + λ
∑
k=−j

sk.

Plugging these into Z(s) and grouping terms by dependence on sj yields

Z(sj ; s−j) =
1

2σ2
ε

(
s>A>As+ 2(b− z)>As+ (b− z)>(b− z)

)
+ λ

∑
i

si

=
1

2σ2
ε

(
A>j Ajs

2
j + 2s>−jA

>
−jAjsj + s>−jA

>
−jA−js−j

+2(b− z)>(Ajsj + A−js−j) + (b− z)>(b− z)
)

+ λsj + λ
∑
k=−j

sk

=
1

2σ2
ε

(
A>j Ajs

2
j + 2s>−jA

>
−jAjsj + 2(b− z)>Ajsj + s>−jA

>
−jA−js−j

+2(b− z)>A−js−j + (b− z)>(b− z)
)

+ λsj + λ
∑
k=−j

sk.

The last equation is easily rewritten as the quadratic equation

Z(sj ; s−j) = as2
j + bsj + c (4.16)
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where we have coefficients

a =
1

2σ2
ε

(
A>j Aj

)
(4.17)

b =
1

2σ2
ε

(
2s>−jA

>
−jAj + 2(b− z)>Aj

)
+ λ (4.18)

=
1

σ2
ε

(A−js−j + b− z)>Aj + λ (4.19)

c =
1

2σ2
ε

(
s>−jA

>
−jA−js−j + 2(b− z)>A−js−j + (b− z)>(b− z)

)
+ λ

∑
k=−j

sk. (4.20)

The objective Z(sj ; s−j) has a critical point at the value s∗j at which the derivative
goes to zero. From the above we have

Z ′(sj) = 2asj + b, (4.21)

and the critical point

s∗j =
−b
2a

(4.22)

where a and b are defined as above.

Implementation concerns

A naive implementation of the above equations for s∗j will be computationally expensive,

since for each j we compute A−js−j , where the number of columns of A−j is m̃ ≈ 104

and we would repeat this multiplication m̃ times per iteration. Dramatic gains can be
obtained by noting that

A−js−j = As−Ajsj (4.23)

and computing this instead. It is worth noting that at the end of each iteration we need
to update the product

As = A−js−j + Ajs
′
j . (4.24)

Although numerical instabilities have not been an issue in our implementations, one
could easily guard against them by simply recomputing the full product As periodically.
In our experiments we do this every ten iterations.

� 4.2 Sampling from the posterior distribution

Our inference procedure falls into the category of Markov chain Monte Carlo (MCMC)
methods, or sampling-based methods. In this section we discuss the application of the
techniques in Section 2.2 to the model of Chapter 3. Since the number of sources in
the model is unknown and the number of parameters (i.e. the dimensionality of x,
w, and s) change based on the number of sources, we apply RJ-MCMC to infer the
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1: procedure NewSample(x, w, s, b, σε, m)
2: for i = 1, . . . ,M do . sample new source locations
3: x′i,1 ← SampleMH(xi,1, Sx)
4: x′i,2 ← SampleMH(xi,2, Sx)
5: end for
6: for i = 1, . . . ,M do . sample new source half-widths
7: w′i ← SampleMH(wi, Sw)
8: end for
9: for i = 1, . . . ,M do . sample new source emission rates

10: s′i ← SampleMH(si, Ss)
11: end for
12: b′ ← SampleGibbs(b) . sample new background vector
13: σ′ε ← SampleMH(σε, Rσ) . sample new measurement error
14: 〈m′,x′,w′, s′〉 ← SampleOrder(m, x′, w′, s′) . sample new source count
15: return 〈x′,w′, s′, b′, σ′ε,m′〉
16: end procedure

Algorithm 4.1: RJMCMC inference procedure

posterior distribution of the source parameters given the data. Finally, we derive the
trans-dimensional “jumping” steps that allow us to estimate the number of sources.

The general inference procedure is outlined in Algorithm 4.1, which obtains a new
sample of parameter values from an existing sample. The SampleMH routine entails
sampling the specified parameter using one iteration of the Metropolis-Hastings algo-
rithm as in Section 4.2.1. The function SampleGibbs refers to running an iteration
of Gibbs sampling over the background contribution vector b as is described in Sec-
tion 4.2.2. The SampleOrder function allow the chain to jump between models of
different orders, or number of sources. Section 4.2.3 discusses the nature of these jumps.

� 4.2.1 Sampling with Metropolis-Hastings

The Metropolis-Hastings algorithm is used to sample source parameters x, w, and s
and the measurement error σε. All of these have Gaussian proposal distributions with
the following standard deviations: Sx = 50 m, Sw = 10 m, Ss = 0.0016 m3s−1, and
Sε = 0.05 log10(1 × 10−9) ppb. Since Gaussian proposals are symmetric, the Hastings
ratio reduces to the ratio of the likelihoods for each configuration.

For example, we show the Hastings ratio for a new source emission rate proposal.
Let’s assume that the proposed emission rate is valid according to the prior—if this
were not the case the Hastings ratio would evaluate to zero. Let’s also note that

θ∗ = {{θ(k−1)\s(k−1)
j } ∪ s∗j}, so that the only difference between θ(k−1) and θ∗ is the
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single value that has been proposed.

r =
p(θ∗ | z)q(θ(k−1) |θ∗)

p(θ(k−1) | z)q(θ∗ |θ(k−1))

=
p(z |θ∗)

p(z |θ(k−1))
· p(θ∗)

p(θ(k−1))
· q(θ

(k−1) |θ∗)
q(θ∗ |θ(k−1))

=
N (z; A∗s∗ + b∗, I(σ∗ε)

2)

N (z; A(k−1)s(k−1) + b(k−1), I(σ
(k−1)
ε )2)

· 1 · N (θ(k−1);θ∗, S2
s )

N (θ∗;θ(k−1), S2
s )

=
N (z; A∗s∗ + b∗, I(σ∗ε)

2)

N (z; A(k−1)s(k−1) + b(k−1), I(σ
(k−1)
ε )2)

, (4.25)

which is just the ratio of the likelihoods. The only thing that would change for any
of the other variables listed is the proposal variance, which doesn’t even appear in the
likelihood ratio because the proposals are symmetric.

� 4.2.2 Sampling via Gibbs sampling

We sample the background b from its full conditional using Gibbs sampling. Since the
background is conditionally independent of the other parameters given the measure-
ments the full conditional distribution is given by

p(b | z) ∝ p(z |x,w, s, b, σε)p(b; b0) (4.26)

∝ N (z; As+ b, Iσ2
ε)N (b; b0,J

−1
b ) (4.27)

∝ N (b; J−1h,J−1) (4.28)

where

h = Iσ−2
ε (y −As) + Jbb0

J = Iσ−2
ε + Jb.

Gibbs sampling generates a new value for each element bi by applying the following
steps:

1. Compute the new information mean:

h′i = hi −
∏

j∈nbr(i)

Jijbj (4.29)

2. Sample a new bi:
bi ∼ N (J−1

ii h
′
i,J
−1
ii ) (4.30)
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This is done for every element of b to sample a new state. It is worth noting that it can
take many iterations for the sequence of states to converge, depending on the initial
value of b. We accelerate convergence by initializing with b = J−1h.

This step includes the inversion of a large matrix which is computationally intensive.
We can reduce the frequency with which we perform inversion by only recomputing J−1

∗
when it changes. Specifically, J−1 only needs to be recomputed when the proposed σε
was accepted on the previous step, or when one of the auxiliary parameters for the wind
field was accepted, hence changing J. When we do have to perform an inversion, we
invert the lower triangular matrix obtained by the Cholesky decomposition instead of
the full matrix.

� 4.2.3 Sampling model order via RJ-MCMC

The fact that we do not know the number of sources poses a challenge to performing
inference on our model. The standard MH algorithm could not be applied in a straight-
forward manner, since we could not explicitly define our parameter set. An extension
of the MH algorithm, called Reversible-jump Markov chain Monte Carlo (RJ-MCMC)
sampling, addresses this issue. This method was first developed in [13]. Further con-
siderations for this approach are found in [10].

Suppose our parameter set θ corresponds to some model Mk, where the set of all
possible models is given byM = {Mk}mmax

k=0 . In our case, the model order k corresponds
directly to the number of sources in the model. In effect, we add the model order k to
the set of parameters to be estimated, so that our target (posterior) distribution is:

p(k,θk | z) ∝ p(z |θk, k)p(θk | k)p(k). (4.31)

Here, we use θk to denote that this particular θ is of model Mk, or is of model order
k. Suppose that our current estimate is θk of model Mk and we want to propose some
estimate θ′k′ of model Mk′ . We can generate and accept a new proposal of the desired
model order by the following procedure.

1. Propose a new model order Mk′ with jump probability j(k′ | k).

2. Generate an auxiliary random variableψ from the proposal distribution gk,k′(ψ |θk).

3. Compute the proposed model’s parameters θ′k′ using a deterministic function,
(θ′k′ ,ψ

′) = hk,k′(θk,ψ).

4. Compute the new Hastings ratio:

r =
p(k′,θ′k′ | z)

p(k,θk | z)

j(k | k′)
j(k′ | k)

gk′,k(ψ
′ |θ′k′)

gk,k′(ψ |θk)

∣∣∣∣∂hk,k′(θk,ψ)

∂(θk,ψ)

∣∣∣∣ (4.32)

5. Accept the new model order with acceptance probability α = min{1, r}.
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There are several things to note here. We are effectively forming a set {θk,ψ} such
that dim{θk,ψ} = dim{θ′k′ ,ψ′}. This allows us to “jump” across dimensions. We also
define the function h−1 for the reverse step such that (θk,ψ) = h−1

k,k′(θ
′
k′ ,ψ

′). These
are defined for all valid combinations of k and k′.

As required by the RJMCMC framework, we augment the set of parameters to be
estimated with the model order k. We define the model order as the number of sources
estimated in the model, so model order k consists of k sources. The goal is to transition
from parameter vector θm to a derived parameter vector θk′ with k′ sources.

We propose a parameter vector θk′ using one of the following four equally-likely
jump types to change the model order. We note that the jump types are paired so that
the Markov chain of samples is reversible. For example, the birth and death types are
paired. Moreover, the product of the Hastings ratios for paired steps must equal 1.

1. Source birth (k′ = k + 1): generate the (k + 1)th source by drawing new random
variables.

xj∗ = rx rx1 ∼ U(Ix1) and rx2 ∼ U(Ix2)

wj∗ = rw rw ∼ U(0, Rw)

sj∗ = rs rs ∼ U(0, Rs)

where Ix1 and Ix2 are the x1 and x2 domain of the survey area, Rw = wmax−wmin

is the range of source widths, and Rs = smax− smin is the range of emission rates.

2. Source death (k′ = k − 1): remove an existing source j ∼ U(j; 1, k) from the
parameter set.

3. Source split (k′ = k + 1): split an existing source j∗ ∼ U(j∗; 1, k) into two new
sources j∗− and j∗+

xj∗± = xj∗ ± rx r(1)
x ∼ U(−Ex1

2 , Ex1
2 ) and r(2)

x ∼ U(−Ex2
2 , Ex2

2 )

wj∗± = wj∗ ± rw rw ∼ U(−Ew
2 ,

Ew
2 )

sj∗± = sj∗ ± rs rs ∼ U(−Es
2 ,

Es
2 )

where Ex1 = 100 m, Ex2 = 100 m, Ew = 10 m, and Es = 0.1 m3s−1.

4. Source merge (k′ = k − 1): select two sources randomly and generate a new
source whose parameters are obtained by averaging the parameters of the randomly
selected sources.

After selecting the jump type and computing the new parameter vector θk′ as de-
scribed above, we compute the Hastings ratio

r =
p(k′,θ′k′ | z)

p(k,θk | z)

j(k | k′)
j(k′ | k)

gk′,k(ψ
′ |θ′k′)

gk,k′(ψ |θk)

∣∣∣∣∂hk,k′(θk,ψ)

∂(θk,ψ)

∣∣∣∣ . (4.33)
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We note that the p(k,θk | z) is our posterior (target) distribution. The proposal is
generated by j and g: j(k′ | k) is the likelihood of jumping from model order k to order
k′, and gk,k′(· |θk) is the distribution of auxiliary variables required to jump from model
order k to order k′. Finally, hk,k′(θk,ψ) is a deterministic function that augments the
parameter vector of order k with the auxiliary variables ψ into a parameter vector of
order k′. We now specialize Equation 4.33 for the four different jump types outlined
above.

Source birth and death

For birth jumps, we have k = m and k′ = k + 1, which we insert into Equation 4.33 to
obtain

α =
p(m+ 1,θ′m+1 | z)

p(m,θm | z)

j(m |m+ 1)

j(m+ 1 |m)

gm+1,m(ψ′ |θ′m+1)

gm,m+1(ψ |θm)

∣∣∣∣∂hm,m+1(θm,ψ)

∂(θm,ψ)

∣∣∣∣ (4.34)

For convenience, we’ll label each j, g, and h as belonging to a birth step (m→ m+ 1)
or a death step (m+ 1→ m). For a birth step, the acceptance ratio is:

α =
p(m+ 1,θ′m+1 | z)

p(m,θm | z)

jd(m+ 1)

jb(m)

gd(ψ′ |θ′m+1)

gb(ψ |θm)

∣∣∣∣∂hb(θm,ψ)

∂(θm,ψ)

∣∣∣∣ (4.35)

First we consider the birth step, where we have current parameter vector θm that
has m sources. The probability of the birth jump from model Mk is

jb(k) = 0.25 · 1(k < mmax)

and the probability of the death jump from model Mk is

jd(k) = 0.25 · 1(k > 0).

In a birth step we sample an auxiliary parameter vector ψ = [ rx, rw, rs ] from the
proposal distribution

gb(ψ |θk) = U(rx1; Ix1)U(rx2; Ix2)U(rw; 0, Rw)U(rs; 0, Rs)

= (Rx1Rx2RwRs)
−1 (4.36)

to form the augmented state vector {θk,ψ}. In a death step we draw the parameter
vector ψ′ = [ j∗ ] from the following distribution, where j∗ is the index of the source
that dies:

gd(ψ′ |θ′k′) = (k′)−1.

For the birth and death steps the deterministic function h is just an assignment operator,
concatenating ψ into the old vector, so∣∣∣∣∂hb(θk,ψ)

∂(θk,ψ)

∣∣∣∣ =

∣∣∣∣∂hd(θ′k′ ,ψ
′)

∂(θ′k′ ,ψ
′)

∣∣∣∣ = 1.
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We can now use these distributions and the generative model defined in Equa-
tions 3.25 through 3.28 to compute the Hastings ratios for the birth and death jumps
by substituting into Equation 4.33. For a birth jump from k = m to k′ = m + 1 we
have

α(θ′m+1 |θm) =
N (z; A′s′ + b,J−1

ε )

N (z; As+ b,J−1
ε )

· 1

m+ 1
(4.37)

The acceptance probability for the death jump from k = m to k′ = m− 1 we have

α(θ′m−1 |θm) =
p(m− 1,θ′m−1 | z)

p(m,θm | z)

jb(m− 1)

jd(m)

gb(ψ′ |θ′m−1)

gd(ψ |θm)

∣∣∣∣∂hd(θm,ψ)

∂(θm,ψ)

∣∣∣∣ (4.38)

=
N (z; A′s′ + b,J−1

ε )

N (z; As+ b,J−1
ε )

·m (4.39)

where Equation 4.38 is just the reciprocal of Equation 4.35 up to a change of index in
the model order.

Source splitting and merging

Just as in the birth step derivation, we have two operators that are reversible: a split
step (m→ m+ 1) or a merge step (m+ 1→ m). For convenience, we’ll label each j, g,
and h as belonging to either merge (m) or split (s). For a split step, the Hastings ratio
is:

α =
p(m+ 1,θ′m+1 | z)

p(m,θm | z)

jm(m+ 1)

js(m)

gm(ψ′ |θ′m+1)

gs(ψ |θm)

∣∣∣∣∂hs(θm,ψ)

∂(θm,ψ)

∣∣∣∣ (4.40)

First we consider the split step, where we have current parameter vector θk that
has k sources. The unnormalized probability of the split jump from model Mk is

js(k) = 0.25 · 1(k < mmax)

and the unnormalized probability of the merge jump from model Mk is

jm(k) = 0.25 · 1(k > 0).

Next we randomly select a source j∗ from a uniform distribution over all the sources.
We draw a random variable ψ = {j∗, rx, rw, rs} from the distribution, where j∗ is the
source to split and rx, rw, and rs are the offsets used in each dimension of the source
parameterization.

gs(ψ |θk) = U(j∗; 1, k)U(rx1;−Ex1
2 , Ex1

2 )U(rx2;−Ex2
2 , Ex2

2 )U(rw;−Ew
2 ,

Ew
2 )U(rs;−Es

2 ,
Es
2 )

or, equivalently,
gs(ψ |θk) = (k · Ex1Ex2EwEs)

−1
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to form the augmented state vector {θk,ψ}. In the reverse (merge) step, we randomly
select two of the k + 1 sources to merge. So, our set of auxiliary random variables is
ψ′ = {j∗−, j∗+}.

gm(ψ′ |θ′k′) = (k · k′)−1

The deterministic functions hs and hm take more complicated forms now. hs(θk,ψ) =
(θ′k′ ,ψ

′) represents xj∗± = xj∗ ± rx, wj∗± = wj∗ ± rw, and sj∗± = sj∗ ± rs, where source
j∗ in the ordering is now replaced with two sources j∗− → j∗ and j∗+ → j∗ + 1. The
deterministic function hm gives the average of the j∗ and j∗ + 1 sources as the new
parameters. [17] suggests that∣∣∣∣∂hs(θk,ψ)

∂(θk,ψ)

∣∣∣∣ = 8 and

∣∣∣∣∂hm(θ′k′ ,ψ
′)

∂(θ′k′ ,ψ
′)

∣∣∣∣ =
1

8
.

We will now derive an expression for the split move acceptance probability in terms
of the components of θk for a model where k = m and k′ = m+ 1.

α(θ′m+1 |θm) =
p(m+ 1,θ′m+1 | z)

p(m,θm | z)
· 1 · (m(m+ 1))−1

(m · Ex1Ex2EwEs)
−1 · 8

=
N (z; A′s′ + b,J−1

ε )

N (z; As+ b,J−1
ε )

· Ex1Ex2EwEs
Rx1Rx2RwRs

· 1

m+ 1
· 8 (4.41)

The acceptance probability for a merge step from k = m to k′ = m − 1 is the
reciprocal of the probability for a split step, up to some shift in the model order.

α(θ′m−1 |θm) =
N (z; A′s′ + b,J−1

ε )

N (z; As+ b,J−1
ε )

· Rx1Rx2RwRs
Ex1Ex2EwEs

·m · 1

8
(4.42)



Chapter 5

Performance Metrics

In this chapter we establish several methods of examining the output of the inference
algorithm described in Chapter 4. We restrict this discussion to summaries of the results
from a single run of the algorithm and a single true configuration of sources. This “true”
configuration may or may not be used in each of the summaries we will discuss. We
will begin by examining commonly-sought statistics in general inference problems. We
will then introduce several additional metrics that target specific features of the source
estimation problem. All of the summaries discussed in this chapter can be easily and
efficiently computed from the collection of samples drawn from the posterior.

� 5.1 General statistics of interest

Two of the most fundamental Bayesian inference tasks are MAP estimation and the
acquisition of posterior distributions for the parameters. These can be computed ex-
actly for probabilistic models of certain types, i.e. those with tree-structured graphical
models. The model developed in Chapter 3 does not have a structure suitable for exact
inference; instead, we use MCMC techniques to obtain samples from the posterior dis-
tribution. From this set of samples we can compute nearly any statistic of the posterior,
including the common summaries mentioned above as well as far more complex event
probabilities.

� 5.1.1 MAP and MLE estimation

The maximum a posteriori (MAP) estimator for some random variable θ with posterior
distribution p(θ | z) is the value of θ given by

θMAP = arg max
θ

p(θ | z). (5.1)

This provides a “point estimate”, in that it represents a single point for which the
posterior distribution has the maximum value. A point estimate can be very useful if the
posterior distribution is unimodal and in a low-dimensional space. Even for unimodal
distributions, in high-dimensional spaces the probability can change very rapidly very
close to the MAP estimate. Of course, if the our posterior distribution is multimodal
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Figure 5.1: An approximate MAP estimate for the source configuration indicated by the
blue x’s. Ground truth sources were randomly placed and observations were generated
according to the forward model.

then that MAP estimate only reveals one mode of the distribution by nature of being
a single point, which makes it even more unreliable.

We can easily compute a quantity similar to the MAP estimate from the set of
samples from the posterior. When using MCMC, the MAP estimate is computed as
follows. We recall that the posterior distribution is proportional to the joint distribution,
which we can compute directly. Hence, for the sample-based MAP estimate, we can
simply take the sample θ(k) that maximizes the joint distribution instead of optimizing
the posterior distribution over all possible values of θ:

θ̂MAP = arg max
k

p
(
θ(k) | z

)
= arg max

k
p
(
z |θ(k)

)
p
(
θ(k)

)
. (5.2)

Figure 5.1 is an example of the MAP estimate obtained by sampling from the
posterior distribution. The forward model was used to randomly generate the true
configuration and observed concentrations for a set aircraft trajectory. The underlying
image shows the expected concentration at each pixel location as predicted by the
Gaussian plume model. Nearly all of the sources are very closely estimated by a sampled
source in the MAP solution. We can see that there seems to be some uncertainty about
source location in the downwind direction—some sources have an estimate upwind of
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the actual location and others have one downwind. The two southern-most true sources
are not estimated at all, although considering the wind direction (due east) they likely
have very little supporting evidence within the data.

Another common point estimate is the maximum likelihood (ML) estimate. Instead
of maximizing the posterior distribution, the ML estimate maximizes the likelihood
distribution p(z |θ). This is useful in cases where we do not want our prior distribution
p(θ) to influence the estimate. This estimate may be computed from the samples from
the posterior in a similar manner as the MAP estimate.

� 5.1.2 Event probabilities and marginal posterior distributions

One limitation of the point estimates described in the previous section is that they do
not convey any information of how broad or narrow the posterior distribution is around
the mode. Sampling-based approaches allow us to estimate not just this, but also to
accurately compute expectations of any functions of the distribution. The function
can be selected in such a way that reveals nearly any property of interest, including
the commonly-sought posterior distributions of our model parameters. Note that we
refer to the collection of marginal posterior distributions over each random variable as
our “posteriors.” The joint posterior distribution of all the variables is just called the
“posterior.” When we refer to the posterior distributions of several variables jointly, we
will be explicit.

A numerical technique called Monte-Carlo integration is central to our ability to
compute expectations of functions of the posterior distribution. Monte-Carlo integra-
tion refers to approximately computing some integral

E[f(x)] =

∫
x
f(x)p(x) dx

where f(x) is an arbitrary function and p(x) is the distribution on x. It is assumed
that we can draw samples from p(x). The Monte Carlo approximation for the above
integral is

E[f(x)] ≈ 1

K

K∑
k=1

f
(
x(k)

)
(5.3)

where we have drawn K i.i.d. samples x(k) ∼ p(x).
In our case we have already drawn the samples from our posterior distribution

p(θ | z). Monte Carlo integration gives us a way of computing the expectation of any
arbitrary function f(θ) of the posterior p(θ | z):

Eθ |z[f(θ) | z] =

∫
θ
f(θ)p(θ | z) dθ ≈ 1

K

K∑
k=1

f
(
θ(k)

)
. (5.4)

In the context of probability, an event is some region of the state space of our variable
θ. For some arbitrary event A we can easily specify a function that, in expectation,
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Figure 5.2: Posterior distributions approximated from the set of posterior samples. The
same simulation was used to compute the MAP estimate shown in Figure 5.1.

gives the posterior event probability given the data:

fA(θ) = 1(θ ∈ A). (5.5)

The posterior marginal distributions are special cases of these event probabilities.
Consider, for example, the posterior distribution over the number of sources m given
the observed data z. We denote the number of sources defined in the k-th sample of the
posterior θ(k) by m(k). The posterior distribution p(m | z) is estimated by computing

Pr{m = µ | z} ≈ 1

K

K∑
k=1

1

(
m(k) = µ

)
(5.6)

for each possible number of sources µ = 0, . . . ,mmax. The posteriors are similarly
defined for other parameters, although posteriors for continuous parameters are specified
in terms of ranges and not exact values.

Figure 5.2 shows the posterior distributions for the source parameters, generated
from the same set of samples as the MAP estimate shown in Figure 5.1. These statistics
provide several other insights that were missing from the MAP estimate. We can identify
that the most likely number of sources is 12 by the marginal distribution Pr(m | z),
recognize the source emission rates as being clustered around 0.1 m3/s, and that the
poorly-estimated source in the upper left corner of Figure 5.1 has great uncertainty in
its position judging by the diffusivity of the corresponding location in the joint posterior
distribution over x1 and x2.

� 5.2 Source-based event probabilities

This section introduces several other event probabilities that are specially-tailored to
our problem. We find that event probabilities provide a natural way of evaluating
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A

Figure 5.3: A visualization of the sources contained in the true configuration θ∗, shown
as blue x’s, and the sources from a single sample of the posterior, shown as red dots.
The light-blue disk around each true source shows the detection region DRi for that
source.

the performance of our system. While posterior distributions provide great insight
into the results of inference, they also require some level of interpretation and manual
examination. These event probabilities can be efficiently computed from the samples of
the posterior using Equations 5.4 and 5.5 and often provide some immediate insights.

Our source estimation problem is, at a high level, an estimation problem where we
have some true set of point sources (x,y) and we generate many “sampled” configura-
tions of point sources (x̂, ŷ). A common concern is identifying how well our true set of
point sources match our sampled sets of point sources.

Several factors are considered in designing our metrics. The first is that we do not
necessarily know which estimated source corresponds to which true source, in fact, we
have no guarantees that there will be a one-to-one mapping. Any metric that we devise
should be efficient; hence, we would like to avoid solving the “assignment” problem or
making any (hard or soft) assignment of estimated sources to true sources. Additionally,
we want to capture two specific types of undesirable results that correspond to type I
and type II errors. Type I errors occur when any true source is not matched by any
sampled sources. Similarly, type II error refer to sampling spurious sources that are
not matched by any true sources. Sampled sources that do not match true sources are
not relevant results in that they do not tell us any further information about the true
sources. Hence, we wish to maximize the relevance of sampled sources to minimize type
II error. In light of these we will thus avoid referring to matches or mappings between
true and sampled sources. Instead, we refer to true sources as having been “estimated”
and sampled sources as being ”relevant.”

In this context we represent all sources, both true and sampled, as point sources.
Consequently, we will never have one source directly atop another. This motivates our
particular definition of “estimations” to be in terms of the distance between the true
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and sampled source. Consider the set of sources in the true configuration θ∗, shown for
some arbitrary example in Figure 5.3 as the set of blue x’s. We also consider the set of
sampled source locations from the k-th sample from the posterior, θ(k), which appear
as the (arbitrarily placed) red dots in Figure 5.3.

Definition 5.2.1 (Detection region). For each of the m∗ true sources, the detection
region of source i, DRi , is a disk of radius R centered at the source location x∗i :

DRi , {x : ‖x− x∗i ‖2 ≤ R}. (5.7)

The (complete) detection region for the true source configuration is the union of the
detection regions for each source:

DR ,
m∗⋃
i=1

DRi .

Any sampled source that falls within the composite region DR is an “estimate” of at
least one true source (as the disks may overlap for closely-spaced sources). The radius R
quantifies the notion of “how close is close enough” when estimating sources. It enables
a physical interpretation where if we are standing at one of the sampled source locations
and we are within R meters of a true source location then we are “close enough” to the
true source.

In Figure 5.3 the individual light-blue disks show detection region DRi for some
radius R. As pictured, two of the three true sources have at least one red dot in
their detection regions. In other words, the proportion of our true sources that are
“estimated” is 2/3. Conversely, only two of the four sampled sources (red dots) fall into
the light-blue detection region DR. We interpret this as only two of the four estimates
actually being “relevant” to our set of true sources. We can then say that the proportion
of sampled sources that are “relevant” is 2/4. These proportions convey some useful
information about the performance of our algorithm, which acts as a “source detector”.
We formally define these metrics below.

First we design an event that conveys how well we “match” the location for a
particular true source i ∈ {1, . . . ,m∗}. For some sample from the posterior θ̂ we define
the following event.

Definition 5.2.2 (Event: estimation of a true source). The i-th true source is esti-
mated to within R if and only if there exists a sampled source in θ̂ ∼ p(θ | z) that is
within a distance R of the location of the i-th source. Formally, this event is given by
the indicator function

fESTi(θ̂;R) , 1(∃ j ∈ {1, . . . , m̂} s.t. x̂j ∈ DRi ) (5.8)

where x̂j and m̂ are the location of the j-th sampled source in θ̂ and the number of

sampled sources in θ̂, respectively.
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Given a set of samples from the posterior we can apply Equations 5.4 and 5.5 to
compute the probability of estimation for the i-th true source:

Pr{ESTi(R)} = Eθ |z[fESTi(θ;R) | z] ≈ 1

K

K∑
k=1

fESTi

(
θ(k);R

)
. (5.9)

Additionally, although we will not do so, one could also easily compute the average
probability of estimation by averaging over the estimation probabilities for all m∗ of
the true sources.

The probability of estimation in Equation 5.9 is parameterized by the radius R
of the detection region; by varying R we can produce a curve that shows how the
estimation probability changes as we relax our detection threshold. These curves will
feature prominently in our system-level analysis of the inference procedure. Specifically,
Pr{ESTi(R)} = 0 for R = 0, since the probability of two points overlapping is zero. As
the radius R → ∞ we get Pr{ESTi(R)} → 1 as eventually any sampled source in the
survey area falls within the detection region of true source i. This limiting behavior
assumes that we have at least one sampled source in the survey area, which we have
found to be the case even though it may not correspond to the true source (if there is
one).

The above event targeted the first type of undesirable sampler behavior: failing to
estimate true sources. The second type of undesirable behavior, corresponding to type
II error, is generating spurious sources that cannot be considered “estimates” of any
true sources. For some sample from the posterior θ̂ we define the following event.

Definition 5.2.3 (Event: relevance of a sampled source). The j-th sampled source in
θ̂ is relevant to within R if and only if there exists a true source in θ∗ that is within a
distance R of the location of the j-th sampled source. Formally, this event is given by
the indicator function

fRELj (θ̂;R) , 1(∃ i ∈ {1, . . . ,m∗} s.t. x̂j ∈ DRi ) j = 1, . . . , m̂ (5.10)

where x̂j and m̂ are the location of the j-th sampled source in θ̂ and the number of

sampled sources in θ̂, respectively.

Since the indices, and even the number, of sampled sources are not consistent across
different samples from the posterior, it is meaningless to consider the probability of
relevance for the j-th sampled source. Instead, we can compute the probability of
relevance for some sample from the posterior θ̂:

fREL(θ̂;R) ,
1

m̂

m̂∑
j=1

fRELj (θ̂;R) (5.11)

This gives the percentage of sampled sources that are within R meters of at least
one true source, or the probability that a randomly-chosen sampled source falls in the
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detection region. Given a set of samples from the posterior we can apply Equations 5.4
and 5.5 to compute the average probability of relevance:

Pr{REL(R)} = Eθ |z[fREL(θ;R) | z] ≈ 1

K

K∑
k=1

fREL

(
θ(k);R

)
. (5.12)

Sampling of spurious sources leads to values of Pr{REL(R)} that are lower than 1.
As discussed above for the probability of estimation, we can compute a curve for

the relevance probability by varying the detection region radius R. This has the same
limiting behavior as R → 0 and R → ∞ as the other event. In both cases higher
event probabilities indicate better system performance–given only the locations, not
the emission rates or the widths of the sources, the best possible performance would
have every true source estimated and every sampled source relevant. We also note that
when the number of true sources and the number of sampled sources are both 1, the
curves traced by Pr{EST(R)} and Pr{REL(R)} are identical.

� 5.2.1 ROC-style analysis

Although the probability of relevance does provide some useful insights about sources
where we have no sources locally, it does not truly provide us a way of examining
type II error, or instances in which we sample a source where no source actually exists
anywhere in the survey area. Instead, we could simulate a new measurement vector z′

by setting the emission rate of the i-th true source to zero and generate samples from
the posterior p(θ | z′). We could then compute the probability of estimation for this new
posterior distribution. We would know with certainty that all of the sampled sources
from the new posterior are not due to the i-th true source, which is explicitly blocked
from contributing to any of the measurements in z′. If the number of true sources is 1
then this only requires one additional simulation and the analysis is straight-forward.
For simplicity, and to ensure easily-interpreted results, we will only consider the case
where m = 1 in this thesis.

In the simply-defined and easily-analyzed case where m = 1, we will run a second
inference procedure where the data is using a source with emission rate zero and all
other parameters and realizations are identical to the original. From the two resulting
chains of samples we can then compute the estimation probabilities Pr{EST(R) | s > 0}
from the original chain of samples and Pr{EST(R) | s = 0}, where s is the emission rate
of the single existing source in each run. This immediately suggests parallels between
this approach and the well-studied problems of Bayesian hypothesis testing for signal
detection.

Consider the problem of attempting to classify a received signal into one of two
groups: H = 0, the null-hypothesis, for which the signal is just i.i.d. white Gaussian
noise, or H = 1, for which the received signal is the signal we want to detect plus i.i.d.
white Gaussian noise. The detector decides Ĥ = 1 or Ĥ = 0 based on some set of costs,
which implicitly define a threshold τ . Bayesian hypothesis testing is evaluated based
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on two quantities: the probability of detection PD = Pr{Ĥ = 1 |H = 1}, also called the
true-positive rate, and the probability of false alarm PFA = Pr{Ĥ = 1 |H = 0}, also
called the false-positive rate. The probability of detection is very similar to our original
estimation probability Pr{EST(R) | s > 0}. Similarly, the probability of false alarm is
closely related to the quantity Pr{EST(R) | s = 0}.

In Bayesian hypothesis testing a “receiver operating characteristic” (ROC) curve is
generated by plotting the probability of detection versus the probability of false alarm
and allowing varying the decision threshold τ from 0 to ∞. These curves go from the
point (0, 0) for τ = 0 to (1, 1) for τ → ∞. We can similarly plot Pr{EST(R) | s > 0}
versus Pr{EST(R) | s = 0} by varying the radius R from 0 to ∞ and obtain similarly-
shaped curves. ROC curves in hypothesis testing provide several useful insights that
we attempt to use in our analogous case. First, all valid ROC curves are above the line
of guessing, PD = PFA. We empirically observe that this holds true. Second, all ROC
curves are concave down. In general, the curves that we obtain with our approximation
exhibit this property. Notable exceptions are edge artifacts encountered from having a
bounded survey area and lack of samples. Finally, if one ROC curve is completely above
another ROC curve, it is said that the upper curve “dominates” the lower one, meaning
that the sensor corresponding to the dominant curve is an all-around better sensor. In
our case, we can vary our “emission source sensor” by changing the parameters of the
sensor or of the true parameters used to generate the data. By analogy, then, we can
say: that our inference procedure performs better under certain conditions than others;
identify what these conditions are; and quantify the impact on system performance. As
a side note, if one ROC curve is above another curve for some range of τ , it is said that
that curve dominates the other for the set of cost ratios corresponding to that range of
τ .

� 5.3 Grid-based event probabilities

The previously-described event probabilities treated all of the sources as point sources,
i.e. as if they had width w = 0. Given that the size of the sources is very small relative
to the size of the survey area, this is not a terrible assumption; regardless, it still leaves
some aspects of our model parameters unexamined. By considering event probabilities
defined on a grid over the survey area we can easily take the source width and even the
emission rate into account.

For both of the event probability definitions that follow, we use a discretized repre-
sentation of the survey area A into a grid of cells as shown in Figure 5.4. In the figure
we have chosen a grid with eight rows by eight columns; we can generally define a grid
to have R × C cells. The East/West dimension of the survey area is divided evenly
into x0, . . . , xC and the North/South dimension into y0, . . . , yR. We denote grid cell
(r, c) as the set of points in the 2D-interval given by [xc−1, xc]× [yr−1, yr]. For example,
Figure 5.4 shows the cell (3, 5) highlighted in orange. We will generally wish to compute
the probability of some event over each of the R × C grid cells. We now describe two
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(3, 5)

Figure 5.4: An 8 × 8 grid of cells fit to the survey area A. The blue x’s show several
generic source locations and the blue dashed lines are the 1σ-contours for the corre-
sponding multivariate normal distributions defined by the source locations and widths.
We can define event probabilities for each cell in the grid, e.g., we may wish to compute
the probability of some event occurring within the highlighted cell (3, 5).

such events and the intuitions they provide.

� 5.3.1 Source location histogram

In this method we visualize the 2D distribution of emission sources for some source
configuration θ, which may be the true θ∗ or some sample θ(k) from the posterior
distribution. Recall that the emission location for each of the diffuse sources j =
1, . . . ,m in θ is a multivariate Gaussian distribution with location xj and an isotropic
covariance matrix w2

j I2×2. Hence

pj(x) = N
(
x;xj , w

2
j I2×2

)
(5.13)

gives the pdf of emission locations for source j. Note that we can interchangeably write
x = (x, y) = (x1, x2). We now define the following event:

Definition 5.3.1 (Event: source j emits from cell (r, c)). The j-th sampled source in
θ emits within the cell (r, c) with probability given by the integral of the pdf pj(x) over
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the region [xc−1, xc]× [yr−1, yr]. We can efficiently compute this event probability as:

Pj(r, c) =

∫ yr

yr−1

∫ xc

xc−1

pj(x) dx dy

=

∫ yr

yr−1

∫ xc

xc−1

N
((

x
y

)
;

(
xj
yj

)
,

(
w2
j 0

0 w2
j

))
dx dy

=

(∫ xc

xc−1

N
(
x;xj , w

2
j

)
dy

)(∫ yr

yr−1

N
(
y; yj , w

2
j

)
dy

)
. (5.14)

The matrix Pj is referred to as the probability map for source j.

A natural extension of this involves computing the probability of any source emitting
in the grid cell (r, c). This defines the average probability map, which we can easily
compute by averaging over the probability maps for each source:

P (r, c) =
1

m

m∑
j=1

Pj(r, c), (5.15)

where we have assumed that an emission is equally likely to be generated by any of the
sources. This effectively provides us a distribution over the possible emission locations
assuming that all sources are equally likely.

We note that the true probability maps P∗ are immediately accessible given the
true configuration θ∗, which defines the m∗ probability maps P∗1, . . . ,P

∗
m∗ . We can

also compute the expected probability map with respect to the posterior distribution
p(θ | z) by averaging over the K average probability maps generated by the sampled
source configurations θ(1), . . . ,θ(K). We can easily visualize this “sampled” probability
map for comparison to the true probability map.

� 5.3.2 Expected emission rate maps

The above probability-map based approach did not consider the emission rates of the
sources. For example, it would be possible to have a very weakly emitting source with
low width that appears very prominently on the probability map for source locations.
In practice this would be a nuisance and we would far prefer to highlight the strongly-
emitting sources. We encapsulate this notion by formulating a rate map Q, in which
each cell contains the expected emissions in the cell.

The above formulation combined the probability maps by weighting all sources
equally. From a physical standpoint, we can say that the probability map gives the
expected emission location for a particle emitted by a uniformly-chosen emission source.
In reality, we would expect the sources with a higher emission rate to emit much more
frequently. We use this intuition when combining the probability maps from each source:

Q(r, c) =
m∑
j=1

sjPj(r, c). (5.16)
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This is equivalent to replacing the pdf in Equation 5.13 by

qj(x) = sjN
(
x;xj , w

2
j I2×2

)
(5.17)

and integrating over the cells as described in the above section. We note that the
function qj(x) is not a probability density function; instead, it gives the expected level
of “emissions” arising in some area when integrated over the area. This leads to∫∫

A
qj(x) dx = sj (5.18)

which says that the sum of all emissions from source j over the entire survey area
equal the emission strength sj . As with the probability maps, we can easily compute
and visualize these results for true configurations, any of the samples drawn from the
posterior, and in expectation over the posterior distribution.

� 5.4 Evaluating system performance

While the Monte-Carlo approximation discussed in Section 5.1.2 provides a tractable
method for computing event probabilities given a single measurement realization z, it
does not inherently provide a way of performing high-level system analysis. In order to
obtain these higher-level summaries we must marginalize over some of the parameters
of our model that are used to generate the measurement vector z. Luckily, Monte-Carlo
approximation can also be applied here to make such marginalization tractable. In this
section we outline the technique used.

Much of our previous discussion has dealt with the parameter vector θ, which con-
tains information about the sources and the background measurements. We also have a
set of auxiliary parameters φ, which includes information about the wind field, the mea-
surement error standard deviation σε, the measurement times and locations, and any
other information. The union θ∪φ defines our full parameter set and completely spec-
ifies the distribution of the observations, p(z |θ,φ). Now consider a different partition
of our full parameter set into a set ω of control variables—those that we will change
and examine system performance with respect to—and a set ν of nuisance variables
that we do not care about and wish to marginalize over. For instance, suppose we are
interested in the ability of our system to estimate a source with a given emission rate.
The emission rate would be in the set of control parameters ω; the path, background
realizations, and source widths would be in the set of nuisance variables ν.

In the previous sections we were interested in quantifying system performance
through the expectation of some function f(θ) with respect to the distribution p(θ | z).
Here, instead, we are interested in the expectation of f(·) with respect to the distribu-
tion p(θ |ω). We can write this distribution in several terms of several others:

p(θ |ω) =

∫
ν

∫
z
p(θ, z,ν |ω) dz dν

=

∫
ν

∫
z
p(θ | z)p(z |ν,ω)p(ν) dz dν
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where we know that p(z |ν,ω) is Gaussian with mean given by a deterministic function
of {ν,ω} and a variance given by σε, which is an element of either ν or ω. We
can assume a uniform prior distribution p(ν). We now write the expectation of some
function f(θ) with respect to p(θ |ω) as a series of nested integrals, which will allow us
to repeatedly apply Monte Carlo integration. Our desired quantity takes the form

Eθ |ω[f(θ)] =

∫
θ
f(θ)p(θ |ω) dθ

=

∫
θ
f(θ)

(∫
ν

∫
z
p(θ | z)p(z |ν,ω)p(ν) dz dν

)
dθ

=

∫
ν

(∫
z

(∫
θ
f(θ)p(θ | z) dθ

)
p(z |ν,ω) dz

)
p(ν) dν (5.19)

where we have really just applied the law of iterated expectations several times:

Eθ |ω[f(θ)] = Eν
[
Ez |ν,ω

[
Eθ |z[f(θ)]

]]
. (5.20)

The form of Equation 5.19 suggests the following sampling-based approximation for
computing the desired expectation based on the Monte Carlo approximation for each
integral.

1. Sample Nν nuisance parameter values ν(1), . . . ,ν(Nν) ∼ p(ν)

2. For each ν(i): sample Nz measurement vectors z
(1)
(i) , . . . ,z

(Nz)
(i) ∼ p

(
z |ν(i),ω

)
• This marginalizes over measurement realizations, background realizations, and

any random elements in the model.

3. For each z
(j)
(i) : sample Ns parameter vectors θ

(1)
(i,j), . . . ,θ

(Ns)
(i,j) ∼ p

(
θ | z(j)

(i)

)
• These samples are drawn via the sampling procedure in Chapter 4.

We then approximate the desired quantity by

Eθ |ω[f(θ)] ≈ 1

Nν

Nν∑
i=1

1

Nz

Nz∑
j=1

1

Ns

Ns∑
k=1

f
(
θ

(k)
(i,j)

)
. (5.21)

This technique will be widely used to assess system performance in Chapter 6.
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Chapter 6

Experimental Results

In this chapter we employ the performance metrics and the procedure described in
Chapter 5 to assess system performance on a variety of experiments. These experiments
use synthetic data so that ground truth is known and available for comparison to the
results. We additionally show results from running on a real-world data set.

The procedure for evaluating system performance given in Section 5.4 will be widely
applied here; we will also adopt the technique of partitioning our parameter set into
control parameters ω and nuisance parameters ν. Generally the control variable set ω
include one or more variables that we are holding constant plus one or more variables for
which we want to examine system performance. We then sample multiple realizations
for a variety of marginalized parameter configurations. Each test that we ran included
nearly 4,000 different source and path configurations. We ran the sampler for 20,000
iterations, the first half of which were discarded as burn-in.

For the set of synthetic experiments we are interested in, the path of the aircraft
is usually an example of a parameter that we wish to marginalize out. Domain expert
knowledge indicates that flight paths are usually designed as a series of passes perpen-
dicular to the direction of the wind, starting with a pass furthest upwind and moving
further downwind with each subsequent pass. Unless explicitly stated, in our examples
we set the wind direction to due East (positive x1 direction) and make multiple passes
along the x2 (North/South) dimension. The x1 starting location of the paths and the
density of the passes are included in the set of nuisance parameters ν and marginal-
ized over. Figure 6.1 shows a set of paths commonly-used throughout the experiments.
Every setting of the remaining parameters (including any other nuisance parameters
and all of the control parameters) are computed for each of the trajectories shown in
Figure 6.1.

In order for our testing to be meaningful we have to assume that the model represents
the real world “accurately enough”. Specifically, we know that the real world violates
several modeling assumptions, e.g. the wind speed and direction is not from source
to sensor and the sources may not be point sources. Specifically, we assume that the
survey area is very large compared to the size of the sources and that the sources
are sparse in the survey area. As such, the sources are likely to be well-separated in
space. We also need the background model to adequately model the variability that one
would observe in real-world background concentrations. This allows us to marginalize
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Figure 6.1: Path settings are included in the set of variables to marginalize over. The
above path configurations are used to represent a uniform sampling from the set of
possible paths. We assume that any path will begin far upwind and make passes
perpendicular to the wind direction (towards positive x1).

out the background by simply sampling from the background prior p(b) for each of
the different configurations. Finally, we assume that the current formulation of the
wind model is also “close enough” to reality within some small region around each
measurement location. This entails that the wind direction measured at one point is
“relatively the same” between that point and the downwind measurement location with
which it shares an edge in the background precision matrix Jb. Additionally, violating
this assumption prevents us from being able to realistically generate observations from
the model. Accurate simulation would instead require one of the Lagrangian stochastic
particle simulation methods introduced in Chapter 2.

The remainder of the section will discuss the results of a series of experiments.
The first examines our ability to correctly estimate a known source location as the
emission rate of the source varies. We attempt to find the emission rate at which our
system can no longer reliably identify the source. Next, we examine how far apart a
pair of sources must be before we identify them as two separate sources instead of a
single larger source. The third experiment deals with equivalence classes imposed by
the dispersion parameter equations and the inherent ambiguity between a close source
that is large and a small source that is far away. This has potential implications for
flight path selection. Another experiment examines several modifications to the data
collection process, namely, the comparative benefits of increasing the measurement
frequency (taking more measurements) versus reducing the measurement error noise



Sec. 6.1. Source visibility 79

(taking “better” measurements). Finally, we explore model mismatch by performing
combined inference on two separate flights where some subset of sources turned on or
off in between the flights but the model assumes sources are either “always on” or
“always off”. The performance of the system in each of these cases is evaluated using
the performance metrics from Chapter 5.

� 6.1 Source visibility

Our ability to estimate the location of a source, or even detect it at all, is very important
to understand. A major factor in our ability to detect a source is its emission rate, which
effectively controls the magnitude of the source contributions to the measurements
relative to the other signal components, such as the background contribution and the
measurement noise. In this experiment we investigate how our ability to detect a source
changes as a function of its emission rate. We consider a single source in isolation and
marginalize over a collection of flight paths shown in Figure 6.1. We also marginalize
over the source width parameter.

Our system performance is evaluated through computing probability of estimation
for the single ground-truth source, as well as the average probability of relevance for the
sampled sources. We take the expectations of these probabilities with respect to the
control parameters (emission rate), marginalizing out all of the other parameters via
sampling. Figure 6.2 shows how the probabilities Pr{EST(R) | s} and Pr{REL(R) | s}
change as a function of the radius R and conditioned on the emission rate s. We note
that in this case the estimation and relevance probabilities are equal for all values of
R, which occurs when the ground-truth and all sampled source configurations contain
only a single source. We observe that even for the relatively low emission rate of
s = 0.02 m3/s we still obtain nearly 90% probability of detection for up to 500 m
accuracy. Additionally, on both plots all five curves have a “bump” that occurs around
R = 5000m. This is most likely an edge artifact arising as the disk radius grows just
past the size where it is fully contained inside the survey area, which affects the rate at
which additional sampled sources fall into the detection region.

Figure 6.3 shows Pr{EST(R) | s = si} versus Pr{EST(R) | s} and Pr{EST(R) | s =
0} for several values of si. This particular plot is analogous to an ROC curve, which
generally plots the probability of detection PD versus probability of false alarm PFA.
Each point on the curve corresponds to a particular radius R; as R increases from 0 to∞
we trace the curve from (0, 0) to (1, 1). The intuition is that every point on each curve
gives a different operating point, or radius, which corresponds to different probabilities
of estimation and spurious estimations. This plot clearly indicates the level at which
our performance begins to degrade rapidly. We perform well with s = 0.02 m3/s, shown
as the blue line. As far as realistic source emission rates go, this is considered fairly low.
Halving the emission rate to s = 0.01 m3/s sees a considerable drop in performance: in
order to have an estimation probability of 80% we incur a spurious estimation rate of
15%. Halving the emission rate again results in an even greater drop in performance: an
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The line corresponding to s = 0 m3/s corresponds to chance.
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estimation probability of 80% now incurs a spurious estimation probability of over 60%,
which means that the detection radius is now large enough that it covers about 60% of
the survey area. Similar arguments can be made by inspection of Figure 6.2. The main
takeaways are that performance consistently degrades as the source rate diminishes,
and that curves traced for higher emission rates dominate the curves for lower emission
rates.

This analysis assumes that we have a single source, but we can interpret the result
in the case where we have multiple sources. Given some radius of detection R we can
approximate the expected estimation probability of a source of strength s′ in a multiple-
source setting by the corresponding probability Pr{EST(R) | s = s′} that is computed
in the single-source setting. We now consider whether this approximation provides an
upper bound or a lower bound on the true average probability of estimation given some
new source configuration.

Suppose we have two sources. If they are far enough apart that their plumes do
not intersect (i.e. that there are no measurements for which they both contribute
more than some amount ε), then we can treat them as independent and each source’s
expected estimation probability will be given by the value obtained through our analysis,
assuming we have estimation probabilities for an isolated source of emission rate sj . We
now consider how each source’s expected estimation probability changes as the sources
move close together. As the sources become increasingly nearer, at some point their
detection regions, parameterized by R, will intersect. It is nearly unavoidable that
we will have an estimate from source A (w.l.o.g.) land within the detection region of
both sources, hence counting towards the estimation probability of the source A and
source B. This “extra” sampled source will give source B a larger expected estimation
probability than in the isolated case that we use for our analysis in this section. As
a result, we see that the expected probability of estimation obtained in this analysis
is a lower bound for the expected estimation probability for any given source in a
multiple-emitter setting.

� 6.2 Source resolvability

In this experiment we examine our system’s ability to identify when we have two sources
instead of just a single source. As a quick thought experiment, consider two sources of
equal size and strength separated by a very small distance ε. The inference algorithm
will estimate them as a single source of the same size with an emission rate equal to the
sum of the two emission rates. Now move the sources apart gradually. At some distance
∆ our inference algorithm will correctly resolve them into two separate sources. Our
goal in this experiment is to identify the conditions under which a pair of sources can
be resolved.

As before, we marginalize over the path variables via the configurations shown in
Figure 6.1. In order to ensure that the effects we observe are completely related to the
diffusion model and not a problem of observability, we set the source emission rates to
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Figure 6.4: A diagram for the setup of the resolvability experiment.

be very high, s1 = s2 = 0.1 m3/s. The two sources are arranged as shown in Figure 6.4.
Each black dot in the figure represents a source; these sources have widths w1 and w2

meters, respectively. We consider two different width configurations: one where the
sources are both of equal widths, w1 = w2 = 10 m, and one where w1 = 20 m and
w2 = 0 m. Finally, the sources are separated by some distance d m and the separation
is at some angle φ relative to the wind direction. The midpoint between the two sources
has (x1, x2) location (0, 0). When φ = 0◦ one source is directly downwind of the other;
when φ = 90◦ the sources are separated exclusively in the cross-wind direction. In our
experiment the separation distance d can take values of 50 m, 100 m, 200 m, 300 m,
400 m, or 500 m. The angle of separation φ can take values of 0◦, 30◦, 60◦, or 90◦.

Our intuition would indicate that sources would become resolvable once separated
by several times their combined widths. Additionally, we would expect that sources
are resolvable earlier when they are separated in the cross-wind direction than in the
downwind direction. We evaluate our results by examining the posterior distribution
over the number of sources and examining the probability maps associated with the
posterior distribution.

Figure 6.5 shows the posterior distributions of the number of sources m given the
control parameters φ and d. The two sources are better resolved in posterior distribu-
tions that are most sharply peaked around m = 2. From Figure 6.5 we see that sources
separated in the downwind direction are very difficult to differentiate–even sources sep-
arated by up to 500 meters are not decisively identified as separate in 60% of cases.
As the axis of separation becomes increasingly perpendicular to the wind the source
separability improves dramatically. Comparing the second and third rows, for φ = 30◦

and φ = 60◦, we see that the latter row places more probability mass on m = 2 and
adds greater probability mass to m = 2 for smaller values of d. For φ = 90◦ we do not
observe a similar improvement over φ = 60◦. In fact, in certain cases there is actually
less probability mass assigned to the correct number of sources m = 2. We hypothesize
that some factor not visible in this experiment is influencing these results.
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Figure 6.5: The posterior distribution over the number of sources m for the values of
source separation distance d and angle of separation φ relative to the wind direction.

We investigate the posterior distribution of source locations using the probability
map approach outlined in Chapter 5. Figure 6.6 shows the probability map corre-
sponding to the ground-truth source configuration θ∗ for each of our possible control
variable combinations. Figure 6.7 shows the expected probability map, where the ex-
pectation is taken over the distribution p(θ | z). The latter figure is most of interest
to us. The first two columns clearly show that the sources are not yet differentiated
and are still being represented as one source. At some separation distance between 100
and 200 m the sources become resolvable. The third column shows that, especially for
φ = 60◦ and φ = 90◦, the sources are often differentiated but sometimes not. The
posterior distribution over source locations is bimodal in this case. We can either have
two sources spread apart and further downwind or a single source further upwind with
the combined emission rate. This trend continues as d continues to increase.

Curiously, as the separation between the two ground-truth sources increases, the
position of the estimated third source decreases in the upwind direction. We suspect
that this corresponds to samples from the posterior where the plume envelope of the sin-
gle larger source further back completely encompasses the envelopes of the two smaller
sources further downwind. This possibly highlights some ambiguity between how wide
or diffuse a source is and its distance upwind of some measurement locations. This
connection will be explored in a further experiment.
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Figure 6.8: A plot showing sets of upwind source locations δ and the corresponding
source widths w that result in identical plume horizontal dispersion parameter values
σH .

� 6.3 Source widths and flight direction

In the previous experiment we uncovered a potential ambiguity in the model regarding
the source width parameter. Specifically, there is a tradeoff between the width of a
source and its wind-aligned distance from the measurement location d, as indicated by
the definition of the horizontal concentration plume standard deviation:

σH(d,w) =
(
d2σ2

θ + w2
)1/2

(6.1)

where d is the distance of the measurement location, equivalent to the upwind distance
from the measurement to the source location; w is the source width; and σθ is the wind
angle standard deviation.

Recall that the horizontal plume standard deviation σH defines the width of the
plume concentration profile, which along with the vertical plume standard deviation σV ,
completely determines the statistical properties the observed concentrations. Hence,
if we temporarily ignore the effect of σV , having multiple source configurations that
provide the same σH means that these configurations are completely indistinguishable
for our model and inference procedure.

Equation 6.1 implicitly defines an equivalence class for each possible horizontal
plume standard deviation σH , which can arise from many possible values of d and w.
Figure 6.8 shows these combinations of d and w for several values of σH . For instance,
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consider a plume width of σH = 100 m. This may come from a source of width
w = 90 m located 200 meters upwind or a source of width w = 0 located 450 meters
upwind—these two cases, and any of the configurations on the line between them,
cannot be differentiated as they provide an identical concentration distribution. Hence,
given some set of measurements all taken at the same downwind location, our sampling
algorithm will generate sources along the curves on Figure 6.8 instead of converging to
the exact point (d∗, w∗).

It is tempting to expect the vertical plume standard deviation σV , which is uniquely
defined by the downwind distance d, to offer assistance in resolving this ambiguity.
Unfortunately, the plume vertical standard deviation is not especially helpful due to
the vertical plume reflections that occur within the model.

We anticipate that when we take measurements from multiple downwind distances
from some source, we are effectively obtaining a set curves similar to those from Fig-
ure 6.8. The configuration that satisfies the measurements at all of the downwind
distances will effectively be the point of intersection of the curves defined by each pass.
Recall that each pass is perpendicular to the wind direction, so the downwind distance
from every point along a pass to the source is identical. That is, so we only obtain one
(d,w) curve for each pass.

We now consider angling the passes relative to the wind direction to help identify
the true source location and width. We also wish to see if, and how, this ambiguity
manifests and changes for sources of different sizes. Hence, our control variables for
this experiment are the source size w, which we consider for values of 25 m, 50 m, 75
m, and 100 m, and flight angle relative to the wind θpath, for which we consider values
of 90◦, 75◦, 60◦, and 45◦. We marginalize over path separation, offset, background and
measurement noise realizations. As before, we hold the emission rate constant at a high
value to ensure that our single source at (0, 0) is very easily observable and that any
and all ambiguity is not related to our ability to “see” the source.

We would expect that the larger the source is the greater variation we would ob-
serve in its position along the direction of the wind. Specifically, we expect to see a
“tail” behind the true source location where the source width is being traded off for
downwind distance. We would also expect that flying at an angle to the wind provides
measurements that allow the algorithm to better differentiate between members of the
equivalence classes, so the “tails” described above would be shorter for values of θpath

that are closer to 45◦ than 90◦.
Figure 6.9 shows the expected probability maps obtained after marginalization via

sampling. The true probability map for each source size is shown in the top row; each
column corresponds to a different source size. In the second through fifth row the
path angle θpath is adjusted from 90◦ to 45◦ in 15◦-decrements. The wind is moving in
the positive x1 direction. We observe immediately that sources do have a “tail” that
extends upwind, and that this is especially noticeable for larger sources. Interestingly,
the area of highest probability is approximately mid-way back on the tail, as if our
inference algorithm resorts to sampling uniformly from the members of the equivalence
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classes and the area of the highest probability works out to be the median of this
uniform distribution. This means that the most likely estimate of our source location
will be inherently biased slightly upwind of the source, where the amount of the bias
is somehow related to the width of the ground-truth source. Finally, we note that the
path angle does not appear to have a significant effect on our ability to differentiate
between members of the equivalence class.

These experimental results indicate that further work is needed to better understand
the implications of the source dispersion model. It is unclear whether the elements of
a given equivalence class are truly unidentifiable or identifiable in theory but not in
practice due to noise. We may consider this problem in future work. In most practical
scenarios the source widths are actually rather small (w ≈ 20 m) so we may just set
wmax to a similar value to ensure that the range of possible source locations is also
small.

� 6.4 Sensor-based improvements

In this section we examine two different modifications that could be made to the sensor
used in the measurement process. Suppose we could design a sensor that had a higher
sampling rate, which increases our number of measurements n. Suppose we could also
design a sensor that had a higher precision, this would correspond in our model to
having a lower variance for the additive Gaussian white measurement noise. In this
experiment we consider the impact of changing these two parameters on our ability to
detect a source.

Without loss of generality, here we investigate the detection of a single ground-
truth source with location (0, 0) and size w = 20 meters. Our control parameters are
the sensor’s sampling rate fs and the sensor’s measurement error standard deviation
σε, denoted here by σ. We allow the sampling rate fs to take values of 1/4 Hz, 1/2 Hz,
1 Hz, and 2 Hz; the measurement error standard deviation σ takes values 10 ppb, 1 ppb,
and 0.1 ppb, equivalently 10−8, 10−9, and 10−10. Our current real-world system has
fs = 1/3 Hz since the alternatives are all within the realm of possibility; similarly our
alternative values for σ represent an order of magnitude improvement or degradation.
We marginalize over the paths shown in Figure 6.1, as well as source emission rates
of s = 0.1 m3/s and s = 0.01 m3/s. Finally, we also marginalize over background
realizations and measurement noise realizations.

Naturally we expect that the more measurements we obtain the better our ability to
estimate a source; similarly, we expect that the better the measurements we obtain the
better our ability to estimate a source. Figure 6.10 shows our estimation probability
changes as a function of radius R for various settings of fs and σ. We note that “bump”
near R = 5000 m is due to the same edge artifact that was mentioned in the source
visibility experiment. In agreement with our intuition, we see that both the estimation
probability and the probability of relevance increase as the sampling rate increases, and
also as the amount of noise in our measurements decreases. Interestingly, we also note



Figure 6.9: Probability maps for the true (top row) and estimated source location
distributions (other rows). The ground-truth source location is at (0, 0). The width
of the source varies with each column. Each of the rows other than the first shows
the average estimated source location distribution given a flight path at the designated
angle to the wind. Note that larger sources have higher location ambiguity in the x
direction and that the pass angle θpath appears to have no discernible effect on the
probability map for the source location.
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that the dashed lines, which indicate the probability of spurious estimations, decrease
as the amount of noise in our measurements decreases. This is consistent with what we
would expect.

Figure 6.11 shows four plots, all containing curves that are analogous to ROC curves.
The estimation probability for non-zero emissions is plotted versus the probability of
estimation given no source contributions, also called our spurious estimation probability.
We note that as the sampling rate increases the marginal benefit of increasing the
sensor’s accuracy by an order of magnitude decreases substantially.

Interestingly, in Figure 6.11, when the sampling rate is fs = 2 Hz we perform
better with σε = 1 ppb than with σε = 0.1 ppb since the red curve is barely above
the green curve for some range of radii. In fact, if we would further reduce σε without
making any other modifications to the inference procedure we would see performance
drop considerably. This is due to the way that we explore the parameter space via our
Markov chain, which is affected by changing the number of measurements n (through
fs) and the measurement error standard deviation σε. Consider the Hastings ratio
in Equation 4.25. As n grows to be extremely large or σε becomes extremely small
our Hastings ratio approaches zero, so our acceptance probability drops dramatically.
While our posterior distribution is much narrower our proposal variances do not change.
Hence, what was previously a small (and relatively acceptable) step near the current
point we are instead making very large steps that are very rarely accepted. This problem
could be avoided by a priori setting the proposal variances for x, s, and w to be smaller
when we have smaller σε or larger n.

� 6.5 Inference over multiple flights

The final synthetic experiment concerns a question of model mismatch. One ability of
our system that has not yet been discussed is the capability to run inference simultane-
ously on data from multiple flights. That is, we can easily create a stacked measurement
vector, measurement location matrix, and time vectors where times from the second
flight are shifted relative to the beginning of the first flight. We can then run inference
on this multi-flight survey. The measurement model becomes[

z1

z2

]
=

[
A1

A2

]
s+

[
b1

b2

]
+

[
ε1

ε2

]
(6.2)

where the coupling matrices Ai could be generated from different wind fields u. The
prior on b can similarly be easily combined, since for large enough time differences
between the flights it can be shown that the joint distribution of b1 and b2 has a
block-diagonal precision matrix

J→
[
J1 0
0 J2

]
which we can invert far more efficiently than a non-block-diagonal precision. We have
empirically found that the backgrounds become practically independent for temporal
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Figure 6.10: Plots of (left) the probability of having an estimated source within R
meters of the ground-truth source at (0,0); (right) the probability of having a ground-
truth source within R meters of a randomly-selected estimated source. Green lines
correspond to σε = 0.1 ppb, red lines to σε = 1 ppb, and blue lines to σε = 10 ppb.
Solid lines are the average probability given data with a simulated ground-truth source
at (0,0) and dashed lines are the average probability given data containing no source
and all other parameters equal.
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Figure 6.11: Curves analogous to ROC curves for the sensor-oriented experiment. We
see that performance improves for higher sampling rates and lower measurement noise
standard deviations, indicated by the curves for those configurations lying completely
above the curves for lower sampling rates and higher measurement noise standard de-
viations.
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flight separation on the order of 24 hours. For simultaneously-occurring flights a com-
bined precision matrix may also be computed by the standard procedure outlined in
Chapter 3.

We recognize that this model assumes that source parameters including locations
xj , widths wj , and emission rates sj are constant between the two flights. This is
exactly the assumption that we will violate in our experiment on model mismatch. In
this experiment we consider our ability to detect a single source located at (0, 0). In
the first flight we set the emission rate s1 = 0.02 m3/s so that the source is just visible
enough to be estimated most of the time while still leaving room for improvement. We
then violate the constant-source assumption of the model by allowing the emission rate
used in the second flight to take the value s2 = s1/2 = 0.01 m3/s, s2 = s1/4 = 0.005
m3/s, or s2 = 0 m3/s. Our key concern here is to quantify how much our system
performance degrades by not accounting for possible changes in the emission rate of a
source between flights, and whether or not this capacity needs to be incorporated into
the model.

We are additionally interested in the impact of a changing wind direction between
the two flights on our ability to do inference. It is suspected that our ability to accurately
estimate sources improves because the sources and plumes will effectively be seen from
multiple angles. The wind fields are assumed constant during each individual flight.
Without loss of generality we set the wind direction in the first flight to be towards
positive x1 and let the wind direction in the second flight be φ, where φ can take values
0◦, 30◦, 60◦, and 90◦. In both flights we assume that we follow standard procedure and
make passes perpendicular to the wind direction.

We marginalize over the source size w, as well as the flight paths for the two experi-
ments. For each flight we select one of the flight paths shown in Figure 6.1, rotated such
that the passes are perpendicular to the wind for that flight, in keeping with standard
procedure. The paths are constrained to have the same pass separation in both flights.

Figure 6.12 shows the probability of estimating a source within R meters of the
ground-truth source for varying values of R. Interestingly, as long as the wind direc-
tions are very close between the two flights there is relatively little degradation in the
estimation probability as the emission rates differ. Even if the source is completely
off in the second flight our probability of estimation only degrades by about 15% for
R ≈ 1000. We note a similar change in the probability of relevance for a small change
φ in wind angle. As the difference in the wind angle grows, however, we generally see
that the more consistent emission rates see an improvement in performance, whereas
the performance reduction for a source deactivation becomes much larger–this is espe-
cially noticeable in the bottom-left plot (φ = 90) where the blue and red lines move
closer to the upper-left corner and the purple line drops from its position in the φ = 60◦

case. Similar patterns are observed in Figure 6.13.
This experiment would indicate that model mismatch, at least for sources with

an emission rate of s1 = 0.02 m3/s, does not severely degrade performance. Further
investigations may consider whether or not this degradation is acceptable and the results
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Figure 6.12: Plots of (left) the probability of having an estimated source within R
meters of the ground-truth source at (0,0); (right) the probability of having a ground-
truth source within R meters of a randomly-selected estimated source. The blue line
indicates s2 = s1, the red line shows s2 = s1/2, the gold shows s2 = s1/4, and the
purple shows s2 = 0 The green line indicates the corresponding value for s1 = s2 = 0,
corresponding with not having any source in either flight.
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Figure 6.13: Curves analogous to ROC curves for the model mismatch experiment.
We see that a more consistent emission rate s2 in the second flight leads to better
performance in all of the cases. As the difference φ in the wind angle between the
two flights grows, strongly-performing configurations improve and poorly-performing
configurations degrade, as shown by a widening of the gap between the blue/red/gold
curves and the purple curve.
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Figure 6.14: Marginal distributions for the various parameters.

of similar experiments for more highly- or lowly-emitting sources.

� 6.6 Results from real data

In this section we show the results of performing inference on a set of real data. Unlike in
synthetic cases, in real data we often do not know the ground-truth parameter values.
When this is the case, many of the performance metrics developed in the previous
chapter can no longer be applied. However, we can still compute posterior distributions,
expected emission rate maps, and estimate the MAP solution from our sampler output.

For the data set used here, an aircraft flew over a rural area at an altitude of 150
meters and took measurements roughly every three seconds. The survey area is 65 km
by 65 km. Unfortunately ground-truth is not known. The sampler was run for 20,000
iterations and the first 10,000 were discarded as burn-in.

The marginal distributions for the various parameters are shown in Figure 6.14.
Our distribution over the source count m has a mode at m = 37 sources with locations
scattered as shown by the joint marginal distribution over x1 and x2. The values in
the distribution over emission rates are all well-within the expected range. Finally, our
distribution over the width parameter looks nearly uniform, likely due to the ambiguity
that we studied earlier in the chapter.

Figure 6.15 shows the flight path as a series of blue dots. The size of the dots
corresponds to the magnitude of the measurement. Wind is blowing towards the north-
west. The MAP solution is given by the green dots; the plumes generated by the
MAP solution are shown as background color. We note that the measurements closer
to the north-west corner of the survey area have much higher magnitude, as indicated
by the larger size of the dots. Our inference results suggest that this is due to the
background in that region. The sources are generally positioned upwind of a sequence
of measurements that have a sharp increase and then decrease in magnitude, indicating
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Figure 6.16: Expected emission rate map. This is computed as described in Chapter 5.

sensible placement. One exception to this is the source near the bottom right that is
very far from the measurements. The MAP solution does not give any indication as to
how “certain” we are that this source exists–for this intuition one should examine the
expected emission rate map.

The expected emission rate map indicates, for each cell, the expected emission rate
produced within this cell. The exact form was specified in Chapter 5. This is very
similar to the joint marginal distribution over location, except it also provides some
notion of source strength. For instance, the source that is near (6.18× 105, 3.195× 105)
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appears to be emitting very strongly judging by the emission rate map. In the absence
of real ground-truth data we cannot make further remarks.

Clearly inference on real data is a challenging task. Many assumptions used by our
system, especially those for the dispersion model, are broken in real-world scenarios.
Still, our algorithm generates plausible and sensible output. Several factors might
improve our ability to perform inference, particularly on real-world data, including
adding a non-uniform prior distributions over the number of sources, some of the source
parameters, and the measurement error standard deviation. The incorporation of a
more-robust wind model would also provide a large performance gain.
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Chapter 7

Conclusions and future work

Identifying some emission source, and properties thereof, from remotely obtained con-
centration measurements is a problem of great interest in several intersecting areas
of study. In this thesis we have focused on a single application—remote detection of
gaseous emission sources—and developed a model and inference procedure suitable to
the task. The selected problem differs from many in the existing literature. In partic-
ular, we do not assume the number of sources is known a priori and we sought source
contributions that were embedded in a background that was several orders of magnitude
larger. We formulated this problem as a probabilistic graphical model with associated
prior, likelihood, and posterior distributions. Using a well-founded Bayesian inference
technique, Reversible-jump MCMC, we are able to draw samples from the posterior
distribution.

We developed a variety of performance metrics that leverage the sample-based rep-
resentation of the posterior distribution. These metrics were then applied to a range
of synthetic experiments for which we had ground-truth available. This allowed us to
quantify the performance of the inference algorithm for some particular set of parame-
ters. By effectively marginalizing over all but a small subset of the parameters, we were
able to estimate the average system performance with respect to that small subset of
parameters.

Future work could explore several different directions. Now that we have the mech-
anisms in place to evaluate different modeling choices, we would like to consider using
non-uniform priors for many of the parameters including emission rate, source width,
and standard deviation. We may also consider changing the model for the sources so
that they are drawn from an inhomogeneous Poisson point process for which the rate
function is unknown. An alternative direction would consider different wind models,
including the incorporation of Lagrangian particle simulation methods.

101
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