
Analyzing quantum programs using the power of interaction

AGNES VILLANYI,Massachusetts Institute of Technology, USA
CHARLES YUAN,Massachusetts Institute of Technology, USA
CHRIS MCNALLY,Massachusetts Institute of Technology, USA

This work proposes two new approaches to verifying the correctness of quantum programs, based on interactive
proofs and foundational results in quantum complexity theory. One approach eliminates the need for making
intermediate test measurements by embedding circuit execution into a Hamiltonian, and the other allows
classical verification of a quantum program without needing direct access to intermediate states. We also
discuss and connect the two meanings of verification within the contexts of quantum program analysis and
complexity theory.

1 CHALLENGES IN CHECKING QUANTUM PROGRAMS
Checking the correctness of a quantum program is challenging due to the partial observability of
quantum states. Following inherently from the postulates of quantum mechanics, any test checking
a program’s intermediate state requires probing the quantum system, performing a measurement
that may destroy the quantum state and render the remainder of the computation useless.

1.1 Quantum Assertion Schemes
To date, some of the most significant contributions to runtime quantum testing and debugging
tools have been variants of quantum assertion schemes, inspired by classical Floyd-Hoare logic
[4, 6, 7, 11, 12]. However, current approaches are not sufficiently expressive because they fail to
precisely detect all bugs on arbitrary quantum states:

• Statistical assertions [4] rely on a combination of the chi-square test and contingency table
analysis to identify three types of bugs which the authors classify as classical, superposition,
and entangled. In addition to requiring repeated program executions and therefore being
inefficient, this method fails to detect bugs that fall outside of these three classes. The classes
themselves are limited as well: for example, it is not possible using these statistical assertions
to check whether an intermediate state of a program is the superposition |−⟩ = 1√

2
(|0⟩− |1⟩).

• Circuit-based assertions [7] inspired by error correction introduce an ancillary circuit to
detect bugs. This method mitigates the efficiency problem of the previous approach. The
detectable classes of bugs, however, are still ultimately limited to the three categories
mentioned above, with some additional 2-qubit and and 3-qubit entangled states.

• Projection-based assertions [6] are defined formally using projection-based predicates and
quantum logic [1], significantly expanding the set of detectable bugs. However, projections
still fail to precisely capture all erroneous states, as correct and buggy states with equivalent
supports cannot be distinguished using projective measurements. For example, classifying
the mixed states 𝜌1 = 1

10 |0⟩ ⟨0| +
9
10 |1⟩ ⟨1| and 𝜌2 = 1

2 |0⟩ ⟨0| +
1
2 |1⟩ ⟨1| as correct and

incorrect respectively is impossible using projections alone [11].

Information Asymmetry. The mentioned techniques to check a quantum program using quantum
analogues of classical assertions neglect an inherent and unique characteristic of quantum compu-
tation: delegation, the outsourcing of quantum computation to a more powerful machine than the
classical one verifying its correctness. Namely, the goal of a quantum program is to complete a task
which is intractable on a classical machine, thereby demonstrating quantum advantage [10].

This information asymmetry between a quantum and classical machine makes it difficult for a
classical reasoning tool to observe intermediate states of program execution. As a result, we expect
any classical assertion-based verification scheme to fall short of full soundness and completeness.

2 Agnes Villanyi, Charles Yuan, and Chris McNally

1.2 Verification of DelegatedQuantum Computation
To resolve the challenge introduced by information asymmetry, we look to the well-studied veri-
fication problem in the setting of complexity theory, which asks whether the outcome of a more
powerful machine can be checked for correctness by a less powerful one. Formally, quantum
verification is the following task: given a language 𝐿 ∈ BQP, an instance 𝑥 , and a BQP prover, the
BPP verifier must certify whether 𝑥 ∈ 𝐿 using some small number of queries to the prover.
Quantum verification is possible by means of the celebrated Mahadev measurement protocol

[8], which relies on interactive arguments and cryptography. The intuition of the protocol is as
follows: post-quantum cryptography bounds the BQP prover, giving the BPP verifier leverage over
the prover and equilibrating the computational asymmetry. The verifier may then securely request
measurements from the prover, such that the verifier can extract a witness to a correct computation,
a quantum state 𝜌 , through purely classical communication and computation.

In program analysis, verification denotes a method, e.g. an assertion scheme, for checking whether
a program satisfies a high-level logical predicate defined by the programmer. By contrast, verification
in complexity theory denotes a process for checking whether a quantum server, i.e. the prover,
running the program acts honestly and accurately executes the program provided by the classical
client. Here, the Mahadev protocol surmounts the fundamental challenge of information asymmetry
and enables classically reasoning about a state that is only fully revealed to a quantum process.

1.3 Enabling Classical Reasoning forQuantum States
In this work, we explore how techniques from Mahadev’s construction enable a classical client to
reason about whether a quantum program satisfies its high-level logical specification. Our aim is
to make steps towards a verification scheme which allows programmers to determine whether
a program reaches an arbitrary target quantum state, especially one that is difficult to describe
classically and cannot be identified using existing assertion schemes.

Contributions. We begin by defining and comparing the meanings of verification in the two
disciplines of program analysis and complexity theory, which to our knowledge have not previously
been formally connected. Upon this basis, we follow with two proposals that use foundational
results from complexity theory to verify the correctness of quantum programs:

• We eliminate the need for testing intermediate states via measurements by embedding
circuit execution into a Hamiltonian that contains an assertion term imposing constraints
on the program state between adjacent time steps. A correct program is then one for which
the corresponding Hamiltonian has an eigenstate with sufficiently low energy [5].

• We create a quantum analogue of a zero-knowledge static analysis scheme [2], enabling the
verifier to test properties of a quantum program without having access to concrete states
and overcome the information asymmetry between the verifier and the prover.

Connecting these approaches is the use of well-studied techniques from complexity theory, in
particular interactive proofs, to verify quantum programs. While this research remains in progress,
we believe that the proposals above are key to surmounting the challenge of information asymmetry,
paving the way to more precise and expressive systems for verifying quantum programs.

2 BACKGROUND: PROJECTION-BASED ASSERTIONS
As themethod of projection-based assertions [6] was the first to formally define checkable predicates
of quantum programs, we recall relevant background about projection-based assertions and discuss
some of the shortcomings of this scheme. A more detailed background may be found in [6, 9].

Analyzing quantum programs using the power of interaction 3

2.1 Projections and Assertions
Projective measurements have the special property that they are non-destructive for states which lie
in the subspace of the projector applied duringmeasurement. This state preservation propertymakes
projection-based assertion schemes an attractive tool: quantum states satisfying the predicates are
unaffected by their respective assertions. Multiple assertions per execution of the program can
therefore be made, introducing efficiency gains over alternative methods [6, 11].

Assertions. In [6], a quantum predicate using projections is defined as the following:

Definition 2.1. Given a finite dimensional Hilbert space H and a quantum state 𝜌 ∈ H with
spectral decomposition 𝜌 =

∑
𝑖 _𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖 |, let 𝑃 be a projection operator onH with subspace S𝑃 .

Let the support supp(𝜌) be the subspace of 𝜌 spanned by {𝜓𝑖 } such that _𝑖 > 0. We say that a state
𝜌 satisfies a predicate 𝑃 (i.e. 𝜌 ⊨ 𝑃) if supp(𝜌) ⊆ S𝑃 .

An assertion is made by applying a projective measurement corresponding to a projector 𝑃 . For
example, asserting that all qubits in an 𝑛-qubit quantum state 𝜌 are initialized in the ground state
would require the projection 𝑃0 = (|0⟩ ⟨0|)⊗𝑛 .

2.2 Incompleteness of Projection-Based Assertions
The fact that projective assertions are limited to capturing erroneus states which are distinguishable
from correct ones via a projective measurement greatly diminishes their expressive power. Two
quantum states 𝜌1, 𝜌2 sharing the same support, supp(𝜌1) = supp(𝜌2), cannot be distinguished
using projective measurements alone. For example, mixed states with non-identical density matrices
may still share the same support: e.g. the mixed state consisting of {|0⟩ , |+⟩} with probabilities
{ 12 ,

1
2 } and the mixed state consisting of {|0⟩ , |+⟩} with probabilities { 13 ,

2
3 } share the same basis of

eigenvectors with non-zero eigenvalues, and therefore have the the same support.
To summarize, all assertion-based quantum verification schemes share a fundamental shortcom-

ing: they fail to fully characterize the desired quantum state and precisely identify all bugs that
might occur, leaving holes in their soundness and completeness guarantees.

3 CONNECTING VERIFICATION AND CORRECTNESS
In this section, we define the verification of a quantum computation in the context of complex-
ity theory. We discuss the underlying principles of complexity-theoretic protocols that may be
transferred to the verification of program correctness in the the discipline of program analysis.

3.1 Quantum Verification and Delegation
Verification is the fundamental problem in complexity theory of, given a language 𝐿 and a program
𝑝 acting as a decision procedure for instances of 𝐿, checking that the outputs of the program 𝑝 are
correct, i.e. the program 𝑝 correctly decides the language 𝐿.

Interaction. In the complexity class NP, verification is simple: the program may generate in
addition to its output a witness for its correctness, such that there definitionally exists a polynomial-
time procedure to validate the witness. The complexity class IP extends the class of problems for
which programs can be efficiently verified [3], by generalizing NP verification to include adaptive
communication between two agents. Interactive proofs allow a computationally bounded agent,
the verifier, to delegate the execution of a program to a more powerful and potentially faulty or
malicious machine, the prover, and validate that the prover accurately performs the computation.

Delegation. Concretely in the quantum setting, the problem of program delegation is as follows:
given a verifier 𝑉 that may perform BPP computation and a prover 𝑃 that may perform BQP

4 Agnes Villanyi, Charles Yuan, and Chris McNally

computation, construct a protocol such that 𝑉 can send a classical description of a quantum circuit,
C, and an input 𝑥 , to 𝑃 , and can trust that the output that 𝑃 returns for C(𝑥) is correct.
In other terms, verification in complexity theory can be understood as the challenge of efficiently

checking the output of an untrusted interpreter executing a fixed, computationally expensive
program. Any deviation from the protocol by an adversarial prover should be detected by the
verifier. Namely, a (potentially adversarial) prover’s claim that it provided a witness to a correct
computation should be verifiable in randomized polynomial time.

3.2 Kitaev’s Hamiltonian Reduction
In this work, we focus on quantum verification as a special instance of delegated computation in
which a circuit C decides whether, for a given promise language 𝐿 = 𝐿𝑦𝑒𝑠 ∪ 𝐿𝑛𝑜 , it holds that a
particular instance 𝑥 ∈ 𝐿𝑛𝑜 or 𝑥 ∈ 𝐿𝑦𝑒𝑠 . Kitaev showed that it is possible to reduce this formulation
of the quantum verification problem to that of finding the lowest energy eigenstate of a 2-local
Hamiltonian [5]. The key points of the construction are as follows:

• The execution of C = {𝑈𝑇 , . . . ,𝑈0} on an input 𝑥 ∈ 𝐿 is represented by a history state:

|𝜓ℎ𝑖𝑠𝑡 ⟩ =
1

√
𝑇 + 1

𝑇∑︁
𝑡=0

𝑈𝑡 . . .𝑈1 |𝑥⟩ |𝑡⟩ (1)

• We can construct a Hamiltonian 𝐻𝐶 of circuit C such that correct quantum computation is
one for which there exists an input 𝑥 such that ⟨𝜓ℎ𝑖𝑠𝑡 |𝐻𝐶 |𝜓ℎ𝑖𝑠𝑡 ⟩ is minimized. Namely, a
correct execution of a program is recorded in the Hamiltonian𝐻𝐶 : the existence of a ground
state below a certain threshold certifies that there was a correct execution of the program,
since otherwise that state would incur energy penalties as defined by the terms of 𝐻𝐶 .

Applying this construction, the verification problem can be reduced to showing that a state
|𝜓ℎ𝑖𝑠𝑡 ⟩ with sufficiently low energy statistics exists in the prover’s space. This problem remains
difficult when the verifier is classical: how can it identify and process a quantum state with purely
classical means? Mahadev solved this problem through introducing cryptography as a tool for
bounding the prover’s abilities, allowing the verifier to trust the prover to make measurements and
reproduce the desired measurement statistics for verification.

3.3 Connecting Hoare, Kitaev, and Mahadev
Classical program analysis frameworks such as assertion logics verify that a program meets its
high-level logical specification, that is to say the program is written without bugs. By contrast, a
protocol for complexity-theoretic verification, such as Mahadev, verifies that the quantum machine
running the program meets its specification, that is to say it runs the program as instructed.

The challenge is then to identify how intuition gained from reasoning about the correct behavior
of the quantummachine might be lifted to reasoning about the correctness of a program.We identify
two critical takeaways for how Kitaev’s circuit-to-Hamiltonian construction and the Mahadev
measurement protocol apply to checking program correctness:

• Kitaev provides a method for following the execution of a quantum program without
needing to make intermediate measurements of the program state.

• Mahadev enables a classical client to make conclusions about the outputs of a program as
executed by a quantum machine, without needing to access the internals of the machine.

As described in the next section, these two principles address the main challenge faced by assertion-
based reasoning for quantum programs and are transferable to quantum program analysis.

Analyzing quantum programs using the power of interaction 5

4 INTERACTIVE PROOFS AND QUANTUM PROGRAM ANALYSIS
The goal of this work is to be able to detect arbitrary bugs, which means being able to verify the
correctness of arbitrary quantum states, going beyond the guarantees of projective assertions. We
propose two potential directions for an interaction-based quantum program analysis scheme.

4.1 Kitaev-Mahadev-Inspired Assertions
Kitaev’s circuit-to-Hamiltonian construction gives a method for encoding a quantum circuit into
the terms of a 2-local Hamiltonian. Mahadev’s measurement protocol gives a method for using this
construction to classically verify that the Hamiltonian has a sufficiently low energy eigenstate. In
the case of complexity theoretic quantum verification, this can then be used to conclude that some
problem instance 𝑥 is in the 𝑦𝑒𝑠-instance of a promise language 𝐿 ∈ BQP, as shown by Kitaev.
Lifting this to program analysis, the challenge is then to use Kitaev’s construction and the

Mahadev protocol to conclude that a quantum program is bug-free. This could be done by adding an
additional term 𝐻𝑎 to the Hamiltonian 𝐻𝐶 that imposes assertions on the execution of the program
between time steps 𝑖, 𝑖 + 1. The exact form that this assertion term would take, such that the class
of detectable bugs surpasses projective assertions, is an open question in this ongoing work.

4.2 InteractiveQuantum Abstract Interpretation
Classically, reasoning about programs whose structure is confidential and not accessible by an
analysis framework poses unique challenges also relevant to the quantum domain. Namely, in
this setting a third-party verifier cannot learn details about the program aside from certain public
properties defining its specification. In [2], the authors propose a zero-knowledge abstract inter-
pretation to address this problem: a prover interacts with a verifier in zero knowledge to prove
the claim that a program is or is not bug-free, which the prover concludes based on an abstract
interpretation supplied to it by the verifer.

For quantum program verification, the zero-knowledge property is unnecessary. However, pairing
interactive proofs with proving program correctness would be useful in the quantum setting. This
approach would require a quantum analogue of abstract interpretation, with a similar overall
structure to [2]: the quantum machine would commit to a program specified by the verifier, then
compute an analysis based on an abstract interpretation received from the verifier, followed by a
claim about whether or not the program is bug-free. An interactive protocol between the verifier
and prover would then validate this claim, thereby proving properties about the quantum program.

5 CONCLUSION
Verifying the correctness of a quantum program is difficult due to the destructive nature of observing
program execution. Current methods relying on projection-based assertions only function on a
limited set of quantum states. This shortcoming reduces the precision of program reasoning, for
example eliminating the ability to distinguish certain correct and incorrect mixed states.

In this work, we identify the information asymmetry between classical and quantum machines
as a critical challenge. Complexity-theoretic approaches to quantum verification surmount many
of these challenges using interactive proofs. We present the first work to investigate the use of
interactive proofs to reason about quantum programs, and propose two interactive approaches that
eliminate the need to test and observe intermediate states in quantum program analysis.
A barrier to progress in quantum program verification is the inability to robustly classify bugs

as either being classically checkable or fundamentally requiring quantum techniques to check.
Identifying the exact boundary of bugs where classical techniques such as projective assertions are
insufficient will be the immediate next step in this ongoing work.

6 Agnes Villanyi, Charles Yuan, and Chris McNally

REFERENCES
[1] Garrett Birkhoff and John Von Neumann. 1936. The Logic of Quantum Mechanics. Annals of Mathematics 37, 4 (1936),

823–843. http://www.jstor.org/stable/1968621
[2] Zhiyong Fang, David Darais, Joseph P. Near, and Yupeng Zhang. 2021. Zero Knowledge Static Program Analysis. In

Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security (Virtual Event, Republic of
Korea) (CCS ’21). Association for Computing Machinery, New York, NY, USA, 2951–2967. https://doi.org/10.1145/
3460120.3484795

[3] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2015. Delegating Computation: Interactive Proofs for
Muggles. J. ACM 62, 4, Article 27 (sep 2015), 64 pages. https://doi.org/10.1145/2699436

[4] Yipeng Huang and Margaret Martonosi. 2019. Statistical assertions for validating patterns and finding bugs in
quantum programs. In Proceedings of the 46th International Symposium on Computer Architecture. ACM. https:
//doi.org/10.1145/3307650.3322213

[5] A. Yu. Kitaev, A. Shen, and M. N. Vyalyi. 2002. Classical and Quantum Computation. American Mathematical Society,
USA.

[6] Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and Yuan Xie. 2020. Projection-Based Runtime Assertions
for Testing and Debugging Quantum Programs. Proc. ACM Program. Lang. 4, OOPSLA, Article 150 (nov 2020), 29 pages.
https://doi.org/10.1145/3428218

[7] Ji Liu, Gregory T. Byrd, and Huiyang Zhou. 2020. Quantum Circuits for Dynamic Runtime Assertions in Quantum
Computation. Association for Computing Machinery, New York, NY, USA, 1017–1030. https://doi.org/10.1145/3373376.
3378488

[8] Urmila Mahadev. 2018. Classical Verification of Quantum Computations. https://doi.org/10.48550/ARXIV.1804.01082
[9] Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation and Quantum Information: 10th Anniversary

Edition (10th ed.). Cambridge University Press, USA.
[10] John Preskill. 2012. Quantum computing and the entanglement frontier. https://doi.org/10.48550/ARXIV.1203.5813
[11] Peng Yan, Hanru Jiang, and Nengkun Yu. 2022. On Incorrectness Logic for Quantum Programs. Proc. ACM Program.

Lang. 6, OOPSLA1, Article 72 (apr 2022), 28 pages. https://doi.org/10.1145/3527316
[12] Mingsheng Ying. 2012. Floyd–Hoare Logic for Quantum Programs. ACM Trans. Program. Lang. Syst. 33, 6, Article 19

(jan 2012), 49 pages. https://doi.org/10.1145/2049706.2049708

http://www.jstor.org/stable/1968621
https://doi.org/10.1145/3460120.3484795
https://doi.org/10.1145/3460120.3484795
https://doi.org/10.1145/2699436
https://doi.org/10.1145/3307650.3322213
https://doi.org/10.1145/3307650.3322213
https://doi.org/10.1145/3428218
https://doi.org/10.1145/3373376.3378488
https://doi.org/10.1145/3373376.3378488
https://doi.org/10.48550/ARXIV.1804.01082
https://doi.org/10.48550/ARXIV.1203.5813
https://doi.org/10.1145/3527316
https://doi.org/10.1145/2049706.2049708

	Abstract
	1 Challenges in Checking Quantum Programs
	1.1 Quantum Assertion Schemes
	1.2 Verification of Delegated Quantum Computation
	1.3 Enabling Classical Reasoning for Quantum States

	2 Background: Projection-Based Assertions
	2.1 Projections and Assertions
	2.2 Incompleteness of Projection-Based Assertions

	3 Connecting Verification and Correctness
	3.1 Quantum Verification and Delegation
	3.2 Kitaev's Hamiltonian Reduction
	3.3 Connecting Hoare, Kitaev, and Mahadev

	4 Interactive proofs and quantum program analysis
	4.1 Kitaev-Mahadev-Inspired Assertions
	4.2 Interactive Quantum Abstract Interpretation

	5 Conclusion
	References

