
Synthesizing Dynamic Texture with
Closed-loop Linear Dynamic System

Lu Yuan1,2�, Fang Wen1, Ce Liu3�, and Heung-Yeung Shum1

1 Visual Computing Group, Microsoft Research Asia, Beijing 100080, China,
2 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China,

3 CSAIL, Massachusetts Institute of Technology, Cambridge, 02139, USA

Email: yuanl02@mails.tsinghuat.edu.cn, t-fangw@microsoft.com
celiu@mit.edu, hshum@microsoft.com

Abstract. Dynamic texture can be defined as a temporally continuous
and infinitely varying stream of images that exhibit certain temporal
statistics. Linear dynamic system (LDS) represented by the state-space
equation has been proposed to model dynamic texture[12]. LDS can
be used to synthesize dynamic texture by sampling the system noise.
However, the visual quality of the synthesized dynamic texture using
noise-driven LDS is often unsatisfactory. In this paper, we regard the
noise-driven LDS as an open-loop control system and analyze its stabil-
ity through its pole placement. We show that the noise-driven LDS can
produce good quality dynamic texture if the LDS is oscillatory. To deal
with an LDS not oscillatory, we present a novel approach, called closed-
loop LDS (CLDS) where feedback control is introduced into the system.
Using the succeeding hidden states as an input reference signal, we de-
sign a feedback controller based on the difference between the current
state and the reference state. An iterative algorithm is proposed to gen-
erate dynamic textures. Experimental results demonstrate that CLDS
can produce dynamic texture sequences with promising visual quality.

1 Introduction

Dynamic texture, also known as temporal texture or video texture, can be de-
fined as a temporally continuous and infinitely varying stream of images that
exhibit certain temporal statistics. For example, it could be a continuously gush-
ing fountain, a flickering fire, an escalator, and a smoke puffing slowly from the
chimney – each of these phenomena possesses an inherent dynamics that a gen-
eral video may not portray. Dynamic texture can be used for many applications
such as personalized web pages, screen savers and computer games.

Dynamic texture analysis and synthesis have recently become an active re-
search topic in computer vision and computer graphics. Similar to 2D texture
synthesis, the goal of dynamic texture synthesis is to generate a new sequence
that is similar to, but somewhat different from, the original video sequence.

� This work was done when the authors worked in Microsoft Research Asia.

2 Lu Yuan et al.

Ideally the generated video can be played endlessly without any visible discon-
tinuities. Moreover, it is desirable that dynamic texture be easily edited and be
efficient for storage and computation.

Most recent techniques on dynamic texture synthesis can be categorized into
nonparametric and parametric methods. The nonparametric methods generate
dynamic textures by directly sampling original pixels[15], frames[11], wavelet-
structures[1], 2D patches[8] and 3D voxels[8] from a training sequence and usu-
ally produce high-quality visual effects. Compared with the nonparametric ap-
proaches, the parametric methods provide better model generalization and un-
derstanding of the essence of dynamic texture. The typical parametric models
include Szummer and Picard’s STAR model[13], Wang and Zhu’s movetons rep-
resentation[14], and Soatto et al’s linear dynamic system (LDS) model[12]. They
are very helpful for the tasks such as dynamic texture editing[4], recognition[10],
segmentation[3] and image registration[5]. However, most parametric models are
less likely to generate dynamic textures with the same quality as the nonpara-
metric models, in particular for the videos of natural scenes.

In this paper, we argue that a carefully designed parametric model can com-
pete well with any existing nonparametric model, e.g. [8], in terms of visual
quality of the synthesized dynamic texture. Our work is inspired by the former
work of noise-driven LDS for dynamic texture synthesis [12]. From a viewpoint
of control theory, the noise-driven LDS is indeed an open-loop control system
which is likely to be contaminated by noise. Based on the analysis of the stabil-
ity of the open-loop LDS, we find that it is the problems of the pole placement
and model fitting error that prevent the previous approaches from generating
satisfactory dynamics textures.

In consequence, we propose a novel closed-loop LDS (CLDS) approach to
synthesizing dynamic texture. In our approach, the difference between the ref-
erence input and the synthesized output is computed as a feedback control sig-
nal. Using a feedback controller, the whole closed-loop system can minimize the
model fitting error and improve the pole placement. Our experimental results
demonstrate that our approach can produce visually promising dynamic texture
sequences.

2 Dynamic Texture Synthesis using LDS

Under the hypothesis of temporal stationarity, Soatto et al[12] adopted a linear
dynamic system (LDS) to analyze and synthesize dynamic texture. The state-
space representation of their model is given by{

xt = Axt−1 + vt, vt ∼ N (0, Σv)
yt = Cxt + wt, wt ∼ N (0, Σw) (1)

where yt ∈ R
n is the observation vector; xt ∈ R

r, r � n is the hidden state
vector; A is the system matrix; C is the output matrix and vt,wt are Gaussian
white noises.

Synthesizing Dynamic Texture with CLDS 3

Finite Input Images Mapping State EquationHidden State
Vectors

Observation
Vectors

Parameters

(a) Training

(b) Synthesis

Infinite Output ImagesState
Equation

Initial State

Sampling noise

New Hidden
State Vectors Mapping Observation

Vectors

ˆ ˆ ˆ, , vA C Σ
1 2{ , , , }Ny y y 1 2{ , , , }Nx x xt tC=y x

1t t tA −= +x x v
~ (,)t vΣ0v N

ˆ~ (,)t vΣ0v N

1x

1
ˆ

t t tA −= +x x v 1 2{ , , , , }Mx x x 1 2{ , , , , }My y yˆ
t tC=y x

Fig. 1. Framework of dynamic texture analysis and synthesis using LDS.
(a) In the training process, a finite sequence of input images is used to train an LDS
model with the system matrix A, the observation matrix C and the system noise vt

(with its variance Σv). (b) In the synthesis process, a new (possibly infinite) sequence
is generated using the learnt LDS and by sampling system noise.

Fig.1 illustrates the dynamic texture analysis and synthesis framework using
the above LDS. To train the LDS model, a finite sequence of images {It}N

t=1

subtracted by the mean image are concatenated to column vectors as observation
vectors {yt}N

t=1. These observation vectors are mapped into hidden state vectors
{xt}N

t=1 in a lower dimensional space by SVD analysis. We use these hidden
states to fit a linear dynamic system and identify the parameters of the system
through maximum likelihood estimation (MLE). The learnt LDS model is then
used to synthesize a new sequence. Given an initial hidden state x1, the sampling
noise vt ∼ N (0, Σ̂v) can drive the system matrix Â to generate new state vectors,
which are then mapped to the high-dimensional observation vectors to form a
new sequence of dynamic texture.

The above dynamic texture model has a firm analytic footing in system
identification. However, it often fails to produce satisfactory results for simple
sequences such as those shown in Fig.7(b)(f). An open question is: how well one
can synthesize a new sequence from the learnt LDS.

3 Analysis of Open-loop LDS

According to control theory, the noise-driven dynamic texture synthesis process
(xt = Axt−1 + vt) illustrated in Fig.1(b) can be regarded as a basic open-loop
LDS, as shown in Fig.3(a). The stability of an open-loop LDS is determined by
its poles[6].

The poles of the system are exactly defined as the eigenvalues of system
matrix A [9], which take complex values. In other words, the location of the
pole on the 2D pole plot (i.e. the polar coordinate system) is determined by
the corresponding eigenvalue. If the magnitude of an eigenvalue is less than one,
the pole is inside the unit circle in the pole plot, called a stable pole since this
eigen-component will vanish eventually. If the magnitude equals one, the pole
is on the unit circle, called an oscillatory pole because the magnitude of this

4 Lu Yuan et al.

eigen-component will remain constant while the phase may change periodically.
If the magnitude is greater than one, the pole is outside the unit circle, called
an unstable pole because this eigen-component will magnify to infinity. Clearly,
a control system cannot contain any unstable poles.

We consider the state equation xt = Axt−1 ignoring the noise term, where
A ∈ R

r×r. By eigenvalue decomposition, we have A = QΛQ−1, where Λ =
diag{σ1, σ2, . . . , σr} and Q ∈ R

r×r. {σi}r
i=1 are the eigenvalues of A, namely

poles. Given an initial state vector x1, the state vector at time t is given by

xt = At−1x1 = QΛt−1Q−1x1 = Q · diag(σt−1
1 , · · · , σt−1

r) · Q−1x1.

For any eigenvalue or pole σi we have

lim
t→∞

∣∣σt−1
i

∣∣ =
⎧⎨
⎩

0 |σi| < 1,
1 |σi| = 1,
∞ |σi| > 1.

There are three interesting cases with different pole distributions.

(a) All the poles of the dynamic system are stable, i.e. ∀i ∈ {1, 2, · · · , r} : |σi| <
1. Then lim

t→∞ ‖xt‖2 = 0, where ‖xt‖2 represents the energy of the state vec-
tor. All the stable poles contribute to the decay of the dynamic system. This
system is called a stable system (in accordance to the name of poles).

(b) Some poles are oscillatory and the rest are stable, i.e. ∀i : |σi| � 1 and
∃j : |σj | = 1. Then lim

t→∞ ‖xt‖2 = c, where c is a constant. We call it an
oscillatory system.

(c) There exist unstable poles, namely ∃i : |σi| > 1. Then lim
t→∞ ‖xt‖2 = ∞. The

unstable poles contribute to the divergence of the dynamic system. With
such an unstable system, one cannot generate an infinite sequence.

These cases are further illustrated by dynamic texture synthesis results from
three typical sequences.

(a’) The poles of the FOUNTAIN sequence are all stable (Fig.2(d)). Thus, the
generated dynamic sequence decays gradually as shown in Fig.2(a).

(b’) Since most poles of the ESCALATOR sequence are oscillatory and the rest
are stable (Fig.2(e)), the whole dynamic system is oscillatory and the gen-
erated sequence forms a satisfactory loop as shown in Fig.2(b).

(c’) The FIRE sequence has two unstable poles (Fig.2(f)), which lead to the
divergence of the dynamic system. This explains why the intensity of the
synthesized fire saturates as shown in Fig.2(c).

The key observation from the synthesis and synthesized examples above is
that for dynamic texture synthesis, the learnt LDS must be an oscillatory sys-
tem. Unfortunately, such a requirement on the learnt system matrix A is too
demanding to be satisfied in practice.

Synthesizing Dynamic Texture with CLDS 5

Pole Plot :

(d) FOUNTAIN (e) ESCALATOR (f) FIRE

(a)

(b)

(c)

Synthesized Sequence

T = 5 T = 30 T = 100 T = 150 T = 200 T = 300

Fig. 2. Effect of poles of system: (a)(b)(c) show the synthesized sequences at differ-
ent times. (a) Decaying FOUNTAIN sequence. (b) Oscillatory ESCALATOR sequence.
This is the desirable result for dynamic texture. (c) Divergent FIRE sequence. (d) The
positions of all the FOUNTAIN’s poles (denoted by red crosses) are inside the unit
circle. (e) Most poles of ESCALATOR are on the unit circle and others are inside the
unit circle. (f) Two poles of FIRE are outside the unit circle and others are within or
on the unit circle.

4 Closed-loop LDS

If the learnt LDS from the input video sequence is not an oscillatory system,
we propose to change the open-loop LDS to a closed-loop LDS (CLDS), as
illustrated in Fig.3(b), so that we can still synthesize dynamic texture with
good visual quality. The overall goal of feedback control is to cause the output
variable of a dynamic process to follow a desired reference variable accurately,
regardless of any external disturbance in the dynamics of the process[7].

4.1 A simple CLDS

The key component in the proposed CLDS is the definition of the error term
which turns to be the control signal, given as⎧⎪⎪⎨

⎪⎪⎩
xt = A′xt−1 + A′ut + vt, vt ∼ N (0, Σv)
ut = Det

et = x̃t+1 − A′xt

yt = Cxt + wt, wt ∼ N (0, Σw)

(2)

6 Lu Yuan et al.

'A

'A

A D

tx

tv

txA'te

tu

1−tx

1
~

+tx

tx
1−tx

tv

feedback controller

(a) open-loop LDS with noise (b) closed-loop LDS (CLDS) with noise

Fig. 3. Comparison of frameworks between open-loop LDS and closed-loop
LDS: In the figure, only the state-space representation is illustrated. In both models, xt

represents the hidden state at time t in low-dimensional state-space in two frameworks;
vt represents the noise of the system. A′ represents the system matrix of our system
while A is the system matrix of open-loop LDS. ut is the control signal; D is the control
matrix in our system and et is the difference between reference input and output.

where yt is the observation vector; xt is the state vector; C is the output matrix;
et is the difference between the reference and the rough estimate of the next
state; D is the proportional control matrix of the error term and A′ is the system
matrix. In the state-space equation above, the current state xt comprises three
parts: 1) the rough estimation of the current state, i.e. A′xt−1, 2) the control
signal ut proportional to the difference between the reference input for next state
x̃t+1 and the rough estimation of the next state A′xt from the output current
state xt, and 3) sampled noise vt.

Clearly the open-loop LDS discussed previously (Fig.3(a)) is a special case
of the proposed CLDS (Fig.3(b)) when D is zero.

4.2 A practical model

The CLDS above is of the simplest form, a first-order system and a propor-
tional controller. In practice, estimation of the current state vector xt using the
first-order model is often insufficient. Instead, we employ a number of previous
state vectors {xt−p, · · · ,xt−1}. The control signal ut is based on the differ-
ence between the reference input and estimate of the succeeding state vectors
{xt+1, · · · ,xt+q}. Then the state-space equation of CLDS is given by

⎧⎪⎪⎨
⎪⎪⎩

xt =
p∑

i=1

Aixt−i + A0ut + vt, vt ∼ N (0, Σv)

ut =
q∑

j=1

Dj

(
x̃t+j −

p∑
i=1

Aixt+j−i

) (3)

Synthesizing Dynamic Texture with CLDS 7

After substituting ut, we obtain the following equation:

xt =
−1∑

i=−p

Φp+1+ixt+i +
q∑

j=1

Φp+jx̃t+j + vt, vt ∼ N (0, Σv) (4)

where Φk represents the linear combination of Ai and Dj . In the training we re-
place the reference states x̃t+j(j = 1, . . . , q) with xt+j(j = 1, . . . , q) in Equation
(4). Then the state equation (4) becomes a non-causal system, whose parameters
can be derived by least squares estimation (LSE) [9].

[Φ1, Φ2, · · ·Φp+q] = G0

[
GT

−p, · · · , GT
−1, GT

1 , · · · , GT
q

]−1

Σv = 1
N−p−q

(
R0,0 −

q∑
i=−p

Φi+p+1Ri,0

)
(5)

where Gi = [Ri,−p, · · · , Ri,−1, Ri,1, · · · , Ri,q] ,−p ≤ i ≤ q and Ri,j =
N−j∑

t=1−i

xt+ix
T
t+j .

We follow the order determination algorithm described in [16] to choose the
appropriate size of the temporal neighborhood Ω = p + q in Equation (4). In
our implementation, the cost function of model fitting is defined as σp+q =

1
N−p−q

N−q∑
t=p+1

θT
t θt, where θt = xt−

−1∑
i=−p

Φp+1+ixt+i−
q∑

j=1

Φp+jxt+j . We initialize

p = 1, q = 1 and then gradually increase p and q respectively until σp+q+1
σp+q

> µ.

5 Synthesis using CLDS

It is nontrivial to directly sample a closed-loop system. To sample CLDS, We
first sample a reference sequence, and then use the system equation to smooth
the discontinuity of the reference sequence. The synthesis algorithm is shown in
the Fig.4.

Using the hidden state vectors {xt}N
t=1 generated from the original image

sequence {It}N
t=1, we compute the state-to-state similarities and store them in a

matrix S = 〈x1:N ,x1:N 〉 = {si,j} (i, j = 1, 2, . . . , N), where sij = 〈xi,xj〉√
〈xi,xi〉〈xj ,xj〉

and 〈xi,xj〉 is the inner product of column vectors.
From the similarity matrix S, we obtain the state transfer probability matrix

P through an exponential function

Pi,j = P (xj |xi) =
{

exp{γsi+1,j}, i �= j
0, i = j

.

All the probabilities for any row of P are normalized so that
∑

j Pi,j = 1. In our
implementation, γ was set as a number between 1 and 50.

By sampling original state vectors {xi}N
i=1, we generate a reference sequence

{xk1:k1+τ−1,xk2:k2+τ−1, · · ·xkh:kh+τ−1} by concatenating h short state clips such
as xk1:k1+τ−1 and xk2:k2+τ−1. Each clip has τ frames and two neighboring clips

8 Lu Yuan et al.

1. To synthesize M frames, set the clip size τ and select the first clip
{xk1 , xk1+1, · · · , xk1+τ−1} randomly from original states {x1, x2, · · · , xN}

2. Sample the next clip {xk2 , xk2+1, · · · , xk2+τ−1} with P (xk2 |xk1+τ−1) in P

3. Repeat 2, until h state clips {xk1:k1+τ−1, xk2:k2+τ−1, · · · , xkh:kh+τ−1} are
sampled. The previous M(M ≤ h × τ) reference states are used as the initial

synthesis states {x(0)
1 , x

(0)
2 , · · · , x

(0)
M }

4. Iterate n = 1, 2, · · · until
∣∣∣δ(n) − δ(n−1)

∣∣∣ < ε

(a) Sample noise v
(n)
t and update x

(n)
t by Equation(6) from t = 1, 2, · · · , M

(b) compute iterative error δ(n)

5. Output {x(n)
1 , x

(n)
2 , · · · , x

(n)
M }

Fig. 4. Synthesis algorithm for the closed-loop LDS

xk1:k1+τ−1 and xk2:k2+τ−1 are chosen so that the last state xk1+τ−1 in clip
xk1:k1+τ−1, and the first state xk2 in clip xk2:k2+τ−1, are close according to
state-transfer matrix P . This is similar, in spirit, to the idea of video texture[11].
However, there exist visible jumps between these short clips in this initial con-
catenated sequence. We employ an iterative refinement algorithm to successively
improve the discontinuity in the output sequence. Specifically, we use the system
equation iteratively to smooth out the discontinuity to obtain xt.

x
(n)
t =

−1∑
i=−p

Φp+1+ix
(n)
t+i +

q∑
j=1

Φp+jx
(n−1)
t+j + v

(n)
t , v

(n)
t ∼ N (0, Σv) (6)

where x(n),x(n−1) represent the values of x before and after the nth iteration
respectively. When the whole state sequence satisfy the statistic process of Equa-
tion (4), the sampled values of the whole sequence is unchanged after iteration.
Therefore, the nth iterative error can be defined as

δ(n) =
M∑

t=1

∥∥∥x(n)
t − x

(n−1)
t

∥∥∥
2
.

The final state sequence is obtained iteratively until the iterative error can hardly
drop down. Then we map these states in the low-dimensional space to the ob-
servations in the high-dimensional space and obtain the new image sequences.

In Fig.5, we show the initially concatenated reference video sequence, the
intermediate sequence after 5 iterations and the final synthesized sequence. Al-
though jumps are clearly visible between short clips in the initial sequence, CLDS
was able to smooth over the whole sequence to produce visually appealing dy-
namic texture for the SMOKE-NEAR example.

Synthesizing Dynamic Texture with CLDS 9

(a)

(b)

(c)

Fig. 5. Improvement by iteration in synthesis: (a)-(c) respectively shows 4 frames
around a jump before the 1st iteration, after 5 iterations and after 30 iterations.

6 Experimental Results

We have synthesized many dynamic textures using our proposed CLDS. Our
results are compared with those generated using previous nonparametric and
parametric methods. All the original sequences are borrowed from the MIT Tem-
poral Textures database4 and Kwatra et al.’s web site5. All the results (videos)
can be found in the project’s web page6. In our experiments, we set the clip size
τ varying from 5 to 20. Through manually choose µ and ε, the neighborhood
size Ω is between 2 and 4, and iteration number n is between 5 and 50.

As shown in Fig.7, our approach outperforms not only the noise-driven LDS
by Soatto et al[12], but also the improved open-loop LDS by Doretto et al[2] in
terms of the visual quality of the synthesis results. For instance, to synthesize
dynamic textures for SMOKE-FAR and FIRE sequences, results (Fig.7(b)(f))
using the basic open-loop LDS algorithm are less likely acceptable because the
system is “unstable”. Although Doretto et al attempted to solve this problem by
scaling down the poles, the fitting error cannot be ignored and causes that the
synthesized video (shown in Fig.7(c)(g)) still looks different from the original se-
quence. Our results show that the generated SMOKE-FAR and FIRE sequences
closely resemble the original sequences as shown in Fig.7(d)(h).

Our results also compare favorably with those generated from nonparametric
methods. Kwatra[8] has generated perhaps the most impressive dynamic texture
synthesis results to date using the graph cut technique. Our results on Bldg9-
FOUNTAIN and WATERFALL shown in Fig.8 demonstrate that we can achieve
similar visual quality using CLDS.
4

ftp://whitechapel.media.mit.edu/pub/szummer/temporal-texture/
5

http://www.cc.gatech.edu/cpl/projects/graphcuttextures/
6

http://research.microsoft.com/asia/download/disquisition/dynamictexture(ECCV04 Supp).html

10 Lu Yuan et al.

7 Discussion

Our experimental results demonstrate that CLDS can produce dynamic texture
sequence with good visual quality. There are indeed two problems in the open-
loop LDS which are addressed in CLDS, i.e. achieving oscillatory poles and
minimizing fitting error.

The effect of CLDS can be observed from how it alters pole placement. Given
a synthesized sequence using CLDS, we can compute its effective poles and com-
pare with the poles of the corresponding open-loop LDS. From the FOUNTAIN
and FIRE example, we observe significant improvement on pole placement. For
the FOUNTAIN sequence shown in Fig.6(a), most stable poles have been moved
towards the unit circle. Two poles are placed exactly on the unit circle, making
the whole system oscillatory. For the FIRE sequence shown in Fig.6(b), two un-
stable poles from the open-loop LDS have been moved to the unit circle, making
it possible to synthesize an infinite sequence of dynamic texture. Note that some
stable poles of open-loop LDS close to the origin have been moved closer to the
origin with the CLDS. This may cause some blurring in the synthesized results.

Another way to measure the effect of CLDS is to compute the model fitting

error. We define the model fitting error as δ = 1
N×r

N∑
t=1

‖xt − x̂t‖2
2, (xt ∈ R

r),

where x̂t is the estimate of xt. In the basic LDS, x̂t = Axt−1. Doretto[2] relo-
cated unstable poles to the inside of the unit circle. Therefore, the system matrix
A is transformed to Ã and x̂t = Ãxt−1. For CLDS, instead, x̂t = A′xt−1 +A′ut,
where ut is defined in Equation (2). Table 1 shows significant improvement in
fitting error of CLDS over the basic LDS and Doretto’s method. Doretto’s pole
relocation scheme cannot reduce the model fitting error. Large fitting error im-
plies that the dynamics of the synthesized sequence (Fig.7(c)(g)) would deviate
from the original training set (Fig.7(a)(e)).

Simple scaling of poles cannot simultaneously satisfy the two goals in gener-
ating dynamic texture using the open-loop LDS: making the system oscillatory
and minimizing fitting error. On the other hand, CLDS can achieve both goals.

Table 1. Comparison of fitting errors of three methods

Original Sequence FIRE SMOKE-FAR SMOKE-NEAR

Basic LDS method 55264 230.7 402.6

Doretto’s method 55421 250.0 428.2

Our CLDS method 1170 21.4 34.4

8 Summary and Future Work

In this paper, we have analyzed the stability of open-loop LDS used in the dy-
namic texture model of [12]. We have found that the open-loop LDS must be
oscillatory in order to generate an infinite sequence of dynamic texture from a

Synthesizing Dynamic Texture with CLDS 11

finite sequence of training images. For an LDS that is not oscillatory (stable
or unstable), we propose to use feedback control to make it oscillatory. Specifi-
cally, we propose a closed-loop LDS (CLDS) to make the system oscillatory and
minimize the fitting error. Our experimental results demonstrate our model can
be used to synthesize a large variety of dynamic textures with promising visual
quality.

In future work, we plan to investigate whether a better controller (e.g. PID or
Proportional-Integral-Derivative) would improve the synthesis quality. Another
challenging problem is to model and synthesize non-stationary dynamic texture.

References

1. Z. Bar-Joseph, R. El-Yaniv, D. Lischinski and M. Werman. Texture mixing and
texture movie synthesis using statistical learning. IEEE Transactions on Visual-
ization and Computer Graphics, vol. 7, pp. 120-135, 2001.

2. G. Doretto, A. Chiuso, Y. N. Wu and S. Soatto. Dynamic Textures. International
Journal of Computer Vision, vol. 2, pp. 91-109, 2003.

3. G. Doretto, D. Cremers, P. Favaro and S. Soatto. Dynamic Texture Segmentation.
In Proceedings of ICCV’03, pp. 1236-1242, 2003.

4. G. Doretto and S. Soatto. Editable Dynamic Textures. In Proceedings of CVPR’03,
pp. 137-142, 2003.

5. A. W. Fitzgibbon. Stochastic rigidity: Image registration for nowhere-static scenes.
In Proceedings of ICCV’01, vol. 1, pp. 662-670, 2001.

6. G. F. Franklin, J.D. Powell, A. Emami-Naeini. Feedback Control of Dynamic Sys-
tems(4th Edition). Prentice Hall, pp. 201-252, 706-797, 2002.

7. B. C. Kuo. Automatic Control Systems(6th Edition). Prentice Hall. pp. 5-15, 1991.
8. V. Kwatra, A. Schödl, I. Essa, G. Turk and A. Bobick. Graphcut Textures: Image

and Video Synthesis Using Graph Cuts. In Proceedings of Siggraph’03, pp. 277-286,
2003.

9. L. Ljung. System Identification – Theory for the User(2nd Edition). Prentice Hall,
1999.

10. P. Saisan, G. Doretto, Y. N. Wu and S. Soatto. Dynamic Texture Recognition.
Proceedings of CVPR’01, vol. 2, pp. 58-63, 2001.

11. A. Schödl, R. Szeliski, D. H. Salesin and I. Essa. Video Textures. In Proceedings
of Siggraph’00, pp. 489-498, 2000.

12. S. Soatto, G. Doretto and Y. N. Wu. Dynamic textures. In Proceedings of ICCV’01,
vol. 2, pp. 439-446, 2001.

13. M. Szummer and R. W. Picard. Temporal Texture Modeling. IEEE International
Conference on Image Processing, vol. 3, pp. 823-826, 1996.

14. Y. Z. Wang and S. C. Zhu. A Generative Method for Textured Motion: Analysis
and Synthesis. In Proceedings of ECCV’02, vol. 1, pp. 583-597, 2002.

15. L. Y. Wei and M. Levoy. Fast Texture Synthesis using Tree-structured Vector
Quantization. In Proceedings of Siggraph’00, pp. 479-488, 2000.

16. W. W. S. Wei. Time Series Analysis : Univariate and Multivariate Methods.
Addison-Wesley, New York. 1990.

12 Lu Yuan et al.

(a) FOUNTAIN Sequence

(b) FIRE Sequence

Fig. 6. Comparison of pole placements between open-loop LDS and closed-
loop LDS: The distance from each pole to the origin is plotted for FOUNTAIN and
FIRE sequences. The improvement in pole placement is zoomed in. Some stable poles
of FOUNTAIN and all unstable poles of FIRE are relocated onto the unit circle, from
which the distance to the origin is 1. With CLDS, poles are moved towards the unit
circle, making the system more oscillatory.

Synthesizing Dynamic Texture with CLDS 13

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 7. Comparison of results between previous LDS methods and ours.
(a) Original SMOKE-FAR sequence (100 frames). (b)-(d) Synthesized SMOKE-FAR
sequence (300 frames) respectively by the basic noise-driven LDS, Doretto’s method
(borrowed from Doretto’s web site) and our algorithm. (e) Original FIRE sequence
(70 frames). (f)-(h) Synthesized FIRE sequence (300 frames) respectively by the basic
noise-driven LDS. , Doretto’s method (with our implementation) and our algorithm.

14 Lu Yuan et al.

(a)

(b)

Schödl et al’s ResultOriginal Sequence Our ResultKwatra et al’s Result

(c)

(d)

Fig. 8. Comparison of results between classic nonparametric methods and
ours. From the left column to the right column, it respectively shows the original
sequence, the synthesized sequence by Schödl et al’s method[11], by Kwatra et al’s
method[8] and by our method. (a)-(b) are the 93th, 148th frame of Bldg9-FOUNTAIN.
(c)-(d) are the 40th, 2085th frame of WATERFALL(the 40th, 87th frame for original
video.

