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Abstract

Objects with thin features and fine details are challenging
for most multi-view stereo techniques, since such features
occupy small volumes and are usually only visible in a small
portion of the available views. In this paper, we present
an efficient algorithm to reconstruct intricate objects using
densely sampled light fields. At the heart of our technique
lies a novel approach to compute per-pixel depth values by
exploiting local gradient information in densely sampled
light fields. This approach can generate accurate depth val-
ues for very thin features, and can be run for each pixel
in parallel. We assess the reliability of our depth estimates
using a novel two-sided photoconsistency measure, which
can capture whether the pixel lies on a texture or a silhouette
edge. This information is then used to propagate the depth
estimates at high gradient regions to smooth parts of the
views efficiently and reliably using edge-aware filtering. In
the last step, the per-image depth values and color infor-
mation are aggregated in 3D space using a voting scheme,
allowing the reconstruction of a globally consistent mesh for
the object. Our approach can process large video datasets
very efficiently and at the same time generates high quality
object reconstructions that compare favorably to the results
of state-of-the-art multi-view stereo methods.

1. Introduction

Reconstructing objects in 3D from a set of pictures is a
long standing problem in computer vision, since it enables
many applications, including (but not limited to) digitizing
real-world objects, localization and navigation, and generat-
ing 3D content for computer graphics and virtual reality. Due
to the breadth of these possible use cases, image based 3D
reconstruction has been well studied, and many different so-
lutions have been proposed, ranging from generating meshes
for small objects [ 5] to reconstructing entire cities [1].

Despite significant research efforts, objects with thin fea-
tures and fine details still pose a problem to multi-view
stereo (MVS) techniques due to numerous reasons. First
of all, these features occupy only a small number of pixels
in the views they are visible in, making locating them diffi-
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Figure 1: Given a dense light field around a foreground
object, our technique reconstructs the object in 3D with its
fine details. Left: An input view from the AFRICA dataset.
Right: The reconstructed mesh rendered with and without
the texture. Note the reconstructed details, such as the stick,
the legs and the arms of the figurines.

cult. They are also usually only visible in a small number of
views, such that matching between different views becomes
challenging. Moreover, most patch based MVS techniques
miss thin features, since they require the patches on the ob-
jects to be several pixels wide, which is not always the case
in real-life capture scenarios. Graph-cut based reconstruc-
tion techniques [21, 35] face difficulties with textureless thin
features, because it is hard for such methods to localize the
features using photoconsistency values inside a volumetric
discretization, often resulting in elimination of these features
in the reconstructions.

In this work, we propose an algorithm that uses light fields
with high spatio-angular sampling, such that fine features
become more prominent thanks to the increased coherency
and redundancy in the data. The features are visible in more
views and occupy a larger amount of pixels inside the light
field compared to sparsely sampled images. Increased co-
herency of the data also makes it possible to work directly on
the pixel level without requiring patch based matching, such
that thin object parts can be identified (Figure 1). At the same
time, dense light fields are challenging to process due to the
sheer amount of available data. Existing multi-view stereo
methods evolved largely towards handling sparse, imperfect
input and thus cannot handle such dense data effectively.

Recent novel approaches to light field processing have
already shown an increase in the quality of the depth maps,
where finer details are visible in the reconstructions [24, 37].



However, the resulting scene representations are per-view
depth maps, which are not always globally consistent and
require an additional surface reconstruction step to gener-
ate more widely used representations, e.g. triangle meshes.
Furthermore, such techniques often specialize in regularly
sampled light fields (such as regular 2D grids) and do not
easily generalize to more casual, hand-held capture scenar-
i0s. A more recent method [40] generates pixel-accurate
segmentations for casually captured light fields using pixel-
level approaches. Unfortunately, segmentations can only be
used to describe the objects in form of visual hulls, where
concavities are missing.

Our approach makes the following contributions: Firstly,
we propose an efficient and reliable technique for computing
per-pixel depth values by utilizing the gradient directions in-
side the light field volume. In this way, depths at image edges
can be computed without the need to match features or opti-
mize for 3D patches. Secondly, we utilize a novel directional
photoconsistency computation, which makes it possible to
differentiate between texture and boundary edges in the im-
ages. This computation is instrumental in propagating depth
values from high gradient regions to smooth areas. Lastly,
we propose a robust depth aggregation technique that thrives
with a large amount of depth maps and extracts precise and
detailed object surfaces from the gathered information.

Every step of our technique is designed to take advantage
of the highly coherent light field data. Typically, we cap-
ture an HD video containing thousands of frames to sample
the light field surrounding an object. Since such dense light
fields contain more samples about every scene point com-
pared to traditional MVS techniques, we can work on pixel
level and make robust decisions about the pixels indepen-
dently. Most existing MVS methods cannot make use of such
data in full. We designed our pipeline to be able to handle
the sheer amount of data and avoid long run times or large
memory requirements. These design decisions make it possi-
ble to manage light fields consisting of thousands of views
efficiently and generate high quality 3D reconstructions for
objects with fine details.

2. Related work

3D reconstruction from light fields. Beyond the early ap-
plication of light fields in image based rendering [6,9,19,26],
the dense representation of the scene they attain has provided
new perspectives to a variety of existing computer vision
problems. The high coherency in light fields can be utilized
to extract higher level information about the scene, such as
understanding specular properties of objects [8], segment-
ing scenes into multiple components [38], computing scene
flow [2], synthesizing superresolution images [34], and gen-
erating high quality per-view depth maps [24,39]. The use
of image statistics [7] and explicitly trying to identify oc-
clusion edges [36] can enhance the quality of depth maps,

especially around object boundaries. Most recently, convolu-
tional neural networks [20] have been applied to solve the
depth reconstruction problem. Similar ideas have been used
to reconstruct depth maps from light fields captured with
lenslet arrays [3,27,33]. Our aim in this paper is complemen-
tary to these works: we strive to reconstruct the 3D shape
of the object using a dense light field captured from view
points around the object, making use of the local gradient
information to compute fast and reliable depth maps without
the need for optimization techniques.

When capturing a light field from a scene, the scene
points’ projections to the views create trajectories depending
on the 3D position of the scene point and the camera posi-
tions. Exploiting such trajectories for direct reconstruction
of depth or segmentations have been a promising research
direction since its first introduction by Bolles et al. [4], who
analyzed several different camera alignments, including lin-
ear alignment. Feldmann et al. [10] compute point clouds by
fitting analytical curves to the trajectories, but are limited to
perfectly circular camera motion. Fitting lines to the epipolar
plane images can reveal the depths of scene points [37], but
this computation requires the camera positions to be aligned
on a regular 2D grid. More recent work [40] has shown that
light field gradients can be utilized to segment the foreground
object from the background clutter both in 2D as segmenta-
tion masks, and in 3D, described by a visual hull, without
requiring stringent capture scenarios. In our work, we extend
the gradient computations to estimate depth values instead
of segmentations, and the depths are then used to generate
3D surface meshes with concavities and fine details.

Multi-view stereo. The aim of multi-view stereo is to re-
construct objects in 3D using a set of images. We discuss
the previous work on MVS that is most related to ours. For a
more detailed survey and evaluation of MVS, we refer the
reader to the comprehensive studies [13,29].

A common approach to object reconstruction is to start
with a visual hull of the object and carve it out to get the
actual shape with concavities [14,21,31,35]. The carving
operation is done either via volumetric graph-cuts inside the
visual hull volume, or by deforming the visual hull mesh via
an energy optimization. In order to get the initial surface,
per-image segmentations need to be computed either by hand
or by background subtraction, which is time consuming with
thousands of images and cluttered backgrounds. With high
voxel and image resolutions, computing a global solution
can become infeasible. Also, silhouette extraction is prone to
errors, which requires special handling for thin objects [32].

Another general direction is to create reliable oriented
point clouds by applying patch-based feature matching, and
then expand around these points to cover the object [ 1,15, 18].
The resulting dense point cloud is turned into a mesh by a
surface reconstruction technique, e.g. Poisson reconstruc-
tion [23]. Thin features, which cannot be matched via feature



matching, and textureless regions pose problems, since with-
out sufficient number of points in these areas, they cannot
be accurately represented in the final mesh.

Computing per-image depth maps and merging them later
in 3D space has been shown to generate high quality ob-
ject reconstructions [5, 17,28,30]. Usually, depth maps are
computed using dense correspondence matching, which is
susceptible to image noise or large smooth regions without
regularization, while applying regularization often destroys
fine details. Further, correspondence matching and the sub-
sequent triangulation becomes inaccurate in narrow baseline
scenarios, as is the case with densely sampled light fields.
In this work, we propose an efficient narrow baseline depth
computation technique using light field gradients, which can
be applied for each pixel independently, and a depth map ag-
gregation technique that can merge a large number of depth
maps efficiently.

3. Depth from gradient

Our goal is to reconstruct objects in 3D that are captured
densely in unstructured light fields [9]. As in Davis et al. [9],
we do not try to reparameterize the captured light field, but
work directly on a sequence of images and associated camera
poses. Such unstructured light fields can be easily captured
at a very dense sampling rate by a video camera moving
around the objects. We do not assume a particular camera
path nor a machine gantry, but assume only that the camera
moves roughly along a path surrounding the object to sample
as much of it as possible. In a more regularly sampled light
field, each scene point will leave a distinctive trajectory in
the spatio-angular volume of the light field depending on the
particular camera motion and the 3D position of the scene
point: lines with different slopes for linear camera motion [4]
or helical structures for circular camera motions [10]. The
direction of such trajectories encodes the depths of scene
points, and has been used to reconstruct scene depth.

As the spatio-angular sampling rate of the light field in-
creases, the parallax between views starts getting smaller,
and each 3D point’s trajectory forms a more continuous
curve, where the direction of the trajectory could be esti-
mated locally (See Figure 3) without requiring any specific
camera motion. The gradient direction over a few adjacent
frames gives a local, linear approximation of the trajectory
of each pixel, from which depths of scene points can be com-
puted. This observation opens up the possibility to compute
per-pixel depth values efficiently by solely measuring light
field gradients. Since this does not require any patches or fea-
tures to be computed and matched between images but uses
local information only, pixel-wise depth values can be com-
puted more efficiently. Further, since the depth estimation is
done on a per-pixel basis, potentially finer object details can
be revealed and computation can be trivially parallelized.

We first compute the per-view depth maps using the gra-

dient only in high-gradient regions. The depth values are
propagated within each image guided by a bi-directional
photo-consistency. All depth maps are then aggregated into
a voxelized 3D scene, and further refined to result in an
oriented point cloud, which are turned into a triangle mesh
using Poisson surface reconstruction.

3.1. Depth computation

Given a dense 3D light field L represented by a set of
images (I, ..., I,), where L(x,y, i) refers to the pixel p =
(z,y) in image I;, and their camera projection matrices P;,
we define the light field gradient VL; ; around p in image
I; and q in image I; as:

VL’L,J(pvq) = VSi,j(I%Q), (1)

where s; ;(p, q) is a 2 x 5 image patch constructed by stack-
ing 5-pixel-long light field segments centered at p in I; and
centered at q in I; together. We construct s; ;(p, q) by using
the epipolar geometry between the views I; and I;;: We know
that the actual scene point at p will appear on its epipolar line
£in I;. Given a reference point q in I; along ¢, we sample a
5-pixel-long segment in /; along £ centered at g to generate
sj(p,q). q also corresponds to a depth value dq for p as a
result of epipolar geometry. We project the sampled points
in I; back to I; using a fronto-parallel plane placed at depth
dq, and sample I; at these locations to generate s;(p, q).
Note that this computation is reliable only when I; and I;
face similar directions. If the depth value dq is the actual
depth value for p, then we expect s;(p, q) and s;(p,q) to
be identical. If the actual depth deviates from dg, then the
colors in s;(p, q) will be a shifted version of the colors in
si(p, q). In both cases, we can use Vs; ;(p, q) to compute
the trajectory of the points between the two segments using
the direction perpendicular to the gradient direction:

vij(p,q) = tan~ ' (= Vs, (P, q)/Vysi;(p,q). (2)

Using 7, ;(P,q), we can find the mapping p; of p in
5;(p,q):

D 1 et (o) G
Please refer to our supplemental material for the derivation
of this formula. We then map pj back to £ to compute the
mapping p;, from which the actual depth d, can be com-
puted via triangulation (see Figure 3 for a visualization).

The question then becomes how to sample q in I;. If
dq is close to the actual depth of the scene point at p, then
we can expect a reliable depth computation. However, if
the difference between q and p; is larger than a pixel, the
gradient computation becomes unstable, leading to erroneous
results. To that end, we sample ¢ multiple times between
Qmin and Qnq., Which correspond to reference points for
the minimum and maximum depths of the scene, and get a
set of reference points qk, ke l,...,K, where K is the



(a) Input

(b) Depth from gradient

(c) Filtering

(d) Propagation (e) Aggregation

Figure 2: Steps of our technique. From left to right: One input frame, depth estimates using depth from gradient (Section 3.1),
the filtered depth map (Section 3.2), the dense depth map after edge-aware depth propagation (Section 4), and the final meshes
after depth aggregation (Section 5) with and without texture. The depth maps and meshes are rendered from a slightly different

viewpoint for a better 3D visualization.

number of samples. We sample q* one pixel apart from each
other, compute a mapping p;? for each reference point
(see Figure 3), and choose the depth df, that maximizes two
confidence measures. First, we expect the colors of p and
pé? to be similar due to color constancy:

1
Cf(P’p?):exp(*T,QHIi(p)ij(p?)Hi). “

For our experiments, we used . = 0.025. The gradient
computation results in more robust depth estimates, if q*
and p? are close, i.e. the depth d’l“) of p is close to the depth

of the plane dfl used for gradient computation:

Cl(p,pk) = exp (— |dt — dk[*). )

The final confidence measure is computed by multiplying
the individual components in

Ci(p,p}) = C(p.pY) - Cf(p.P). (6)

For each p, we choose p? which maximizes this confidence
measure as the mapping p;, and store the depth value dp
and the confidence value cp.

We start by computing the depth maps for I; using the
nearest neighbors I;_; and I;;;, and hierarchically move

to next images in L to adjust the depth estimates further.

After the initial step, we use the depth estimate dj, for p as
the initial guess, and sample K reference points q* around
the new q in J;; o corresponding to dp. We again sample
the reference points one pixel apart from each other. Note
that as we move further away from I; in L, the relative
motion of a point along the epipolar line with respect to
the change in depth gets faster. However, since we again
sample K reference points, we implicitly make the depth
range smaller at each step, leading to more precise depth
estimates. We compute depths over the views whose viewing
directions are no more different from that of I; than 5° for
each viewpoint, and store the final depth maps D; with their
confidence maps C;. Since the scene points’ trajectories are
only visible around high gradient regions, we compute the

si,;(P,q")

Figure 3: Top: Two close-up views of two images (I; and
1;) from the BASKET dataset. The blue and green lines rep-
resent the lines that are sampled to generate s; ;(p, q). The
orange dot in I; is p, whose depth is computed. The blue and
magenta dots in I; are two different reference points q' and
q?, around which s;(p, q) is sampled. Bottom: s; ;(p, q)
around the two different q, on which the light field gradient
VL; ;(p,q) is computed. The yellow lines show the trajec-
tory directions ~; ;(p,q). Note that different g* result in
different trajectory directions.

depths only around regions with enough gradient response,
i.e.Vp,||VI;(p)| > g, where g = 0.05.

3.2. Depth filtering

Merging all per-view depth maps computed by our depth-
from-gradient approach, one obtains a dense point set in
the high-gradient regions of the object; see Figure 2(b). The
depth computation assumes that the scene points are on
fronto-parallel surfaces as seen from the central viewpoint.
However, the actual surface shape may deviate from this
assumption, and when using further-away views, this can
lead to depth estimates that can differ from the actual surface.

We remove such noisy estimates of each depth map by
examining their consistency with the estimates from other
views with similar viewing directions. To this end, we dis-
cretize the 3D space where the foreground object resides
using a fine, regular voxel grid V. We denote the image re-
gions that project inside this grid as foreground pixels, and



the rest as background pixels. In order to filter a depth map
D; of view I,;, we back-project to V the depth values and
the confidences of all views whose viewing directions are
different no larger than 15° from that of ;. Foreach v € V,
we sum up the contributions of all back-projected 3D fore-
ground points x using a voting scheme defined as follows:

H(V):Zcx~exp (f%‘zﬂvfx\\g), @)

where cy is the confidence value associated to x. We used
o, equal to the length of a voxel in our experiments.

We reassign the depth D; (p) of each foreground pixel p
to the depth value of the most voted voxel along the viewing
ray from the camera center through p; see Figure 2(c). Since
we are interested in the shape of the foreground object, we
filter only the foreground points, while background depths
are kept as they are.

4. Depth propagation

The acquired point cloud, as described in Section 3, al-
ready reveals the accurate shape of the object, but only in
highly textured regions and over the silhouettes. In order to
generate a more complete 3D object reconstruction, we prop-
agate the depth information towards low-gradient regions,
for which we use the information about whether any high-
gradient region corresponds to texture or object boundaries.

Thanks to the dense sampling of the data, we can dif-
ferentiate between texture and silhouette edges by looking
at the trajectory of 3D points corresponding the edges. For
a texture edge, scene points on both sides of the edge will
have similar trajectories, whereas for silhouette edges, only
one side of the edge follows the same trajectory. To utilize
this observation, we propose to use the bidirectional photo-
consistency, which assesses how consistently both sides of
an edge move in different views. The use of bidirectional
photoconsistency has two advantages. First, we can differen-
tiate texture edges from silhouette edges, since only texture
edges will be consistent on both sides of the edge. Second,
when propagating the depth values from edges to smoother
regions, we can use it to decide on which side to propagate.

4.1. Bidirectional photoconsistency

The bidirectional photoconsistency measures the texture
variation on both side of the image edge separately. For a
pixel p in I;, whose depth value is dp = D;(p), we first
compute its image gradient direction:

0(p) = tan™*(V,I;(p)/V.I:(p)). (8)

Note that §(p) is different than -y, ;(p, q); 6(p) is computed
per image, whereas v, ;(p, q) is computed between different
images inside L. Then, we sample a thin rectangular patch
on each side of p along #(p); see Figure 4. We vectorize the

sampled pixels within the two patches, and denote the one
taken in the positive 6(p) direction by f and the other by
f_. The two patches are then projected to the neighboring
views in L through a fronto-parallel plane placed at dp,. In a
second view, say I}, the pixels within the projected patches
are sampled, forming g and g_, also vectorized. In our
implementation, for each direction, we sample three pixels
along 0(p) in I; and three other pixels in I; at the locations
that are projected from the three pixels of I;. One side of the
photoconsistency for p between I; and I; is then defined as
the patch difference between f; and g :

1
p(f+,g+):eXp(—@Her—ngH;)- ©)
p

The other side of the photoconsistency is defined simi-
larly for f_ and g_. We chose o, to be the same as o,
in Eq. (4). The bidirectional photoconsistency values C'; (p)
and C_(p) are computed by averaging all pairwise photo-
consistency values among the views in L whose viewing
directions are no more different than 5° from that of I;.

The bidirectional photoconsistency indicates the likeli-
hood of both sides being on the same depth as p: if p is on
the silhouette, the background seen in one side will move at
a different speed with respect to the camera, leading to a low
consistency value for that side (Figure 4). The differentiation
between texture and silhouette edges helps decide on the
direction to which the depth is propagated.

4.2. Edge-aware depth propagation

The depth maps D; are sparsely sampled, since the depths
and the consistencies are computed only on high gradient
regions. In this step, we propagate them to smooth regions
using edge-aware filtering, thereby exploiting the computed
photoconsistencies. However, each p on a high gradient re-
gion has two photoconsistency values, one for each direction
along 0(p), which needs special care during filtering. Since
we know that the direct neighbors in these directions should
share the depth and confidence values with the edge regions,
we propose a simple splatting strategy to avoid this special
case: The neighboring pixel p’ in the positive f(p) direction
from p is assigned C (p), whereas the neighboring pixel
in the negative 6(p) direction is assigned C_ (p). The depth
values D;(p’) are initialized with D, (p). If a pixel p’ is af-
fected by multiple pixels on high gradient regions, we choose
the depth and confidence values from the neighbor with the
highest confidence value. For the high gradient regions, we
keep the higher value of C. (p) and C_(p) as C;(p).

Now that we have per-pixel depth and confidence maps
for each view, we employ confidence-weighted joint-edge-
aware filtering using the images I; inside L as the joint-
domains, as proposed by Lang et al. [25], which makes use
of the geodesic filter by Gastal and Oliveira [ 16]. First, we
multiply D; and C; element-wise and filter them using the



Texture Edges

Silhouette Edges
Figure 4: Top: One view of the AFRICA dataset in the center,
with close-ups to two regions where bi-directional PC is com-
puted. The leg of the person and the texture on the giraffe
shown in cyan and green boxes, are sampled along the gradi-
ent directions, shown in matching colors. These patches and
patches that are sampled from nearby views are stacked to-
gether for both edges and shown in boxes of matching colors.
Note that only the texture edge is consistent on both sides
of the image edge. Bottom: Reconstructed points marked
as silhouette edges (left) and texture edges (right). For this
visualization, we used the ratio |cy — c_| /(¢4 + ¢_), and
marked points with ratios higher than 0.3 as silhouette edges.

geodesic filter with I; as the joint domain, which generates
(C; ® D;)’, where ©® represents element-wise multiplication.
This process gives higher emphasis to depth values with
higher confidence. We then normalize the results by dividing
(C; ® D;) by CY, the filtered version of the confidence map,
again element-wise. The final depth map is computed as

C; ® Dz)/

(
D=2

(10)
We refer the readers to the original papers for a more in-depth
discussion of this filtering operation.

In order to avoid depth values that are vaguely between
the foreground object and the background clutter, we apply
the filtering operation for the foreground and background
depth maps seperately. If the confidence at p is larger in
the foreground depth map, we keep this depth value for that
pixel, and vice versa. The final confidence map is then the
absolute difference between the confidence maps for the
foreground and background depth maps. From this point on,
we will refer to D} and C} as D; and C;, respectively.

5. Depth aggregation

The depth propagation step generates dense depth maps
for each input image I; independently, where smooth regions
are assigned depth values by interpolating known depth val-
ues at image edges. These depth maps already describe the
objects shape as a point cloud, but can have inconsistencies
due to the inexact image-space filtering operation. We aggre-
gate these depth maps in 3D space to reconstruct a globally
consistent object representation in the form of a mesh.

Since the number of views is in the order of thousands,
computing globally consistent depth maps is not a viable
option due to the time complexity. On the other hand, having
a very large number of depth maps has the advantage that
their consensus in 3D space provides enough information to
infer the actual surface. Noisy estimates from a small number
of views can be tolerated by correct estimates from other
views that see the same scene point. Our solution to compute
the 3D surface relies on these observations and makes use of
an efficient depth aggregation idea via a dense voxel grid.

We use the same voxel grid V as in Section 3.2, but this
time, we utilize both foreground and background points.
For each v € V, we compute the probability H(v) of that
voxel being on the surface of the object. In order to compute
these probabilities, we project every voxel v to the images,
and interpolate D; and C;. Given a voxel v projects to a
subpixel location p; in I;, with interpolated depth value d;
and confidence value c;, we compute the per-view probability
of having the surface at v by differentiating between two
cases. If d; falls inside V, it is a foreground point. We then
compute the confidence cy ; of having the surface at v using
an exponential decay function, depending on the difference
between d; and dy ;, the depth of v with respect to I;:

Cv,i = C; - €xp (— |d; — dv’i|§ /(203))) . an

If d; is outside V), i.e. is a background point, then we di-
rectly assign ¢y ; = —c¢;, since all voxels on this viewing ray
should be in free space and affected in the same magnitude.
Using these confidence values, we directly apply Bayes’
rule to compute the per-view probability P;(v € S|cy ;) of
having the surface at v, given the confidence value:

cvilveS)-P(veSs)
P(Cv,i) ’

Bwe&mﬁzp( (12)

where S stands for the set of voxels on the object surface. We
model P(cy ;|v € S), i.e. the confidence value of a surface
voxel v, using N'(1, o), a normal distribution with mean of
1, to handle noise of per-view depth maps. The confidence
value of a voxel in the free space, denoted by P(cy ;|v €
F), is also modeled with a normal distribution N'(—1, o),
but with mean of —1. The denominator in Eq. (12) can be
computed as follows:



Plev,i) = PlevilveS) - P(ves)+ (13)
+ P(eys|lveF) PlveF).
We modeled P(v € F) and P(v € S) to be of equal proba-
bility, 0.5, due to no prior knowledge about the scene.

Our aggregation scheme is similar to that of Yiicer er
al. [40] in that we accumulate the per-image probabilities
using a geometric mean. Given all P;(v € Slcy;), we com-
pute the probability H(v) using the following formula:

n 1/n
H(v) = (H Pi(v e Sc‘,,i)> : (14)

i=1

We generate the surface by thresholding H(v) at 0.2 and
applying marching cubes. We use a small value for threshold-
ing, since our surface probabilities are generally of smaller
magnitude compared to the free space probabilities.

Voxel carving The resulting mesh already captures most
details of the object and is ready to be used as is. In or-
der to pronounce the fine details further, we examine the
photoconsistency of the voxels inside the surface.

A general solution for refining the mesh would be to apply
volumetric graph-cuts inside the voxel grid. However, un-
textured thin features, like the legs and arms in the AFRICA
dataset, or the straw details of the BASKET dataset, pose a
problem for graph-cuts. Around such features, photoconsis-
tency measures do not clearly point to the object boundary,
and the graph-cut result can remove them from the final re-
construction altogether. Instead, we use an efficient voxel
carving approach, which only carves out inconsistent voxels
and keeps the thin features intact.

First, we compute a region of interest R inside the mesh,
which is 3 voxels deep from the surface, and propagate mesh
normals inside R. The visibility of the voxels is computed
using the current mesh as a prior and rendering the back-
facing faces from each view point I;. If a voxel’s depth is
smaller than the depth of the mesh seen from I;, then it is
counted as visible from I; [22]. After all voxels v € R
are projected to all images I;, given a voxel v, we gather
the color values {cy ()} and the weights {wy (¢)} from all
images I; to which it projects. The weights of views that
are not seeing the voxel are set to 0. For all other views, we
compute the weight as the dot product of the voxel normal
n, and the vieweing ray from I; to v, namely r,, ;:

ifn, -ry; >0

otherwise (5)

Wv('L) = { gv ’ rV,’L'a

Given the colors and weights, we compute a weighted vari-
ance of the colors as the photoconsistency PC/(v):

PO(v) = Y wu(i)(ev(i) = n)* [ Do weli).  (16)

where i, is the weighted average of c,. We carve out all
voxels that have PC(v) lower than a threshold, which we set
to 0.95. The carving is repeated until no voxels are carved
out. Our voxel carving approach is very efficient in remov-
ing unnecessary voxels from the surface, and converges very
quickly. We performed a maximum of 3 iterations for all
results in the paper. Finally, we supply all voxels v and their
normals n,, on the boundary of R to Poisson surface recon-
struction [23] to generate our final results (See Figure 2).

6. Experiments and Results

In order to assess the quality and performance of our re-
construction method, we used the dense light field datasets
of Yiicer et al. [40]. The datasets feature various objects
with fine details comprising many thin, intricate features,
and complicated topology, which we aim at reconstructing.
Since we intend to demonstrate our algorithm in a more re-
alistic setup, we used the hand-held datasets. We compare
our reconstructions with those from well-known reconstruc-
tion methods whose implementations are publicly available;
namely PMVS [15] and MVE [12]. Additionally, we com-
pared with the visual hull results accompanying the datasets.

Figure 5 shows the results of DECORATION, BASKET,
and AFRICA obtained using PMVS, MVE, Yiicer et al. (de-
noted by LFS), and our method. For the two multi-view
stereo methods, we used as many views as possible until
the results stop improving, which were about 200 views,
and hand-picked the parameters to obtain the best results.
The screened Poisson surface reconstruction (PSR) [23] was
used to extract meshes from the PMVS point clouds, and the
floating scale surface reconstruction (FSSR) [11] was used
for MVE point clouds as it is bundled with MVE. For our
method, we used the same set of parameters as reported in
the paper regardless of the datasets.

While PMVS presents largely smooth results, it lacks
detail around object features and shows irregular surfaces
in the regions where the objects have complicate shapes.
MVE results in clean surfaces in smooth regions, but in
the regions with intricate detail, the reconstructed surfaces
become noisy, which we believe is attributed to the FSSR’s
relative deficiency in tolerating outlier points. While LFS
reveals a certain amount of details and topologically accurate
surfaces, e.g. in the reconstructed BASKET, it is not able
to handle concavities and the surfaces looking carved-out,
e.g. see the insets of DECORATION. On the other hand, our
method reveals the fine details of the object possessing many
intricate features and topologically complicated structures;
see the thin features and narrow openings in the insets.

In Figure 6 featuring vegetation, we compare our results
also with the depth reconstruction method of Zhang et al.
(ACTS) [41] which is tailored to dense video input. Since
ACTS produces per-view depth maps, we merged them into
point clouds for a better visualization. Compared to ACTS,
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Figure 5: Comparison of our method to PMVS [15], MVE [18] and LFS [40] on 3 different datasets. The point clouds of
PMVS are meshed with Poisson surface reconstruction [23] and the results of MVE are meshed using floating scale surface
reconstruction [1 1] as part of their pipeline. For each result, we show two close-ups inside the cyan and blue boxes. Note the

quality our method achieves around thin object features.

our method results in more faithful geometry of the plants
with many thin elements, whereas ACTS results contain
noise around the features and the method even consistently
reconstructs points in free space as in the TRUNKS dataset.
Please refer to the accompanying supplementary material for
closer look at the results and input datasets.

Limitations. While most objects feature enough texture
for our method to work, if the scene does not possess enough
texture variations, our gradient-based depth calculation al-
gorithm will leave large regions without depth estimates. In
such cases, the propagation may not be effective enough
to fill these areas and the subsequent aggregation step may
leave holes. Our algorithm is both time and space efficient in
most steps, but the final reconstruction resolution is tied to
the voxel grid resolution. Its cubic complexity can be a down-
side when extremely high resolution results are required.

Performance. Many steps of our algorithm are suitable for
parallelization, in particular depth computation and aggrega-
tion steps can be parallelized entirely. We ran an OpenMP-
based parallel implementation on a desktop PC with 3.2
GHz Quad-core Intel CPU and 32 GB of RAM for the exper-
iments. It takes about 120 minutes for our implementation to
reconstruct the final oriented point cloud from a 720p video
comprising 3000 frames. Depth computation and filtering
are the most time consuming parts, taking about 55 minutes.
PC computation and depth propagation require about 40 min-
utes, and the rest of time is spent for the aggregation step,
which took around 25 minutes.

ACTS

Thin Plant

Trunks

Figure 6: Comparison of our technique to the ACTS soft-
ware [41]. For our algorithm, we show our resulting mesh
with and without texture. Since ACTS produces point clouds,
we show these from two different viewpoints.

7. Conclusions

We presented a method to reconstruct accurate and de-
tailed 3D models from densely sampled light fields. A novel
gradient-based method is proposed for efficient and accurate
pixel-wise depth estimation, in addition to a depth propa-
gation scheme assisted by bidirectional photoconsistency
and an efficient and robust depth aggregation algorithm. Our
method is designed to benefit and fully utilize extremely
dense spatio-angular information, and reveals the highly
detailed 3D models of objects with intricate and complex
shape. We believe our contributions complement the existing
multi-view stereo methods and will inspire further research.
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