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S1. Introduction
We present the complete set of results including those omit-
ted in the paper, and further elaborate on the relation between
our method and the dense disparity estimation problem.

S2. More Results and Comparisons
Figures S1–S4 show the complete set of input and output im-
ages of the four tasks we experimented using four different
datasets at various resolutions. Since the Elephant dataset
was available only at 1k resolution without depth informa-
tion, we only conducted the user scribbles and the constant
disparity tasks at 1k resolution for this dataset. Please also
refer to our paper for more details of the experiments.

Table S1 lists the root-mean-squared errors (RMSE) of
our results against the ground truth for the constant disparity
and linear scaling tasks, where the new view is computed
with respect to a constant disparity and a linear scaling of
the scene depth, respectively. We measured the error for two
different resolutions, 1280×853 (1k) and 1920×1280 (2k).
Refer to Figures S3 and S4 for the corresponding results.

Target disparity
RMSE from the ground truth

Elephant Bikes Couch Mansion

1k resolution
Constant 0.0499 0.0396 0.0235 0.0704
Linear N/A∗ 0.0315 0.0072 0.0774

2k resolution
Constant N/A∗ 0.0392 0.0252 0.0735
Linear N/A∗ 0.0288 0.0065 0.0693

Table S1. Errors of the computed views against the ground truth.
(∗Dataset/depth not available)

Table S2 summarizes the memory consumption of our
method for a set of several different light field resolutions.
We also compare it against the current state of the art [1]
which uses a discrete graph-cut formulation. All numbers

were measured using our implementation. We were not able
to measure the memory footprint of the discrete formulation
on 2k resolution datasets because the test system became
unresponsive due to the excessive page swapping.

Resolution
(w×h×#images)

#pixels
(Mpix)

Memory use in Mb
Ratio

Ours Discrete

640×427×30 8.2 186.9 1,761.0 9.4%
640×427×50 13.7 310.0 2,983.4 9.2%

1k resolution
1280×853×30 32.8 664.3 7,047.3 9.4%
1280×853×50 54.6 1,101.7 11,941.3 9.2%

2k resolution
1920×1280×30 73.7 1,495.3 N/A∗ –
1920×1280×50 122.9 2,479.7 N/A∗ –

Table S2. Memory footprint of our method in comparison to the
state-of-the-art discrete formulation [1]. (∗Test failed)

Table S3 shows the running time of our method for all
four tasks and two different resolutions. We used the same,

Target disparity
Computation time in seconds

Elephant Bikes Couch Mansion

1k resolution
Constant §946 †513 660 614
Linear N/A∗ †518 667 623
Scribbles 636 †514 661 616
Remapping N/A∗ †516 669 628

2k resolution
Constant N/A∗ 838 863 803
Linear N/A∗ 842 860 814
Scribbles N/A∗ 840 858 799
Remapping N/A∗ 837 860 805

Table S3. Running time of our method. We used 50 1k images or
30 2k images for the measurements. (∗Dataset/depth not available;
§70 images used; †40 images used)
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fixed set of parameters for all experiments, including the
number of primal-dual iterations.

S3. Relation to the Dense Stereo Problem
The labeling results of the constant disparity task in Fig-
ure S3 resemble the actual scene depth. When a constant
disparity g is used as the target disparity, i.e., G(x) = g,
∀x ∈ Ω, the mapping (1) between the reference image Iŝ
and the target image I∗ŝ ,

I∗ŝ (u + G(u, v), v) = Iŝ(u, v) , (S1)

becomes bijective, and M(x) = 1 everywhere except for
the g-pixel-wide vertical strip at the left image border. The
data term (3), copied in (S3) below, can thus be rewritten as

‖L(u, v, l(u, v))− L(u− g, v, ŝ)‖1 , (S2)

for a pixel x = (u, v) ∈ Ω : u > g.
Minimizing this energy, together with the smoothness

term, for l finds for each pixel (u, v) the matching two fea-
tures at (u, v, l(u, v)) and (u− g, v, ŝ), from which the dis-
parity is computed as g/(l(u, v)− ŝ) using a simple triangu-
lation. Since both g and ŝ are constant, the labeling l looks
like the disparity map. In fact, the data term (3) in our paper,

M(u, v) ‖L(u, v, l(u, v))− I∗ŝ (u, v)‖1 , (S3)

implicitly implements dense disparity estimation, which can
be shown clearer using the linear scaling task below.

With the (scaled) actual disparity as the target disparity
one obtains a flat labeling as shown in Figure S4. Let us
assume that the target disparity G gives us an injective map-
ping from the reference image Iŝ to the target image I∗ŝ
in (S1). Plugging this mapping (S1) into the data term (S3)
then yields

M(u, v) ‖L(u, v, l(u, v))− L(u−G(u, v), v, ŝ) ‖1 . (S4)

In our original problem, we fix the target disparity G and
seek the image index l for each pixel (u, v) ∈ Ω. If, instead,
we fix the labeling l to be a constant s′ over Ω (i.e., flat
labeling), and optimize the functional for G over all pixels
(u, v) ∈ Ω, the result will be the disparity map defined
between the two images at the reference image ŝ and the
fixed other view s′. In this case the smoothness should
accordingly be redefined in terms of G, instead of l.
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(a) User scribbles (b) Propagated disparity (c) Reference image (d) Computed new view (e) Resulting stereo

Figure S1. Disparity modification using user scribbles. This task demonstrates a possible use case, where sparse brush strokes are drawn by
the user (a) and then propagated to form a dense target disparity map (b) from which the resulting stereo is generated. (c) and (d) show the
reference view and the computed new view, respectively. (e) shows the resulting anaglyph stereo image. Note that the scribbles are not
necessarily physically meaningful and are rather intended to test the flexibility and robustness of our method.
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(a) Original disparity (b) Remapped disparity (c) Reference image (d) Computed new view (e) Resulting stereo

Figure S2. Nonlinear disparity remapping. The actual scene depth of the reference view (a) is nonlinearly remapped to create the target
disparity map (b). For the Bikes dataset, the excessive disparity on the ground was compressed for a more comfortable stereoscopic viewing
experience. For the Couch and Mansion datasets, the gradient of the disparity is modified such that large disparity gradients are removed, to
better distribute the disparity budget and to obtain more local details. (c–e) show the reference image, the computed new view, and the
resulting anaglyph stereo image, respectively.
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(a) Reference image (b) Computed new view (c) Error (d) Anaglyph stereo (e) Labeling

Figure S3. Constant disparity. (a) and (b) show the reference image and the computed new view given a fixed value of 20 pixels as the target
disparity. (c) shows the error of the computed image against the ground truth, for which we use the reference image translated by 20 pixels.
The darker the pixel in the error image, the smaller error. See Table S1 for corresponding RMSE measures. (d) shows the anaglyph stereo
image, while (e) shows the resulting labeling. The resulting stereo should ideally look flat, but floating on the screen. The labeling images
look like depth maps of the scenes. In fact, the problem we address and the dense disparity estimation problem are closely related; see
Section S3 of this document.
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(a) Reference image (b) Computed new view (c) Error (d) Anaglyph stereo (e) Labeling

Figure S4. Linear disparity scaling. (a) and (b) show the reference image and the computed new view, for which the depth at the reference
view was linearly scaled by a factor of 10 and used as the target disparity map. (c) shows the error of the computed image against the ground
truth, i.e., the 10th next image to the reference in the input light field. The darker the pixel in the error image, the smaller error. See Table S1
for corresponding RMSE measures. (d) shows the anaglyph stereo image, and (e) shows the resulting labeling. The labeling should ideally
look flat in this task.
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