
Kullback-Leibler Boosting

Ce Liu Hueng-Yeung Shum

Microsoft Research Asia
{i-celiu, hshum}@microsoft.com

Abstract

In this paper, we develop a general classification frame-
work called Kullback-Leibler Boosting, or KLBoosting.
KLBoosting has following properties. First, classification
is based on the sum of histogram divergences along corre-
sponding global and discriminating linear features. Sec-
ond, these linear features, called KL features, are itera-
tively learnt by maximizing the projected Kullback-Leibler
divergence in a boosting manner. Third, the coefficients to
combine the histogram divergences are learnt by minimiz-
ing the recognition error once a new feature is added to the
classifier. This contrasts conventional AdaBoost where the
coefficients are empirically set. Because of these proper-
ties, KLBoosting classifier generalizes very well. Moreover,
to apply KLBoosting to high-dimensional image space, we
propose a data-driven Kullback-Leibler Analysis (KLA) ap-
proach to find KL features for image objects (e.g., face
patches). Promising experimental results on face detection
demonstrate the effectiveness of KLBoosting.

1. Introduction

Robust and reliable classifiers are widely used in pat-
tern recognition problems. A good classifier should gen-
eralize well the properties learnt from a small amount of
data, with a reasonable speed for both training and classifi-
cation. Many theories and algorithms have been developed
for learning a general classifier. For example, Neural Net-
works [1] was devised two decades ago to learn a classi-
fication function from training data and applied to solving
many visual recognition/detection problems [8, 14]. How-
ever, it is nontrivial to decide the number of the neurons
and the type of the nonlinear function, and to train the pa-
rameters. Support Vector Machines (SVM) [15] are then
developed to maximize the margin of the labeled data and
explain the insight of Neural Network. Although there are
many successful applications [6, 7], choosing proper kernel
functions for a specific real problem remains challenging.
Moreover, the number of the support vectors that compose
the decision function would dramatically increase when the
decision manifold becomes complicated.

Recently, Boosting (e.g. AdaBoost) [11] theory has been
proposed to combine simple weak learners to a strong clas-

sifier. Boosting is simple and easy to implement. It has been
proven that Boosting minimizes an exponential function of
the margin over the training set [3]. However, a strong clas-
sifier learnt by AdaBoost is suboptimal for the applications
in terms of the error rate [2]. Similar to SVM, typically a
large number of weak learners should be integrated, e.g.,
over 6000 are used in [16] for a face detector. Two prob-
lems remain unsolved in AdaBoost: how to design the weak
learners, and how to optimally combine them.

Our objective in this paper is to design an optimal classi-
fier using a small number of robust features. We project
high-dimensional data to linear features and get 1D his-
tograms along these features. These histograms are robust
statistics, and have been successfully used in computer vi-
sion and machine learning [20, 4, 12]. We use the histogram
divergences of two classes on these linear features as the ev-
idence for classification.

Specifically, we seek for the most discriminating fea-
ture by maximizing the Kullback-Leibler (KL) divergence
of the two-class histograms, which corresponds to the mar-
gin of the data. This feature is called KL feature. By in-
crementally learning KL features that can best discriminate
the data, we construct an optimal feature set with a small
number of KL features. Then, the coefficients that combine
the weak learners are learnt to best combine the histogram
divergences with the KL features so that the training error
is minimized. Since the feature selection and parameter op-
timization are driven by a boosting framework, we call our
technique Kullback-Leibler Boosting (KLBoosting).

It is, however, nontrivial to find the KL features in a high-
dimensional space. We propose a data-driven Kullback-
Leibler Analysis (KLA) to pursue KL features for image
objects. The most discriminating wavelets are selected as
the promising features. Then a sequential 1D optimization
is proceeded along these promising features to find the op-
timal KL feature. This method is efficient particularly for
high-dimensional image space.

By integrating KLBoosting framework and KLA, we
learn a classifier for face detection. A cascade classifier is
gradually learnt that covers ±20◦ in-plane and ±20◦ out-of-
plane rotations. In a test with CMU+MIT data, the classifier
can detect 95% faces with 10−6 false alarm rate, outper-
forming previous face detectors.



The rest of this paper is organized as follows. We intro-
duce the main theory of KLBoosting in Section 2. KL Anal-
ysis for image objects is discussed in Section 3. In Section
4, the experiment of face detection is presented. After some
discussion in Section 5, we conclude the paper in Section 6.

2. Kullback-Leibler Boosting Classifier
2.1 Linear features

Suppose that we are given a set of labeled samples
{xi, yi}N

i=1 where xi ∈R
d and yi ∈{−1, 1}, and are asked

to give a decision y to any x ∈ R
d. It is convenient for us

to get some 1D statistics from the data, using a mapping
function φ() : R

d →R
1. There are two kinds of mappings

φ(x)=φT x and φ(x)=‖φ − x‖, φ∈R
d. The former map-

ping is linear and φ(x)=φT x is used in this paper as linear
feature1. We restrict the linear feature to be a unite vector:
‖φ‖=1.

Once we have a set linear features {φi}k
i=1, the form of

the classification function is

F (x) = sign[
k∑

i=1

λi(φT
i x)], (1)

where λi() is a R→R discriminating function with respect
to each feature φi. Eqn.1 can be viewed as a two-level for-
ward neural network if λi() is a truncated Sigmoid, or SVM
if φi are support vectors and λi() are kernel functions, or
AdaBoost if λi(φT

i x) are base classifiers. Our goal is to ob-
tain a robust and compact classifier using reliable functions
{λi} and a smallest feature set {φi}.

2.2 Classification function
Along each feature φi, we may obtain the histograms

of positive and negative samples h+
i (φT

i x) and h−
i (φT

i x),
with certain weights. At a specific point z = φT

i x, if
h+

i (z) > h−
i (z), it will be more likely from this evidence

that x is a positive sample. Therefore we may assume

λi() = αi log h+
i ()

h−
i ()

, which is proved in [3, 10] to maximize

the margin. The classification function becomes

F (x) = sign[
k∑

i=1

αi log
h+

i (φT
i x)

h−
i (φT

i x)
], (2)

with parameters {αi} to balance the evidence from each
feature. sign()∈{−1, 1} is an indicator function. We intro-
duce a soft identity function that maps x to [−1, 1]

f(x) = tanh[
k∑

i=1

αi log
h+

i (φT
i x)

h−
i (φT

i x)
], (3)

which implies F (x)=sign[f(x)].
1φ(x)=‖φ− x‖ usually corresponds to RBF function and can also be

handled in KLBoosting. However, it is more difficult to find such kind of
φ since it is not linearly additive – in general ‖φ + ∆φ− x‖ �=‖φ− x‖+
‖∆φ‖. Therefore we select linear projection φ(x)=φT x.

2.3 KL feature pursuit

There are two terms to learn in the classification func-
tion (Eqn.2), the feature set {φi} and combining coeffi-
cients {αi}. To achieve a minimum set of features, we
take a greedy strategy to gradually add the most discrimi-
nating feature to the feature set. Here we adopt the maxi-
mizing information gain criterion [20, 4], i.e., to maximize
the Kullback-Leibler (KL) divergence of the positive and
negative histograms projected on the feature. At iteration k,
we may compute a symmetric measure of KL divergence

KL(φ) =
∫

[h+
k (φTx)−h−

k (φTx)] log
h+

k (φTx)
h−

k (φTx)
dφTx. (4)

where h+
k (φTx) and h−

k (φTx) are the histograms of the
positive and negative samples with weights Wk(x+

i ) and
Wk(x−

i ), respectively. The most discriminating feature that
maximizes the KL divergence

φ∗
k = arg max

φ
KL(φ), (5)

is called KL feature.
It is very difficult to optimize the KL divergence (Eqn.5).

For low-dimensional data, we can simply use stochastic as-
cent such as Markov chain Monte Carlo (MCMC), to sam-
ple the feature sapce. But it does not work well for high-
dimensional data such as images. We shall show how to
solve this problem in Section 3.

2.4 Parameter learning

Once a set of features has been obtained, we should tune
the coefficients {α∗

i }2 that best combine the histogram di-
vergences from the features. In KLBoosting, we optimize
the parameters {α∗

i } by minimizing the recognition error
rate at the kth step

{α∗
i }k

i=1 =arg min
{αi}

εk, (6)

where the recognition error is

εk =
1
N

N∑
j=1

δ(yj �= F (xi)). (7)

To find the optimal {α∗
i }k

i=1 is a nontrivial task espe-
cially when there are a large number of features. But it
can help us a lot if we know the last optimal parameters
{α∗

i }k−1
i=1 . In initialization we fix the first (k−1) αi’s as the

last optimal one, and set αk = 0. In this manner, the initial-
ization guarantees the recognition error to be no more than
that of the last optimal parameters, i.e. εk � εk−1. Then
we adopt a greedy algorithm to find better parameters for
smaller recognition error.



Given: (x1, y1), · · · , (xN , yN ), xi ∈ R
d, yi ∈ {−1, 1}

Initialize: W1(x
+
i )= 1

N+ , W1(x
−
i )= 1

N− , k=1, Kmax

Do

• Feature pursuit: learn KL feature φk via Eqn.4

• Parameter learning: learn {αi}k
i=1 via Eqn.6

• Compute recognition error εk via Eqn.7

• Update Wk+1(x
+
i ) and Wk+1(x

−
i ) via Eqn.8

• k = k + 1

While k<Kmax and εk �=0

Output classifier:

F (x) = sign[
k∑

i=1

αi log
h+

i (φT
i x)

h−
i (φT

i x)
]

Figure 1. The flowchart of KLBoosting learning.

2.5 Boosting by sample re-weighting
By means of KL feature pursuit and parameter learning,

we can achieve the maximum drop of the recognition er-
ror by adding a feature. But how can we continue to drive
these two steps to gradually decrease the training error?
The answer lies in the boosting strategy. From the previ-
ous learnt classifier, we could increase the weight of mis-
classified samples while reducing the weight of recognized
samples, and then learn a best feature to discriminate them.
Assume that at step (k−1) the weights of the positive and
negative samples are Wk−1(x+

i ) and Wk−1(x−
i ), respec-

tively. Then at step k we may re-weight the samples by

Wk(x+
i ) =

1
Z+

Wk−1(x+
i ) exp{−βky+

i fk−1(x+
i )}

Wk(x−
i ) =

1
Z−Wk−1(x−

i ) exp{−βky−
i fk−1(x−

i )}
(8)

where Z+ and Z− are normalization factors for Wk(x+
i )

and Wk(x−
i ), respectively. Note the sequence βk controls

how fast to adapt the weight. We choose

βk = (1 + c · ak) log
1 − εk

εk
(9)

where c > 0, 0 < a < 1, and εk is the training error of
current classifier. Typically we choose c = 2 and a = 0.95.
In this manner, at the beginning of the training when the
training error εk is a little big, the adapting factor βk is big
enough to significantly change the weights of the samples.
Otherwise the sample re-weighting or boosting procedure
would be very slow.

We use the soft identify function f(x) instead of the clas-
sification function F (x) in weight updating (Eqn.8), simi-
lar to what has been used in AdaBoost [11], to avoid fre-
quent switching of the weight of the samples around the

2These coefficients are empirically set in AdaBoost to be incrementally
optimal.

(a) (b) (c)

Figure 2. Illustration of KLBoosting learning. ◦ and ×
denote positive and negative samples, respectively. (a) with
one feature; (b) with two features; (c) with three features.
Top: the original samples and the features (displayed as ar-
rowed lines) in sequence. Middle: the weighted histograms
projected on the corresponding features. Bottom: the deci-
sion manifold F (x) = 0 (displayed as solid curves). The
features are learnt by stochastic ascent.

border. By means of this re-weighting algorithm, KLBoost-
ing learns the features and classifiers efficiently. Figure 1
shows the flowchart of KLBoosting learning.

2.6 Examples

We now demonstrate the effectiveness of KLBoosting
on two artificial non-linear separation problems. Figure
2 shows the simpler of the two problems. The positive
samples lie within a triangle while the negative samples
are distributed along with the three directions perpendicu-
lar to each side of the triangle. With KLBoosting, three
features (with their corresponding histograms and classifi-
cation manifolds) are found in succession by stochastic as-
cent, as shown in Figure 2(a)-(c). The final classification
manifold, shown at the bottom of Figure 2(c), demonstrates
that KLBoosting is capable of a reasonable classifier that
not only gets the training error to zero, but also has good
margins. Other boosting algorithms such as AdaBoost, can
hardly get such a compact classifier with only three features.

The second separation example is a much more chal-
lenging one, in the form of interleaving spirals seen in Fig-
ure 3(a). Despite its complexity, KLBoosting is able to pro-
duce a very clean separation (after learning 32 features),
shown in Figure 3(b). By examining the effect of the num-
ber of features on the fit error (Figure 3(c)), we see that the
fit error for the training data drops to zero only after learn-



8 16 24 321

30%

20%

10%

0%

40%

Feature number

Error rate

Error rate on testing data by KLBoosting
Error rate on training data by KLBoosting

(a) (b)

(c)

Error rate on testing data by AdaBoost
Error rate on training data by AdaBoost

Figure 3. A complicatedly distributed example for test-
ing the generalization ability of KLBoosting. (a) Synthetic
data. ◦ and × denote positive and negative samples, re-
spectively. (b) The decision manifold learnt by KLBoosting
with 32 features, which are learnt by stochastic ascent. (c)
The training and testing error rate vs. the number of features
for KLBoosting and AdaBoost.

ing 8 features. The corresponding fit error for the test data
is very small at 8 features, but eventually drops to zero at 30
learned features.

By comparison, the performance for AdaBoost is signif-
icantly inferior. For the AdaBoost algorithm, there are 1024
candidate features uniformly distributed in the 2D plane.
In each iteration we select the best feature with minimum
recognition error from the 1024 candidates, and generate a
weak classifier by comparing the histogram. The weak clas-
sifiers are empirically combined to output a “strong” clas-
sifier. Clearly the error rate of AdaBoost converges more
slowly and the testing error rate remains at a high value.
This example demonstrates that our algorithm can use only
a small number of most efficient features to classify even
twisted data, and minimize the generalization error as more
features collected.

3. Kullback-Leibler Analysis for Images

It is a nontrivial task to find the optimal linear feature that
maximizes the KL divergence of the projected histograms,
i.e. Eqn.4. For low-dimensional problems, e.g., Figure 2
and Figure 3, we simply use the stochastic ascent algorithm
because the feature space has low dimensionality. But when
we deal with practical problems, e.g., 20×20 image patches,

(a) (b) (c)

①
②③

④

Figure 4. Using KLA to find the first feature for the ex-
ample in Figure 2. (a) We select top 4 features from 8 can-
didates by ranking the KL divergence. (b) Initialization by
combining the 4 features with KL divergence as weights.
(c) KL feature pursued by sequential 1D optimization along
the 4 features.

the stochastic ascent algorithm becomes inefficient because
sampling in a 400 dimensional space may be required.

3.1 Sequential 1D optimization
Instead of stochastic ascent in high dimensional space,

we propose a 1D optimization to find optimal features.
Since the KL features φ’s pursued in KLBoosting are unit
vectors, there exists a boundary [aw, bw] for any linear fea-
ture w ∈ R

d such that aw � wT φ � bw, for φ ∈ R
d,φ= 1.

Thus, given φ0 we can do 1D optimization along the feature
w by

φ∗
(w,φ0)

=arg max KL(βw+φ0), β∈ [aw−wTφ0, bw−wTφ0].
(10)

In practice we can quantize the value along feature w and
find the 1D optimum. Ideally, if we could have an infinite
number of linear features {wi}, we might find a satisfac-
tory solution by sequentially doing 1D optimization along
{wi}. Practically, we only use a few most promising fea-
tures. There are three steps for optimization

(1) Construct a feature bank {wi};

(2) Select the most promising features from the feature
bank to form the feature set {w∗

i } ⊂ {wi};

(3) Sequentially do 1D optimization along the features in
the feature set {w∗

i }.

We use this optimization strategy to revisit the KL fea-
ture pursuit problem for the example in Figure 2, focusing
on the first feature. In Figure 4(a), we choose 8 directions
uniformly distributed on the 2D plane, as the feature bank.
We select top 4 by ranking the KL divergences along them.
Then initialization is obtained by combining the 4 features
with the KL divergence as the weights, as shown in Fig-
ure 4(b). Finally 1D optimization is sequentially proceeded
along the 4 features and we get the KL feature in Figure
4(c). Note this one is exactly the same as the feature pur-
sued by stochastic ascent, as shown in Figure 2(a). More in-
terestingly, the sequential 1D optimization can be extended
to high-dimensional space while stochastic ascent cannot.



Given: labeled samples {xi, yi}N
i=1, weights W (x+

i ),
W (x−

i ), wavelet bank {wi}M
i=1

• Compute KL(wi) for each wavelet wi via Eqn.4

• Rank top L wavelets by KL(wi) to compose {w∗
i }L

i=1

• Initialize: φ(0)= 1
Z

∑L
i=1γ

(0)
i w∗

i , γ
(0)
i = KL(w∗

i ), η = 0.1,
H =10, KL∗ =KL(φ(0))

For k = 1 to K

For i = 1 to L

• Neighborhood size: s = ηKL(w∗
i )

• γ∗
i =γ

(k−1)
i

// 1D optimization on feature w∗
i

For j = −H to H

• γ
(k)
i =γ

(k−1)
i + j

H
s

• Compose to φ and compute KL(φ)

If KL(φ)>KL∗

• KL∗ =KL(φ), γ∗
i = γ

(k)
i

• γ
(k)
i =γ∗

i

• η=0.9η

Output
φ∗ =

1

Z

L∑
i=1

γ
(K)
i w∗

i

Figure 5. The pseudo code of KLA for images.

3.2 A data-driven approach
It is possible to find a feature bank for simple 2D prob-

lems, but difficult for high-dimensional space such as im-
ages. For example, in a d-dimensional space, to obtain a
feature bank as dense as the 8 features in a 2D plane (Fig-
ure 4), 8d−1 features are needed! For image objects, since
wavelets have been proven to be effective local features
for images, we use an over-complete bank of wavelets plus
variations of type, position, scale and orientation, to devise
the feature bank {wi}. Each wavelet is expanded to the im-
age space such that wi ∈ R

d. We rank the wavelets with
respect to the KL divergence KL(wi) computed by Eqn.4.
The top L wavelets are selected to form the most efficient
feature set {w∗

i }. L >> d to ensure satisfactory solution,
which implies span{w∗

i } = R
d. In this manner, φ could be

decomposed to and reconstructed by the feature set {w∗
i }

φ =
1
Z

L∑
i=1

γiw
∗
i , (11)

where γi is the decomposition coefficient, and Z is a nor-
malization factor that makes φ be a unit vector. The initial-
ization of the KL feature is given by combining the wavelets
with their KL divergence as weights. Then a sequential 1D
optimization is carried out along each wavelet. Since it is
difficult to find the exact boundary [aw, bw] in Eqn.10 for

Figure 6. Wavelet bank. Left: Gaussian. Right: Harr.

(a) KL=2.944 (b) KL=3.246 (c) KL=10.967

(d) (e) (f) (g) (h)

Figure 7. Comparison of the best wavelet, MCMC feature
and KL feature. From (a) to (c) are the histograms of face and
non-face patterns projected on the best Harr wavelet, MCMC
feature and KL feature. Blue: face, red: non-face. From (d) to
(h) show the best Harr wavelet, initialized and the final result
of MCMC feature, initialized and the final result of KL feature,
respectively.

each feature, the 1D optimization is done within a neigh-
borhood. As the size of the neighborhood gradually dimin-
ishes, the optimization procedure converges to a satisfactory
solution. The pseudo code of KL Analysis is shown in Fig-
ure 7.

3.3 KL feature for face and non-face patterns
We use face and non-face patterns to test the KLA algo-

rithm. The data collection will be mentioned in next section.
Both face and non-face patterns are represented by 20×20
patches. We choose an over-complete wavelet bank com-
prising Gaussian family (Gaussian itself, the 1st and 2nd or-
der derivatives of Gaussian) and Harr wavelets with 3 and 5
prototypes respectively, as shown in Figure 6. Using scale,
orientation and tilt transforms, we generate 111 wavelets for
each position, and there are in total 111×400=44400 local
wavelets. We also choose some large scale wavelets located
around the center of the pattern to capture global features,
40 Gaussian families and 40 Harr wavelets for each posi-
tion within an inner 10×10 rectangle and the total number
is 80×100=8000. From these 52400 wavelets we select top
2800 to compose the global KL feature. Since there is sig-
nificant redundancy in wavelet bank, for each position, we
limit the number of either local small wavelet or large-scale
wavelet to no more than 6, so that we have nearly identical
number of wavelets at each position.

We compare the best wavelet feature, the best MCMC
feature by stochastic ascent, with the best KL feature pur-
sued by the proposed data-driven KLA algorithm, in Figure
7. The histograms of face and non-face patterns projected



on the best Harr wavelet, MCMC feature and KL feature
are plotted from (a) to (c), with KL divergence 2.944, 3.246
and 10.967, respectively. The corresponding features are
displayed as images from (d) to (h). The Harr wavelet fea-
ture merely describes the difference around the eye area.
MCMC feature is noisy and not meaningful. On the other
hand, the KL feature corresponds to face semantics very
well, emphasizing the appearance of facial components and
ignoring the backgrounds. Therefore, the KL feature is op-
timal not only because it maximizes the KL divergence, but
also because it makes sense to human perception.

4. Applications to Face Detection

By integrating the KLA algorithm for images, we can
apply KLBoosting to detect faces in images. This is known
to be a very challenging problem due to possible clutter and
varying head pose and lighting conditions.

4.1 A brief review on face detection
Most face detection approaches that use a two-class clas-

sifier are appearance-based [18]: face and nonface samples
are represented as small square patches (typically 20× 20),
then a classifier is trained from the samples. There are ba-
sically two approaches to learning the face vs. non-face
boundary. One is distribution based, using Gaussians [5] or
mixtures of subspace models [19] to learn the face distri-
bution. The classifier is the result of thresholding the pdf.
This type of approach tends to produce more false positives.
The other face detection approach is to directly learn the
classifier, using Neural Networks [8], Support Vector Ma-
chines [6], naive Bayesian [12], SNoW network [17] and
AdaBoost [16]. There is also a combination of these two
approaches [14]: the pdf measures of each cluster of face
and non-face are input to a neural network for classification.
Most of the classification-based methods deal well with up-
right and frontal-view faces. The detection rate can reach
94% when the false positive rate is limited to 10−6. Nev-
ertheless, a single classifier can hardly deal with large in-
plane or out-of-plane rotations. Pose estimation/correction
[9] and multiple classifiers for specified poses [13] have
been proposed to solve this problem.

4.2 Experimental setup
Our experiments are conducted with many face and non-

face images. Our face data were obtained from some stan-
dard face database such as FERET and AR, and from the
web. There are a total of 8760 faces, and by mirroring,
we obtained 17520 face samples covering different lighting,
orientation, pose, imaging quality, age, gender, with(out)
occlusion and with(out) facial additions. Both the in-plane
and out-of-plane rotations were restricted to ±20◦. We use
five points, the center of the eyes, the tip of the nose and the
corners of the mouth, to align all the samples. In our exper-
iments, we cropped a 20×20 face patch from each image to

(a) (b)

Figure 8. Some samples in the training data, (a) face patterns
(b) non-face patterns. Some of the non-face patterns are similar
to a face.

Figure 9. Face features pursued by KLA. The first row lists
the first ten features sequentially found in KLBoosting. The
others are typical and representative ones in the 400 learnt fea-
tures. The second, third and last rows are “global semantic”,
“global but not semantic” and “local” features, respectively.

form the face training data. We gathered 2484 images not
containing faces, e.g. natural scenes, buildings and textures.
Using a Gaussian pyramid, we extract totally 1,339,856,947
non-face 20×20 patches to form the non-face training data.
Some of the face and non-face patterns are displayed in Fig-
ure 8. The number of histogram bins is set to be 300, as a
trade-off between accuracy and sample number.

In face detection, the most important is to find the non-
face (negative) samples that stand near the classification
boundary. In face detection literature, booststrapping algo-
rithm is always chosen to gradually find the proper non-face
samples [14, 8, 6]. A cascade of classifiers is proposed in
[16] to speed up detection procedure by gradually rejecting
non-face patterns. We follow this architecture and train the
cascade of face detectors. For each classifier in the cascade,
we set the detection rate to be no less than 99.99%, namely
the false positive rate is no bigger than 0.01%, while mini-
mizing the false alarm rate. If the false alarm rate is under
35% or the number of the features exceeds a preset num-
ber like 30, the learning of this classifier stops. The learnt
classifier searches in the non-face images to generate new
non-face samples for training the next classifier. At detec-
tion line, we detect all possible faces in a Gaussian pyramid
down-sampled by 1.11. Then the multiple detections are



1

10-1

10-2

10-3

10-4

10-5

40080 160 240 3200

KLBoosting

AdaBoost

Figure 10. The curves of the false alarm rate (� 99.99%
face recognition rate) vs. the number of features added, for
both KLBoosting and AdaBoost.

merged in the same fashion as [16].

4.3 Experimental results
We list some of the learnt features in Figure 9. The

first row shows the first ten features sequentially learnt in
KLBoosting. There are in general three categories of fea-
tures, shown from the second to the last row, respectively.
The first is “global semantic”, similar to a face pattern, to
describe facial characteristics such as facial components,
shape, expressions and lighting. The second is “global but
not semantic”, like a non-face pattern, to distinguish the fre-
quency distributions of face and non-face. The last is “lo-
cal” features like wavelets, to emphasize detailed local dif-
ference.

We use in total 22 classifiers in the cascade to learn the
face detector, including 450 features. By adding one fea-
ture, the false alarm rate will decrease, which indicates that
some of the non-face patterns can be cleanly rejected nearly
without loss of any faces. The curve of false alarm rate vs.
the number of the features is shown in Figure 10. We also
implemented the AdaBoost algorithm in [16] for compari-
son. The fist classifier in KLBoosting uses two features to
retain 100% face detecting rate with false alarm rate 10.8%.
While in [16] two wavelets (local features) are used in the
first cascade with about 40% false alarm rate at the same
detecting rate. After learning 400 features, KLBoosting
achieves false alarm rate about 5.3×10−5, while the value
for AdaBoost is 6.7×10−3. This demonstrates that KLA
efficiently learns the most discriminating features and KL-
Boosting combines these features very well.

We tested the KLBoosting face detector on the
MIT+CMU frontal face test set [8], and used an approach
similar to [16] to produce the ROC curve shown in Figure
11. We simply adjust the threshold of the final classifier
from -1 to 1 with step 0.05 to count the detection rate vs.
false alarm rate. We also plot the ROC curves of AdaBoost
and Neural Network that have been reported in [16]. De-
spite the inevitable differences in the training sets, param-

false alarm rate

co
rr

ec
t d

et
ec

tio
n 

ra
te

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65
3.16 X10 -7 3.16 X10 -6 3.16 X10 -51X10 -6 1X10 -51X10 -7

KLBoosting

AdaBoost

Neural Network

Figure 11. ROC curves for KLBoosting, AdaBoost [16]
and Neural Network [8] on the MIT+CMU test set. There
are int total 85,360,210 patches scanned.

eter tuning, and multi-detection merging strategies, our al-
gorithm appears to outperform others, e.g., 95.0% detection
rate at 10−6 false alarm rate. Note when the false alarm rate
is close to 10−7, the performance of AdaBoost and Neu-
ral Network is better than our approach because there are
three independent classifiers fused for decision. These in-
dependent classifiers can also be fused to improve the per-
formance of KLBoosting for future work. Some detection
results are displayed in Figure 12.

Since KLBoosting classification only requires linear pro-
jection and table lookup, it is computationally efficient. It
takes on average 0.4 second on a Pentium 4 1.8GHz PC to
detect a few faces from a 320×240 image.

5. Discussion

(a) KLBoosting vs. AdaBoost

AdaBoost combines several weak classifiers (features)
to compose a “strong” classifier. It left two questions un-
solved. First, how to best combine the weak classifiers in
terms of the coefficients; second, how to choose the best
weak classifiers or features. KLBoosting solves the first
problem by iteratively tuning the coefficients to minimize
the recognition error. It ensures the recognition error would
not increase as more features involved. To solve the second
problem, KLBoosting finds KL features that maximize the
symmetric KL divergence between two classes, which cor-
responds to the projected margin. In other words, KLBoost-
ing uses optimal features to constitute an optimal classifier.

(b) KLA vs. FLD

Both KLA and Fisher Linear Discriminant (FLD) are
projection pursuit methods, i.e. to find a feature that can
best discriminate two-class data. FLD assumes the two
class are both Gaussian distributed, and maximizes the dis-
tance between two class over the variation within each class.
It does not work very well for non-Gaussian problems, such



Figure 12. Output of KLBoosting face detector on some test images from CMU face test set.

as the toy problems in Figures 2 and 3. KLA is a more uni-
fied method and can be equal to FLD if the two classes are
Gaussian distributed.

(c) KL feature vs. wavelet

The statistics on wavelets, such as Gaussian derivative,
Gabor and Harr, are often used as the observations of im-
ages, and the evidence to construct classifiers or distribu-
tions [7, 16, 20]. However, wavelets are not designed for
the specific class, e.g. human face, and as local features,
not capable to capture the global statistics, e.g. the correla-
tion of facial components. KL feature is a global feature, to
capture not only local statistics, but also global properties
distinguishing the data.

6. Conclusion

In this paper we have proposed KLBoosting as a classi-
fication framework and applied it to face detection. In KL-
Boosting, we have a compact classifier with robust features.
We learn the coefficients with the weak classifier and find
the KL feature that best discriminates the data. Moreover,
we propose a data-driven KLA to learn the KL feature in
image space. The toy problems and the application of face
detection demonstrate the feasibility of KLBoosting.

References

[1] C.M. Bishop. Neural Networks for Pattern Recognition.
Clarendon Press Oxford, 1995.

[2] P. Buhlmann and B. Yu. Invited discussion on ‘Additive lo-
gistic regressions: a statistical view of boosting (Friedman,
Hastie and Tibshirani)’. The Annual of Statistics, 28(2):377–
386, April 2000.

[3] J. Friedman, T. Hastie, and R. Tibshirani. Additive logis-
tic regression: a statistical view of boosting. The Annual of
Statistics, 28(2):337–374, April 2000.

[4] C. Liu, S.C. Zhu, and H.Y. Shum. Learning inhomogeneous
gibbs model of faces by minimax entropy. ICCV, pages 281–
287, 2001.

[5] B. Moghaddam and A. Pentland. Probabilistic visual learn-
ing for object representation. TPAMI, 19(7):696–710, 1997.

[6] E. Osuna, R. Freund, and F. Girosi. Training support vector
machines: an applications to face detection. CVPR, pages
130–136, 1997.

[7] C. Papageorgriou, M. Oren, and T. Poggio. A general frame-
work for object detection. ICCV, pages 555–562, 1998.

[8] H. Rowley, S. Baluja, and T. Kanade. Neural network-based
face detection. TPAMI, 20(1):23–38, 1998.

[9] H. Rowley, S. Baluja, and T. Kanade. Rotation invariant neu-
ral network-based face detection. CVPR, pages 38–44, 1998.

[10] R. Schapire and Y. Singer. Improved boosting algorithms
using confidence-rated predictions. Proc. of Annual Conf.
on Computational Learning Theory, pages 80–91, 1998.

[11] R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting
the margin: a new explanation for the effectiveness of voting
methods. Proc. Int’l Conf. on Machine Learning, 1997.

[12] H. Schneiderman and T. Kanade. Probabilistic modeling of
local appearance and spatial relationships for object recogni-
tion. CVPR, pages 45–51, 1998.

[13] H. Schneiderman and T. Kanade. A statistical method for 3d
object detection applied to faces and cars. CVPR, 1:746–751,
2000.

[14] K.-K. Sung and T. Poggio. Example-based learning for view-
based human face detection. TPAMI, 20(1):39–51, 1998.

[15] V.N. Vapnik. The nature of statistical learning. Springer,
1995.

[16] Paul Viola and Michael Jones. Rapid object detection using
a boosted cascade of simple features. CVPR, 2001.

[17] M.-H. Yang, N. Ahuja, and D. Kriegman. Mixtures of linear
subspaces for face detection. AFGR, pages 70–76, 2000.

[18] M.-H. Yang, D. Kriegman, and N. Ahuja. Detecting faces in
images: a survey. TPAMI, 24(1):34–58, 2002.

[19] M.-H. Yang, D. Roth, and N. Ahuja. A snow-based face
detector. NIPS, pages 855–861, 2000.

[20] S.C. Zhu, Y.N. Wu, and D. Mumford. Minimax entropy prin-
ciple and its application to texture modeling. Nueral Com-
putation, 9(8), 1997.


