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Abstract

In this paper, we propose a texture-constrained active shape model (TC-ASM) to localize a face in an image. TC-ASM effectively

incorporates not only the shape prior and local appearance around each landmark, but also the global texture constraint over the shape.

Therefore, it performs stable to initialization, accurate in shape localization and robust to illumination variation, with low computational cost.

Extensive experiments are provided to demonstrate our algorithm.

q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Accurate extraction and alignment of faces from images

are required in many computer vision and pattern recog-

nition applications. Active Shape Models (ASM) and Active

Appearance Models (AAM), proposed by Cootes et al. [4],

are two popular shape and appearance models for object

localization. They have been developed and improved for

years [5–7,9].

In ASM, the local appearance model, which represents

the local statistics around each landmark, efficiently finds

the ‘best’ candidate point for each landmark in searching the

image. The solution space is constrained by the properly

trained global shape model. By means of modeling of the

local features, ASM obtains nice results in shape localiz-

ation. AAM [2,3,10] combines constraints on both shape

and texture in its characterization of face appearance. In the

context of this paper, texture means the intensity patch

contained in the shape after warping to the mean shape [4].

There are two linear mappings assumed for optimization:

from appearance variation to texture variation, and from

texture variation to position variation. The shape is

extracted by minimizing the texture reconstruction error.

According to the different optimization criteria, ASM

performs more accurately in shape localization while

AAM gives a better match to image texture. On the other

hand, ASM tends to be stuck in local minima, dependent on

the initialization. AAM is sensitive to the illumination, in

particular if the lighting in the test is significantly different

from the training. Meanwhile, training an AAM model is

time consuming.

In this paper, a novel shape model, called Texture-

Constrained Active Shape Model (TC-ASM), is proposed to

address the above problems of ASM and AAM. TC-ASM

inherits the local appearance model in ASM for the

robustness of varying lighting. We borrow the global

texture in AAM to TC-ASM, acting as a constraint over

shape and providing an optimization criterion for determin-

ing the shape parameters. In TC-ASM, the conditional

distribution of a shape given its associated texture is

modeled as a Gaussian distribution. Thus, the texture

corresponding to the shape obtained from the local

appearance model, could linearly predict a texture-con-

strained shape. It converges to a local optimum when the

shape from the local appearance model is very close to the

texture-constrained shape.

Extensive experiments show that TC-ASM outperforms

ASM and AAM in facial shape localization. It is also

demonstrated that TC-ASM performs no worse than AAM

in texture reconstruction.

This paper is organized as follows. In Section 2, we

briefly review the shape and appearance models. The details

of TC-ASM are discussed in Section 3. Experiments are

presented in Section 4. We conclude this paper in Section 5.
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2. Classical shape and appearance models

Assume a training set of shape-texture pairs to

be V ¼ {ðSi;T
s
i Þ}

N
i¼1: The shape Si ¼ {ðxi

j; y
i
jÞ}

K
j¼1 [ R2K

is a sequence of K points in the image lattice. The texture Ts
i

is the image patch enclosed by Si: Let �S be the mean shape of

all the training shapes, as illustrated in Fig. 1. �S is calculated

from an iterative procedure [1] such that all the shapes are

aligned to the tangent space of the mean shape �S: After

shape warping [4], the texture Ts
i is warped correspondingly

to Ti [ RL; ; where L is the number of pixels enclosed by the

mean shape �S: The warped textures are also aligned to the

tangent space of the mean texture �T in the same approach as

computing �S:

2.1. ASM

In ASM, a shape is represented as a vector s in the low

dimensional shape eigenspace Rk; spanned by k (, 2K)

principal modes (major eigenvectors) learned from the

training shapes. A shape S could be linearly obtained from

shape eigenspace:

S ¼ �S þ Us; ð1Þ

where U is the matrix consisting of k principal modes of the

covariance of {Si}:

The local appearance models, which describe local

image feature around each landmark, are modeled as the

first derivatives of the sampled profiles perpendicular to the

landmark contour [4]. For the jth landmark (j ¼ 1;…;K),

we can derive the mean profile �gj and the covariance matrix

Sg
j from the jth profile examples directly. At the current

position ðxðn21Þ
j ; yðn21Þ

j Þ of the jth landmark, the local

appearance models find the ‘best’ candidate ðxn
j ; y

n
j Þ in the

neighborhood Nðxðn21Þ
j ; yðn21Þ

j Þ surrounding ðxðn21Þ
j ; yðn21Þ

j Þ;

by minimizing the energy:

ðxn
j ; y

n
j Þ ¼ arg min

ðx;yÞ[Nðxðn21Þ
j

;yðn21Þ
j

Þ

kgjðx; yÞ2 �gjk
2
Sg

j
ð2Þ

where gjðx; yÞ is the profile of the jth landmark at ðx; yÞ and

kXk2A ¼ XT A21X is the Mahalanobis distance measure with

respect to a real symmetric matrix A.

After relocating all the landmarks using the local

appearance models, we obtain a new candidate shape Sn
lm:

The solution in shape eigenspace is derived by maximizing

the likelihood:

sn ¼ arg max
s

pðSn
lmlsÞ ¼ arg min

s
EngðSn

lm; sÞ; ð3Þ

where1

EngðSn
lm; sÞ ¼ lkSn

lm 2 S0
lmnk2 þ ksn

lm 2 sk2L: ð4Þ

In above equation, sn
lm ¼ UT ðSn

lm 2 �SÞ is the projection of

Sn
lm to the shape eigenspace, S0

lmn ¼ �S þ Usn
lm is the

reconstructed shape, L is the diagonal matrix of the largest

eigenvalues of the training data {Si}: The first term is the

squared Euclidean distance from Sn
lm to the shape eigen-

space, and the second is the squared Mahalanobis distance

between sn
lm and s. l balances the two terms.

Using the local appearance models leads to fast converge

to the local image evidence. However, since they are

modeled based on the local features, and the ‘best’

candidate point is only evaluated in local neighborhood,

the solution of ASM is often suboptimal, dependent on the

initialization.

2.2. AAM

In AAM, the texture eigenspace is spanned by the ‘

principle modes of {Ti}: The texture model is similar to the

shape model:

T ¼ �T þ Vt ð5Þ

where V is the matrix consisting of ‘ principal orthogonal

modes of the covariance in {Ti}; and t is the vector of

texture parameters.

Let appearance a ¼ ðgsT ; tT ÞT [4] be a weighted vector of

shape parameter s and texture t with the weighting

parameter g. AAM assumes that both the appearance

displacement da and the position (including the centroid

ðx; yÞ; scale s and orientation u ) displacement dp are linearly

dependent on the texture reconstruction error dT :

da ¼ AadT ; dp ¼ ApdT ð6Þ

dT is continuously minimized in AAM by shifting the shape

and position parameters as in Eq. (6). However, due to the

high dimensions of the space T and a, the training of Aa and

Ap is time and memory consuming. Meanwhile, since

illuminations do not compose the image intensity linearly,

dT could not accurately predict da or dp under irregular

lighting via linear mapping. Therefore, AAM solutions are

often affected by varying illuminations.

3. Texture constrained active shape model

From above analysis, it is natural to develop a novel

model to inherit the merits and reject the demerits of ASM

and AAM. We propose a TC-ASM to borrow local

appearance models from ASM for landmark localization,

and incorporate the global texture constraint over the shape

from AAM for more accurate shape parameters estimation.

It consists of several types of models: a shape model, a

texture model, K local appearance models, and a texture-

constrained shape model. The former three types are exactly

the same as in ASM and AAM. The texture-constrained

shape model, or the mapping from texture to the expected

shape, is simply assumed linear and could be easily learnt.

1 This is a deviation of the most used energy function with a squared

Euclidean distance between Sn
lm and shape S [ R2K derived from parameter

s. It is more reasonable to take into account the prior distribution in the

shape space.
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In each step of the optimization, a better shape is found

under Bayesian framework. The details of the model will be

introduced in the following.

3.1. Texture-constrained shape model

In the shape model, there are some landmarks defined on

the edges or contours. Since they have no explicit definition

for their positions, there exists uncertainty of the shape

given the texture, whilst there are may be correlations

between the shape and the texture. To formulate the

correlations, the conditional distribution of shape

parameters s given texture parameters t is simply assumed

Gaussian, i.e.

pðsltÞ , Nðst;StÞ; ð7Þ

where St stands for the covariance matrix of the distribution,

and st is linearly determined by the texture t. The linear

mapping from t to st is:

st ¼ Rt; ð8Þ

where R is a projection matrix that can be pre-computed

from the training pairs {ðsi; tiÞ} by singular-value decompo-

sition. For simplicity, St is assumed to be a known constant

Fig. 1. Left and middle: two face instances labeled with 83 landmarks. Right: the mesh of the mean shape.

Fig. 2. The comparison of the manually labeled shape (middle row) and the shape (bottom row) derived from the enclosed texture using the learned projection

matrix: st ¼ Rt: In the top row are the original images. All the images are test data.
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matrix. Fig. 2 demonstrates the accuracy of the prediction in

the test data via the matrix R. We may see that the predicted

shape is close to the labeled shape even under varying

illuminations. Thus, the constraints over the shape from the

texture can be used as an evaluation criterion in the shape

localization task. The prediction of matrix R is also affected

by illumination variation, yet since Eq. (8) is formulated

based on the eigenspace, the influence of the unfamiliar

illumination can be alleviated when the texture is projected

to the eigenspace.

The distribution (Eq. (7)) can also be represented as the

prior distribution of s given the shape st :

pðslstÞ / exp{ 2 Engðs; stÞ}; ð9Þ

where the energy function is:

Engðs; stÞ ¼ ks 2 stk
2
St
: ð10Þ

3.2. TC-ASM in Bayesian framework

TC-ASM search starts with the mean shape, namely the

shape parameters s 0 ¼ 0. The whole search process is

outlined as below:

(1) Set the iteration number n ¼ 1;

(2) Using the local appearance models in ASM, we may

Fig. 3. Accuracy of ASM, AAM, TC-ASM. From upper to lower, left to right are the results obtained with the initial displacements of 10, 20, 30 and 40 pixels.

Fig. 4. Standard deviation in the results of each example for ASM (dotted) and TC-ASM (solid) with training set (left) and test set (right).
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obtain the candidate shape Sn
lm with the shape

parameters sn
lm based on the shape Sðn21Þ of the

previous iteration;

(3) The texture enclosed by Sn
lm is warped to the mean

shape, denoted by tn: The texture-constrained shape sn
t

is predicted from tn by Eq. (8);

(4) The posterior (MAP) estimation of Sn or sn given Sn
lm

and sn
t is derived based on the Bayesian framework;

(5) If the stopping condition is satisfied, exit; otherwise, let

n ¼ n þ 1, goto step 2.

In the following, we illustrate the step 4 and the stopping

condition in detail. To simplify the notation, we shall omit

the superscript n in following deduction since the iteration

number is constant. In step 4, the posterior (MAP)

estimation of s given Slm and st is:

pðslSlm; stÞ ¼
pðSlmls; stÞpðs; stÞ

pðSlm; stÞ
: ð11Þ

Assume that Slm is conditionally independent to st; given s,

i.e.

pðSlmls; stÞ ¼ pðSlmlsÞ: ð12Þ

Then

pðslSlm; stÞ / pðSlmlsÞpðslstÞ: ð13Þ

The corresponding energy function is:

Engðs; Slm; stÞ ¼ EngðSlm; sÞ þ Engðs; stÞ ð14Þ

From Eqs. (4) and (10), the best shape obtained in each

step is

s ¼ arg min
s

½Engðs; SlmÞ ) EngðSlm; sÞ	

¼ arg min
s

kslm 2 sk2L þ ks 2 stk
2
St

¼ arg min
s

½sT ðL21 þ S21
t Þs 2 2sT ðL21slm þ S21

t stÞ	

¼ ðL21 þ S21
t Þ21ðL21slm þ S21

t stÞ: ð15Þ

After restoring the superscript of iteration number, the best

shape obtained in step n is

sn ¼ ðL21 þ S21
t Þ21ðL21sn

lm þ S21
t sn

t Þ: ð16Þ

This indicates that the best shape derived in each step is a

weighted average between the shape from the local

appearance model and the texture-constrained shape. In

this sense, TC-ASM could be regarded as a trade-off

between ASM and AAM methods.

The stopping condition of the optimization is: if the

shape from the local appearance model and the texture-

constrained shape are the same, i.e. the solution generated

by ASM is verified in AAM, the optimal solution must have

been touched. In practice, however, these two shapes would

Fig. 5. Stability of ASM (middle column) and TC-ASM (right column) in

shape localization. The different initialization conditions are showed in the

left column. Note that there are less variations among the positions of the

eyebrows and mouth points in TC-ASM.

Fig. 6. Distribution of the texture reconstruction error in ASM (dotted), AAM (square) and TC-ASM (asterisk) with training data (left) and test data (right).
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hardly turn to be the same. A threshold is introduced to

evaluate the similarity and sometimes the convergence

criterion in ASM is used (if the above criterion has not been

satisfied for a long time). For higher efficiency and

accuracy, a multi-resolution pyramid method is adopted in

optimization process.

4. Experiments

A data set containing 700 face images from about 300

persons with different illumination conditions and

expressions are selected from the AR database [8] in our

experiments, each of which is a 512 £ 512, 256 gray-levels

image containing the frontal view face about 200 £ 200.

Eighty-three landmark points are manually labeled on the

face. We randomly select 600 for training and the other 100

for testing.

For comparison, ASM and AAM are trained on the same

data sets, in a three-level image pyramid (Resolution is

reduced 1/2 level by level) as TC-ASM. By means of PCA

with 98% total variations retained, the dimension of the

shape parameter in ASM shape space is reduced to 88, and

the texture parameter vector in AAM texture space is

reduced to 393. The concatenated vector of the shape and

texture parameter vector with the weighting parameter [2]

Fig. 7. Sensitivities of AAM (upper) and TC-ASM (lower) to illumination condition not seen in the training data. From left to right are the results obtained at

the 0th, 2nd, and 10th iterations. Note that the result in different level of image pyramid is scaled back to the original scale.

Fig. 8. Scenarios of AAM (upper) and TC-ASM (lower) alignment with texture reconstruction error 0.3405 and 0.1827, respectively. From left to right are the

original image and the results obtained at the 0th, 5th, 10th, 15th iterations. Note that the result in different level of image pyramid is scaled back to the original

scale.
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g ¼ 13:77 is reduced to 277. Two types of experiments are

presented: (1) the comparison of the point-position accuracy

and (2) the comparison of the texture reconstruction error.

4.1. Point position accuracy

The average point–point distances between the searched

shape and the manually labeled shape of the three models

are compared in Fig. 3. The vertical axis represents the

percentage of the solutions for which the average point–

point distances to the manually labeled ones are smaller than

the corresponding horizontal axis value. The statistics are

calculated from 100 test images with different initializa-

tions, with random displacements to the ground truth of 10,

20, 30 and 40 pixels. The results show that TC-ASM

outperforms both ASM and AAM in most cases since the

curve of TC-ASM lies above the curves for ASM and AAM.

It also suggests that AAM outperforms ASM when the

initial displacement is small, while ASM is more robust to

the increasing of the initial displacement.

We compare the stability, which is measured by the

standard deviation of the results from the initializations with

similar point–point distances between the initial shapes and

the ground truth, of TC-ASM with ASM in Fig. 4. The value

of horizontal axis is the index number of the selected

examples, whereas the value of the vertical axis is the

average standard deviation of the results obtained from 10

different initializations which deviate from the ground truth

by approximately 20 pixels. The result convinces that TC-

ASM is more stable to initializations. An example is given

in Fig. 5.

4.2. Texture reconstruction error

The texture reconstruction error comparison of the three

models in Fig. 6 illustrates that TC-ASM improves the

accuracy of the texture matching. The texture accuracy of

TC-ASM is close to that of AAM while its position accuracy

is better than AAM (see Fig. 3). Although AAM has more

cases with small texture reconstruction error, TC-ASM

has more cases with the texture reconstruction error smaller

than 0.2.

An example in which AAM fails for a different

illumination condition from the training data, yet TC-

ASM performs well is presented in Fig. 7 . Fig. 8 shows a

scenario of AAM and TC-ASM alignment.

From the experiment, TC-ASM is more computationally

expensive than ASM, but it is much faster than AAM. In our

experiment (600 training images, 83 landmarks and a P-III

667 computer with 256 M memory), it takes averagely

32 ms per iteration, which is twice of ASM (16 ms) but one

fifth of AAM (172 ms). It takes TC-ASM about three

iterations per level to converge.

5. Conclusion

In this paper we proposed a novel shape model, TC-

ASM, for face shape localization. TC-ASM efficiently

incorporates the local information around each landmark

and the global texture information for alignment. It is more

robust to initialization, more accurate in shape localization

and less sensitive to illumination, when compared with

conventional methods. For future work, the generalization

of the shape prediction from the texture can be evaluated on

a larger data set.
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