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Abstract. Real-world video sequences coded at low bit rates suffer from com-
pression artifacts, which are visually disruptive and can cause problems to com-
puter vision algorithms. Unlike the denoising problem where the high frequency
components of the signal are present in the noisy observation, most high fre-
quency details are lost during compression and artificial discontinuities arise
across the coding block boundaries. In addition to sparse spatial priors that can
reduce the blocking artifacts for a single frame, temporal information is needed
to recover the lost spatial details. However, establishing accurate temporal cor-
respondences from the compressed videos is challenging because of the loss of
high frequency details and the increase of false blocking artifacts. In this paper,
we propose a non-causal temporal prior model to reduce video compression ar-
tifacts by propagating information from adjacent frames and iterating between
image reconstruction and motion estimation. Experimental results on real-world
sequences demonstrate that the deblocked videos by the proposed system have
marginal statistics of high frequency components closer to those of the original
ones, and are better input for standard edge and corner detectors than the coded
ones.

1 Introduction

Increasing amounts of video data are captured and shared everyday with the emergence
of smart phones and mobile devices. Due to high data volume and bandwidth limit,
storing and transmitting videos require low bit-rate compression, which introduces vi-
sually unpleasing coding artifacts to compressed videos. Fig. 1 shows some snapshots
of typical real-world videos from Youtube and Skype. Compressed videos can suffer
from severe image content distortion: high frequency image details are lost while ar-
tificial block boundaries appear. The compression artifacts are visually disruptive and
can cause problems to vision algorithms that are primarily designed for uncompressed
images. Therefore, it is desirable to remove or reduce these compression artifacts in
compressed videos.

Post-processing coded videos at the decoder end is a promising solution to alleviate
the conflict between bit rate reduction and image quality preservation, as this method
does not change existing codec structure. Current coding standards divide an image
into non-overlapping blocks and code each block individually, resulting in loss of cor-
relation between neighboring blocks. Previous work [14, 18, 19] has relied on spatial
smoothness priors to reduce blocking artifacts without blurring the major edges. Tem-
poral information has been exploited to enhance the image details, but the improvement
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Fig. 1. Left two: snapshots of videos from Youtube and Skype. Compression artifacts, such as the
artificial block boundaries and the absence of image details, severely degrade the video quality.
It is desirable to recover the original videos from the compressed videos. Right two: histograms
of neighboring pixel difference across (inter) and inside (intra) the coding blocks, obtained using
576 frames from 18 sequences. In the coded frames, artificial edges are introduced near the block
boundaries, while details are lost inside blocks. Video deblocking should not only reduce the
blocking artifacts but also enhance the lost details within the coding blocks.

is minor [12, 22]. Current video coding standards use block matching to reduce data re-
dundancy, leaving little room for improvement by these block matching based methods.

Block matching is a coarse-level correspondence and therefore, does not fully re-
move temporal redundancy in the coding process. This phenomenon leaves room for
further improvement through dense motion representation such as optical flow, which
provides much finer correspondences than block matching, and further allows for ex-
ploiting remnant redundancy to help recover lost details.

Nevertheless, estimating optical flow on highly compressed videos is challeng-
ing. Typical motion estimation methods rely heavily on fine image details for accurate
matching but many details are missing in the coded images. In addition, compression
artifacts are false high frequency signals, which can disturb flow estimation algorithms.
Inaccurate motion may deteriorate the quality of estimated videos (see Section 5).

In this paper, we study the video deblocking1 problem in-depth and make the fol-
lowing contributions. First, we measure the statistical difference between coded videos
(i.e. decompressed frames from a codec) and original uncompressed videos, and find
that the coded ones have less details within the blocks. We try the image analogy ap-
proach to predict the lost high frequency components form low frequency ones but
find this approach fails to recover the original videos. Second, we develop a non-causal
temporal prior model that simultaneously estimates both the flow fields and the origi-
nal video. Third, we study the optimum bit rate at which our system can get maximum
performance gain. Fourth, the deblocked images have marginal statistics closer to the
original images and are better input for standard edge and corner detectors than the
coded images.

We also study the potential benefits of estimating optical flow at the encoder side.
We find that, for scenes with simple motion, estimating the motion and spending a few
extra bits to compress and transmit the motion can bring significant improvement for a
postprocessing method. This suggests new doors for more efficient video compression.

1 Although it has been commonly referred to as “deblocking” for reducing compression artifacts
(including both JPEG and MPEG), our goal is not only reducing blocking artifacts but also
recovering fine image details. We focus on the MPEG2 codec in our paper, and in theory our
system can generalize to the more complicated MPEG4 codec.
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2 Previous Work

The fundamental problem behind video deblocking is efficient image and video repre-
sentation, which has been extensively studied in both coding and vision communities.

The fact that there are many repeated patterns, both spatially and temporally, makes
it possible to compress digital images and videos [21]. The essence of compression is to
predict a patch using other patches in a spatial or temporal neighborhood, and to discard
the high-frequency components of the residual, as human eyes are less sensitive to high
frequencies. In popular codecs such as MPEG2 and MPEG4 (including H.264), block
matching has been widely used to predict patches in the current frame from neighboring
frames. However, such coarse-level motion representation does not fully remove redun-
dancies in videos, and leaves room for improvement by finer motion representations to
exploit the remaining redundancy.

In computer vision, statistical image and video models have been studied to solve
inverse inference problems. Sparse priors [24], non-local regularization [7], and high-
order Markov Random Field (MRF) [23] can achieve high-quality image restoration
results when the distortion process is known, such as denoising and deblurring. Con-
trary to block matching in the coding community, temporal correspondences are often
described by more flexible representations such as optical flow fields [6, 10, 27]. Reli-
able optical flow estimation has enabled such successful applications as video denois-
ing [16], super resolution [17], and high-speed video acquisition [20].

These prior models from the vision community can also be applied to video de-
blocking. However, we need to develop new models too. For example, instead of impos-
ing spatial sparse prior on a static image [17]. We assume densely connected temporal
prior for the whole video, which allows fast propagation of information over time. The
formulation of [17] solves for flow between the reconstructed and the input images. Our
formulation solves for flow between reconstructed images and avoids the difficult prob-
lem of using coding information in flow estimation. Our image reconstruction algorithm
directly uses the coding information.

To remove JPEG blocking artifacts in a single image, researchers have used ad-
vanced image prior models developed in the vision community [14, 26] . These meth-
ods can reduce the blocking artifacts and preserve major image structures, but cannot
recover the lost image details. Typically, image prior models may be able to preserve
image details present in the input image, but not able to synthesize new details.

Repetitive measurements of objects in videos make it possible to recover the lost
details. Although each individual frame may contain few details after compression,
accumulating information over time can enhance details in every frame. To do so we
need precise alignment of the images, which requires fine-level motion representation
such as per-pixel optical flow.

Unfortunately, existing video deblocking methods do not use such fine-level mo-
tion representations. The deblocking filtering recommended by the MPEG standard
adaptively performs low-pass filtering across the coding block boundaries [3, 30] on a
frame-by-frame basis. Meier et al. [18] proposed to reduce the blocking artifacts in the
video by repeatedly applying a single-frame deblocking method. Robertson and Steven-
son [22] exploited temporal information for video deblocking but temporal correspon-
dences are established by block matching. Li and Delp [12] proposed a 3D MRF for
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Fig. 2. Histograms (top) of the DCT coefficients C(1, 1) (DC), C(2, 2), C(4, 4), and C(6, 6),
together with the corresponding DCT basis images (bottom), obtained using 576 frames from 18
sequences. The coded images have much fewer middle and high frequency DCT coefficients than
the original images.

blocking artifact reduction with the temporal neighborhood also established by block
matching. Jin et al. [11] used the magnitude of the image gradients, called “optical flow
magnitude”, to measure the surface smoothness and minimize this measure to reduce
blocking artifacts. However, the method neither computes optical flow nor uses tempo-
ral information.

To measure the quality of deblocked images, Minami and Zakhor [19] proposed to
use the smoothness across the coding block boundaries. However, this measure does
not capture the loss of true image details. We study the statistical differences between
the coded and the original images both between and inside the coding blocks and find
that both measures are necessary criteria for designing a deblocking system.

3 Observations about MPEG Video Coding
3.1 Brief Introduction

Transform coding has been demonstrated as being effective for compressing both still
and moving pictures. Due to its energy concentration ability, block discrete cosine trans-
form (DCT) has been widely adopted in several coding standards, such as JPEG [29]
and MPEG2 [25]. The encoder divides an image into non-overlapping blocks and forms
a prediction of each block using neighboring images or other blocks in the same image.
Let vector I be vectorized representation of a block in the original image and Ipred its
prediction. To remove temporal redundancy, the encoder subtracts the prediction from
the original image block and transfroms the the residual block into the DCT domain

C = T(I − Ipred), (1)

where T is the forward DCT transformation matrix. To save bits, the encoder performs
quantization to each DCT coefficient C(u, v), 0 ≤ u, v ≤ 7, and the decoder performs
dequantization. The whole process can be described as

Cq(u, v) =

[
C(u, v)

Q(u, v)

]
Q(u, v), (2)

where [∗] means rounding operation, and Q(u, v) is the quantization step size for the
(u, v)th coefficient. We can extract the quantized coefficients and the quantization step



Non-causal Temporal Prior for Video Deblocking 5

sizes for every block from the coding bit stream. These two together define an interval,
or a quantization constraint set, which the original coefficients before quantization must
belong to. Performing the inverse transform on the quantized coefficients and adding the
result to the prediction, we obtain the decompressed (a.k.a. coded) block as

J = T−1Cq + Ipred, (3)

where T−1 is the inverse DCT transformation matrix.
For most image blocks, high frequency coefficients have small magnitude and are

usually truncated by the quantization operation. The reconstructed blocks hence have
less high frequency components than the original ones. Because each block is coded
independently, false edge may arise across the blocks boundaries.

3.2 Statistics of Original and Coded Sequences

We collected 18 standard videos from the coding community[1] and compressed them
using the official MPEG2 software [2] at 0.5 Mbps with the main profile setting. We
then computed the statistics of the original and coded sequences. First, coding intro-
duces artificial high frequency components across the block boundaries, while reducing
the high frequency signals within each coding block, as shown in Fig. 1. Although the
increase of high frequency blocking artifacts is more obvious and receives more atten-
tion, the recovery of the lost high frequency components within each coding blocks has
been more or less neglected.

To further study the loss of high frequency components, we computed the his-
tograms of the DCT coefficients of the original and the coded sequences. Compared
to the original, the coded sequences have similar histograms for the low-frequency co-
efficients, but the magnitude of middle and high frequency coefficients are significantly
reduced, as shown in Fig. 2. Fig. 4 plots the ratio of the coded DCT coefficient mag-
nitude over that of the original sequences. For most middle and high frequency DCT
coefficients, the ratio is below 1. All these statistics suggest that the coding system
significantly reduces the middle and high frequency signal within blocks, while intro-
ducing unwanted high frequencies across blocks.

3.3 A Naı̈ve Approach

An simple and intuitive idea is to restore the coded blocks using a data-driven, learning
based approach in the spirit of image analogies [9]. For a given bit rate, we can obtain
pairs of coded and original sequences. For a new coded sequence, we can match the
coded blocks in the database and transfer the corresponding original blocks to restore
the images. Specifically, for every selected video, we collect 8 × 8 image blocks from
the rest 17 video compressed at the same bit rate, perform PCA on these blocks, and
build a K-D tree [5, 13] using the top 20 PCA coefficients for fast searching neighbor-
ing coded blocks. For each block in the input video, we find its approximate k nearest
neighboring blocks via the pre-built K-D tree, and add the weighted average of the dif-
ference between the original image blocks and the coded blocks to the block to restore.
As shown in Fig. 5, this approach does introduces high frequency to the image, but the
improvement is small, as shown in Section 5.
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Fig. 3. The diagram of video deblocking. The original frames are densely connected to both the
nearest temporal neighbors and those far away. The coded images are generated by adding com-
pression artifacts to the original frames. Our video deblocking system takes compressed video
and outputs both the decompressed video and the inter-frame flow fields.

The results are actually not surprising by afterthought. The DCT transform is well
known for its high decorrelation ability. The correlation between the low frequency and
high frequency coefficients tends to be low. Hence it it is hard to find the truncated high
frequency coefficients back using the little correlated low frequency coefficients. We
should exploit information from multiple images which provide repeated observations
of the same patterns.

4 A Non-causal Temporal Prior Model

Given a compressed video sequence {Ji}, our goal is to recover the original sequence
{Ii} using temporal information from neighboring frames. We design a non-causal sys-
tem to jointly estimate the original sequence {Ii} and the correspondences {wij} be-
tween neighboring frames. Fig. 3 illustrates the model of how the compressed video
is generated and the corresponding graphical model is given in Fig. 4. Note that both
directed and undirected edges exist in the graph.

For computational reasons, we use Bayesian MAP to find the optimal solution

{{Ii}∗, {wij}∗} = argmax
{Ii},{wij}

p({Ii}, {wij}|{Ji}), (4)

where the posterior is the product of prior and likelihood:
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Fig. 4. Left: ratios of DCT coefficient magnitude between the coded and original images. Fre-
quency increases from top left to bottom right. The ratio for the DC coefficient (1, 1) is 1. The
coded coefficients roughly preserve the energy at low frequency bands but have loss in the middle
and high frequency ones. The increase in the highest vertical frequency (last row) results from the
“field”-based motion prediction by MPEG2 (please refer to supplementary materials for further
details). Right: The graphical model of video deblocking. We allow non-adjacent neighbors to
be temporal neighbors. The circular nodes are variables (vectors), whereas the rectangular nodes
F is the warping matrices according to the flow field. The end of the directional edges indicate
the constraint after transformation.

p({Ii}, {wij}|{Ji}) ∝ p({wij}) · p({Ii}|{wij}) ·
∏
i

p(Ji|Ii). (5)

We use a sparsity prior to model the correspondences between images:

p({wij}) ∝
∏
i

∏
j∈Ni

exp
{
−λ
(∥∥∇uij∥∥+∥∥∇vij∥∥)} , (6)

where the set Ni contains the temporal neighbors of the ith frame, uij and vij are the
horizontal and vertical components of the flow field wij , respectively, and

∥∥∗∥∥ denotes
the L1 norm. We allow non-adjacent frames to be neighbors and define the temporal
neighborhood size to be the largest time interval between i and its neighbors. Given the
correspondences, the distribution for the original video sequence is

p({Ii}|{wij})∝
∏
i

exp{−ηi
∥∥∇Ii∥∥}·∏

j∈Ni

exp
{
−ηij

(∥∥Ii−Fwij
Ij
∥∥+∥∥Ij−Fwji

Ii
∥∥)},(7)

where wij is the correspondence from the ith frame to the jth frame and Fwij
is the

warping operator. Note that Ii is related to Ij by both wij and wji.
We model the coding distortion by the Laplacian distribution

p(Ji|Ii) ∝ exp{−θi||Ii − Ji||}. (8)

4.1 Image Reconstruction

Given the current estimates of the correspondence {wij} and all the other frames {Ij}j 6=i,
we estimate the original image Ii by solving
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I∗i=argmin
Ii

θi
∥∥Ii−Ji)∥∥+ηi∥∥∇Ii∥∥+∑

j∈Ni

ηij
(∥∥Ii−Fwij

Ij
∥∥+∥∥Ij−Fwji

Ii
∥∥), (9)

within the quantization intervals for each 8× 8 coding block

Cq(u, v)−
Q(u, v)

2
≤ C(u, v) < Cq(u, v) +

Q(u, v)

2
, 0 ≤ u, v ≤ 7. (10)

To use gradient-based methods, we replace the L1 norm with a differentiable ap-
proximation φ(x2) =

√
x2 + ε2 (ε = 0.001), and denote Φ(|I|2) = {φ(I2(q))}. We

optimize Eq. 9 by the iterated reweighted least square (IRLS) method [15] solving the
following linear system:[

θiWi + ηi

(
DT

xWsDx +DT
y WsDy

)
+
∑
j∈Ni

ηij(I+ FT
wji

WjiFwji
)
]
Ii =

θiWiJi +
∑
j∈Ni

ηij(I+ FT
wji

Wji)Ij , (11)

where the matrices Dx and Dy correspond to the x- and y- derivative filters and I is the
identity matrix. IRLS iterates between solving the above least square problem and esti-
mating the diagonal weight matrices Wi=diag(Φ′(|Ii−Ji|2)), Ws=diag(Φ′(|∇Ii|2)),
and Wji = diag(Φ′(|FwjiIi − Ij |2)) based on the current image estimate. During the
optimization process, the DCT coefficients of the restored image might fall out of the
quantization intervals specified by the coded coefficients and the quantization step size,
we project these coefficients to the closest points within the quantization intervals.

4.2 Motion Estimation

The deblocked images get closer to the original images with more iterations. Hence
given the deblocked images, we estimate the flow field wij to establish the correspon-
dence between Ii and Ij (the deblocked versions of Ji and Jj). We adopt a warping-
based, incremental estimation process and solve the flow increment by the SOR method [6].

5 Experimental Results

We test the proposed method using several real-world video sequences compressed by
the MPEG2 video codec. For multi-frame version, we set the temporal neighborhood
size to be 3. One iteration of our method includes solving all the correspondences be-
tween neighboring frames and all the frames. Because there is no public software for
video deblocking, we compare our system to two state-of-the-art video denoising meth-
ods, HQVD [16] and VBM3D [8], and the K-D tree based regression method that uses
the top 7 nearest neighbors for prediction. We manually tune the parameters using the
“yuna” and “city” sequences.

Table 1 summarizes the PSNR results. On average, the proposed method (*M-iter3)
has 1.16dB gain over the coded sequences and 0.76dB over VBM3D. As shown in Fig. 5
and 6, the proposed method effectively reduces the blocking artifacts, while recovering
good amount of image details. For example, the eyes and the mouth are more clear on
“foreman”; the banner is almost readable on “calendar”; and the background letters are
easily recognizable on “yuna”.
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(a) Coded (b) K-D tree (c) VBM3D [8] (d) Ours (e) Original

Fig. 5. Experimental results and comparison. From top to bottom are pairs, foreman, gym,
calendar and yuna. Please see the supplementary materials for corresponding videos, and
view this figure on a computer screen to see the difference. Our video deblocking system can
reduce the coding artifacts and recover details missing in the coded frames.

Our C++ implementation takes about 3 hours to process the 32 frame 640 × 384
“yuna” sequence. Half of the time is on flow estimation and the other half on image re-
construction. Future work will address reducing the computation by better linear equa-
tion solvers [28] and GPU implementations.

Linear programming solver. Linear programming (LP) is another option to solve
the image reconstruction problem within quantization constraints. We tested both the
conjugate gradient (CG) solver with projection and the linear programming solver on
single-image deblocking problem. The LP solver achieves a solution with nearly the
same energy as the CG solver. However a 176 × 252 image took the MATLAB built-in
LP solver about one hour but the CG solver less than 30 seconds in MATLAB. Therefore
we choose CG with projection over LP in our system.

Comparison of motion. We are interested in how motion accuracy would affect de-
blocking results. Since the MPEG2 encoder estimates motion by block matching, we
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(a) pairs (b) foremanA (c) foremanB (d) gym (e) calendar (f) yuna

Fig. 6. Closeup of Figure 5. From top to bottom: coded, VBM3D [8], our system, and original.

Table 1. PSNR score of the luminance (Y) component, averaged over 32 frames. Proposed-S
means the proposed method using a single coded frame; *M-itern means the proposed method
using multi-frame model at the nth iteration. *M-MPEG2 is the proposed multi-frame system
using the motion vectors from MPEG2, and *M-GT is using the “ground truth” motion estimated
using the original images. VBM3D [8] uses all the 32 frames.

Coded K-D Tree HQVD [16] VBM3D [8] Proposed-S *M-iter0 *M-iter3 *M-MPEG2 *M-GT

yuna 32.90 32.35 33.24 33.36 33.00 34.18 34.65 33.21 34.90
city 31.24 30.43 29.93 31.44 31.28 32.05 32.15 29.87 32.53
gym 31.09 30.53 N/A 31.53 31.21 31.92 32.21 31.28 33.07
pairs 28.91 28.21 N/A 29.28 29.03 29.44 29.65 29.60 29.88

foreman 33.93 32.69 N/A 34.44 34.13 34.94 35.20 33.93 35.73

can establish correspondences using the block matching results. Using such correspon-
dences (*M-MPEG2 in Table 1) produces results slightly better than the single-frame
approach on most sequences, consistent with previous work [12, 22]. We can also com-
pute the “ground truth” motion using the original video sequences. Using the “ground
truth” motion in the multi-frame system (*M-GT in Table 1), we have about 0.4 dB
improvement in PSNR over the motion estimated at the decoder. This improvement
suggests that more accurate motion leads to better reconstruction.

Convergence. We study the effect of iterations and compare the quality of the esti-
mated motion at each iteration w.r.t. the “ground truth”. We find that the motion gets
better and the quality of the reconstructed images increases with more iterations, as
shown in Fig. 8. In addition, the curves suggest that our algorithm converges in about
3-5 iterations between motion and images. Note that we use coordinate descent to opti-
mize a convex formulation and the algorithm should converge theoretically.

Optimum bit rate exists for video deblocking. With an infinitely high bit rate, there
is no coding loss and video deblocking cannot help. With a zero bit rate, there is no
information for video deblocking. Therefore, we expect video deblocking to produce
maximum improvement for certain bit rates. To test this, we process the “foreman”
sequence compressed at different bit rates. As shown in Fig. 10, the optimal bit rate for
the proposed system is between 0.5 and 2 Mbps.
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(a) Frame 1 (b) Frame 2 (c) Block matching (d) Optical flow (e) Color key

Fig. 7. Correspondence on one pair of the “yuna” sequence established by the MPEG2’s block
matching method (white blocks are usually “intra” blocks that do not have motion vectors and
the alternating vertical lines in some blocks result from the field DCT coding by MPEG2) and
by our optical flow-based system, color encoded as in [4]. Optical flow estimation provides more
piecewise smooth correspondences than MPEG2’s block matching method.

Fig. 8. Left: PSNR (higher, better) curves for “yuna” sequence during each iteration. Middle: with
more iterations, the estimated correspondence become closer to that estimated using the original
images, as indicated by the end-point error (lower better). The quality of reconstructed images is
highly correlated with the quality of the estimated motion. Right: PSNR gain versus coding bit
rate for “foreman”. The proposed system tends to perform well when the bit rate is between 0.5
and 2 Mbps. When the bit rate is high, the images are of high quality and postprocessing helps
little. When the bit rate is too low, the image quality is too low to make motion estimation work.

Recovery of image details. To further test how well the proposed method recovers
the fine details, we compute the histograms of the DCT coefficients using the recon-
structed images by the proposed method. As shown in Fig. 9, the histograms of the high
frequency DCT coefficients of the reconstructed images are closer to the histograms of
the original sequences than the coded sequence, both visually and numerically as mea-
sured by the KL distance. The results suggest that estimating and using optical flow can
recover certain lost details.

Embedding learning-based methods to the proposed system. We are interested
in whether more useful high frequency components can be introduced by using the
learning-based approach. Hence we modify the data term of the proposed system and
use the K-D tree regression output as the observation. We test this system using the
“yuna” sequence but find little improvement in PSNR. After 3 iterations, the average
PSNR is 34.54dB, almost the same as 34.65dB by the proposed system.

Message to the video coding community. We have seen the benefits of estimating
optical flow at the decoder end. What benefits will we have if we estimate optical flow
at the encoder and transmit it to the decoder? We generate a synthetic video sequence
by circularly translating one “yuna” image to obtain a sequence with known translation
motion. We compress this sequence by the MPEG2 encoder and Fig. 10 shows two
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Fig. 9. Left to right: histograms of neighboring pixel difference across (inter) and inside (intra)
the coding blocks and the DCT coefficient C(4, 4) and C(6, 6), obtained using 576 frames from
18 sequences. The histograms of the deblocked images by the proposed system are closer to
those of the original images than those of the coded images. For the inter case, the K-L dis-
tance between the histograms of the original and the coded/proposed is 0.005/0.003; for the intra
case, the numbers are 0.002/0.006. The increase in the intra case results from the smoothing of
small gradient magnitude (sharp peak around zero), though the proposed method enhances the
large gradient-magnitude signals. For C(4, 4) , the distances are 0.043/0.014; for C(6, 6), the
distances are 0.133/0.066.

Fig. 10. Left: PSNR curves for compressing a translating sequence (5 pixels/frame). The pro-
posed system produces results of higher quality than the coded images, but not as good as simple
averaging processing with ground truth motion (“GT average”). Right: coded 1st and 32nd frames;
note the quality degradation of the 32nd frame (better view on screen).

frames of the coded sequence. At the decoder, we iteratively average temporally neigh-
boring frames along the translation motion and the simple averaging scheme produces
better results than the proposed system for most frames. For this simple sequence, it
costs only several bytes per frame to transmit the motion. This suggests that for se-
quences with simple motion (even in some part of the sequence), estimating and coding
the motion may result in significant improvement at the decoder side.

Message to the vision community. What benefits will a good deblocking method
bring to the vision community? Vision algorithms are usually developed without con-
sidering the coding process, but real-world videos are all compressed to some degree.
Therefore, we study how different input images influence the low-level vision tasks.

We apply the MATLAB built-in Canny edge and Harris corner detectors on the
coded, deblocked, and original images. We set the results obtained using the original
images as the ground truth. Table 2 summarizes the F-score results. Using the deblocked
images produces edge detection results closer to the ground truth. As shown in Fig. 11,
the coded images cause false edges detected across the coding block boundaries, while
the edge detection results with the deblocked images are closer to the ground truth.
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(a) Coded (c) VBM3D [8] (d) Ours (e) Original

Fig. 11. Results of Canny edge (top) and Harris corner (bottom) detectors on “yuna”. Most edges
around the letters are correctly detected and much fewer false corners are detected using the
deblocked images by our system.

Table 2. F score (larger the better) for edge and corner detection, averaged over 32 frames.

edge detection corner detection
yuna city gym pairs foreman yuna city gym pairs foreman

Coded 0.380 0.695 0.517 0.811 0.735 0.242 0.516 0.367 0.422 0.568
VBM3D [8] 0.384 0.695 0.523 0.817 0.735 0.288 0.535 0.395 0.431 0.578

Proposed-M-iter3 0.438 0.736 0.553 0.820 0.757 0.364 0.576 0.440 0.451 0.587

Using deblocked images produces fewer false corners, too. Both Canny and Harris de-
tectors have been widely used in computer vision and the improvement obtained by our
system can benefit these tasks.

6 Conclusions and Future Work

We have studied the differences in marginal statistics between the coded and the origi-
nal videos. The coded videos have extra unwanted high frequency content across block
boundaries but lost details within the blocks. We have proposed a non-causal video de-
blocking system that simultaneously solves for the optical flow and the original video
sequence. We find that reliable optical flow estimates provide important temporal infor-
mation to recover fine image details, which in turn help refine the optical flow estimates.
Our results suggest that a good video deblocking system can be a useful pre-processor
for vision methods designed for uncompressed images. Our work also suggests the
potential benefits of estimating optical flow and encoding the motion information for
scenes with simple motion.
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