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Abstract
A closed-loop auditory based speech feature extraction algorithm is presented to address
the problem of unseen noise for robust speech recognition. This closed-loop model is in-
spired by the possible role of the medial olivocochlear (MOC) efferent system of the human
auditory periphery, which has been suggested in [?, ?, ?] to be important for human speech
intelligibility in noisy environment. We propose that instead of using a fixed filter bank, the
filters used in a feature extraction algorithm should be more flexible to adapt dynamically
to different types of background noise. Therefore, in the closed-loop model, a feedback
mechanism is designed to regulate the operating points of filters in the filter bank based on
the background noise. The model is tested on a dataset created from TIDigits database. In
this dataset, five kinds of noise are added to synthesize noisy speech. Compared with the
standard MFCC extraction algorithm, the proposed closed-loop form of feature extraction
algorithm provides 9.7%, 9.1% and 11.4% absolute word error rate reduction on average
for three kinds of filter banks respectively.
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Chapter 1

Introduction

1.1 Overview of the Problem

Automatic speech recognition (ASR) systems are usually vulnerable to noise, which has

made robust speech recognition a very challenging problem. Speech recognition accuracy

rates can degrade substantially due to the influence of noise because noise can contam-

inate speech signals so severely that informative speech features can be masked. More

specifically, the acoustic model in a speech recognition system is usually trained on feature

vectors extracted from speech signals, either noisy or clean, and the acoustic model then re-

flects the distribution of the feature vectors which represent different acoustic units. When

speech signals are contaminated by noise that is not seen during training, the feature repre-

sentations for each acoustic unit can be significantly altered by the noise, which results in a

distribution that is far different from the one generated by the training data. Consequently,

the speech recognition performance will mostly deteriorate as a consequence.

Noise-robust features are therefore critical to all ASR systems which operate in adverse

environments. Many efforts have examined the field of robust speech recognition, and

two major approaches have been used to improve recognition performance. One approach

is feature normalization; methods like cepstral mean normalization (CMN) [?], cepstral

mean variance normalization (CMVN) [?], and mean variance ARMA [?] are well studied

and have shown promising results. Alternatively, numerous feature extraction algorithms

have been proposed to provide noise-robust features. Mel-Frequency Cepstral Coefficients
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(MFCCs), an auditory based speech feature representation, are widely used in many ASR

systems for their reasonable noise robustness [?]. Perceptual linear prediction (PLP) [?],

another popular feature, is also a technique for speech analysis that uses psycho-acoustic

concepts to estimate an auditory spectrum.

Even though much progress has been made in this area, there is still room for improve-

ment. Therefore, one of the goals of this thesis is to contribute solutions to the challenge of

robust speech recognition, particularly, for the problem of unseen noise.

1.2 Overview of Proposed Approach

This thesis attempts to solve the problem of degraded recognition performances caused by

mismatched noises contained in training and test data. This thesis approaches the problem

by developing a feature extraction algorithm, which is designed to be capable of generating

consistent speech representations, no matter what kind of noise is contained in the speech

signals, and, in turn, to reduce the effect made by the unseen noise on recognition perfor-

mance of ASR systems. The motivation of this feature extraction algorithm design and the

goal of this thesis are described in more detail in the following sections.

1.3 Motivation of Proposed Approach

In noisy environments, human performance in speech recognition degrades much more

gracefully than the performance of machines [?]. This seems to indicate that current fea-

ture extraction algorithms have not exploited all the advantages of the human auditory

system, which appears to be more resilient to all kinds of noise. In our research; therefore,

we explore auditory-inspired feature extraction, as we believe this approach remains only

partially understood and has much potential for development.

Recent speech intelligibility research [?, ?, ?] has examined the role of auditory feed-

back mechanisms of the human auditory system in perceiving speech signals. The results

have suggested that the feedback mechanism may help increase the robustness of speech

features. Particularly, [?, ?, ?] introduced the concept of closed-loop cochlear model.The
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multi-band path non-linear (MBPNL) model, which was inspired by the medial olivo-

cochlear (MOC) efferents in the auditory periphery. The model was shown to have po-

tential for speech discrimination in noise and was capable of matching human confusions

in stationary noise.

Most feature extraction algorithms contain a cochlea-like module as a subroutine, for

example, the MFCC extraction procedure contains a filter bank which consists of an array

of overlapping triangle windows equally spaced on the Mel scale. These modules are used

to approximate human auditory response and to model human cochlea. However, these

filter banks always remain static during the entire feature extraction procedure, which is

against the observations in the human cochlea. The human cochlea changes its operating

points dynamically according to the information sent from the efferent feedback system,

which depends on the background noise [?].

Motivated by this evidence we decided to apply the concept of the feedback mechanism,

observed in the human auditory periphery system, to a standard speech feature extraction

procedure to form a closed-loop auditory-based feature extraction algorithm. This proposed

feature extraction algorithm mimics the behavior of the human cochlea and allows the filter

bank, which is usually included in a standard speech representation extraction procedure,

to adjust its operating point according to the intensity of the background noise. With the

ability to adapt to the background environment, the proposed feature extraction algorithm

is capable of generating consistent speech features for speech signals embedded in different

kinds of noises.

1.4 Goals of the Thesis

This thesis aims at the following two main goals: Developing a closed-loop auditory-based

feature extraction algorithm for robust speech recognition and examining the potential use

of the MBPNL model for robust speech recognition.
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1.4.1 Developing a Closed-loop Auditory-based Feature Extraction Al-

gorithm for Robust Speech Recognition

First, we apply the concept of efferent feedback mechanism introduced in [?, ?, ?] to de-

velop a closed-loop feature extraction algorithm, using each of the three filter banks, a

Mel-scale frequency filter bank, a gammatone filter bank and an MBPNL filter bank, as a

cochlear model. Based on observations of the human auditory system, we design a pro-

cedure, which determines the operating point of the cochlear model to allow the cochlear

model to adapt dynamically to the background noise. In order to show that the feedback

mechanism can improve robustness and address the problem of unseen noise in training

data, we specify the experimental environment based on the TIDigits [?] database and test

the proposed algorithm on the database.

1.4.2 Examining the Potential Use of the MBPNL Model for Robust

Speech Recognition

In [?, ?, ?], the MBPNL model [?] was included in a speech information extraction pro-

cedure for diagnostic rhyme tests (DRTs), and it has shown that the ability of the MBPNL

model to more precisely model the human cochlea enhances speech intelligibility. The

MBPNL model has not been integrated into any feature extraction procedures for continu-

ous speech recognition tasks. In this thesis, we want to not only include the MBPNL model

into the proposed feature extraction algorithm, but also analyze the model systematically

to demonstrate its potential use in robust speech recognition.

1.5 Overview of the Thesis

This thesis starts with an overview of the problem that we aim to contribute to, and we

describe the proposed solution in this thesis in brevity. Following the overview of the

proposed method, the motivation of the method and the goals of this thesis are presented.

The rest of the thesis discusses how we approach the problem and how we achieve the goals

of the thesis in more detail.
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Chapter 2: Related Work

The proposed feature extraction algorithm is based on observations of the human auditory

system. In order to establish an understanding of the design logic behind the proposed

method, several components of the human auditory periphery that are related to the feature

extraction algorithm are described. Also, a review of the state of the art in the field of robust

speech recognition is discussed.

Chapter 3: The Closed-loop Feature Extraction Algorithm

The framework of the closed-loop feature extraction algorithm is presented, and each of

the components contained in the algorithm is discussed in detail. More importantly, we

describe how to integrate the efferent feedback system into the feature extraction procedure

and how we determine the operating point of the filter bank included in the algorithm.

Chapter 4: Linear Filter Bank

Two linear filter banks, the gammatone filter bank and the Mel-scale frequency filter bank,

are applied to the feature extraction procedure. We describe the two filter banks in detail

and show how to integrate the two filter banks into the proposed closed-loop algorithm. We

also visualize the difference between features extracted by algorithms with and without the

efferent feedback system.

Chapter 5: Multi-Band Path Non-Linear Model

The MBPNL model is introduced to the speech feature extraction procedure designed in

this thesis for a continuous speech recognition task. We analyze the MBPNL model care-

fully and show its ability to increase the instantaneous SNRs of a weak signal, which has

potentially beneficial application for robust speech recognition. We also explain how to

combine the MBPNL model with the feedback mechanism to form a closed-loop auditory-

based feature extraction algorithm.
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Chapter 6: Experiment Setup and Results

In order to test the proposed method, a data set is created based on the TIDigits database.

Noises used in the Aurora2 [?] database as well as three common noises are applied to

create noisy speech signals for this data set. Experiment results for all the models discussed

in this thesis are presented and analyzed in detail.

Chapter 7: Conclusions and Potential Work

We summarize the contributions of this thesis, examine the goals we set for this thesis and

suggest potential research directions.
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Chapter 2

Background

The feature extraction algorithm design of this thesis is based on the human auditory pe-

riphery. In order to establish a good understanding of the design logic behind the proposed

feature extraction procedure, a brief description of mammalian periphery auditory system

is presented in this chapter. A review of the state of the art in robust speech recognition is

discussed in this chapter as well.

2.1 The Human Peripheral Auditory System

The outer part of the human periphery auditory system consists of three parts; namely, the

outer ear, the middle ear and the inner ear. The feature extraction algorithm proposed in

this thesis focuses on modeling behaviors of the inner ear and the olivocochlear efferent

system, originated in the superior olivary complex. Particularly, the components of the

inner ear that are related to this thesis work are the cochlea, the outer and inner hair cells

and the medial olivocochlear bundle. Each of the components is described in the following

sections. (Most descriptions of the models of the inner ear are cited from [?].)

2.1.1 The Cochlea

The cochlea is a fluid filled chamber inside the ear surrounded by bony rigid walls. The

length of the cochlea is roughly 35 mm in humans and it is coiled up like a snail shell
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around the 8th cranial nerve. It is divided along its length by two membranes, Reissner’s

membrane and the basilar membrane, and contains two types of hair cells, inner hair cells

and outer hair cells.

When sound waves travel through the fluid compartment of the cochlea, they cause

motion on the basilar membrane. The part of the cochlea near the oval window is referred

to as the base or basal end and the part farthest from the oval window is the apex or apical

end. The base of the basilar membrane is relatively narrow and stiff while the apex is wider

and much less stiff. As a result, high frequency sounds produce a maximum displacement

of the basilar membrane near the basal end which decays abruptly. Low frequency sounds

produce a maximum displacement closer to the apical end of the membrane [?]. Hence the

basilar membrane can be thought of a tonotopically organized hydromechanical frequency

analyzer, and can be modeled as a bank of overlapping band-pass filters.

The inner ear behaves nonlinearly. The basilar membrane vibration response does not

grow proportionally to the magnitude of the input [?, ?, ?]. Instead, as the level of a

sound input decreases, the basilar membrane vibration gain function becomes increasingly

sharper. The gain increases in the vicinity of the characteristic frequency (CF), and is

independent of level for frequencies less than an octave below the CF. Hence the response

reflects a band-limited nonlinearity around the CF [?]. In sum, the gain is greatest for

stimuli near threshold and gradually decreases with larger inputs, which exhibits a level

dependence.

2.1.2 The Inner Hair Cells

As stated in Section 2.1.1, there are two populations of hair cells, inner hair cells (IHCs)

and outer hair cells (OHCs). These cells have flat apical surfaces that are crowned with

ciliary, or sensory hair, bundles that are typically arranged in a W, V, or U shape.

Innervating the hair cells are two types of neurons: afferent neurons and efferent neu-

rons. Afferent neurons carry information from the cochlea to higher levels of the auditory

system. The great majority of afferent neurons, 90-95% of the total population [?], connect

to inner hair cells, and each inner hair cell is contacted by about 20 neurons [?]. Hence it is
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believed that most, if not all, of the information about sounds is conveyed via the inner hair

cells. Direct measurements of the cochlear afferent fibers that innervate the IHCs in mam-

mals [?, ?], have shown a phenomenon known as phase-locking: in response to a pure tone,

the nerve firings tend to be phase locked or synchronized to the stimulating waveform. A

given nerve fiber does not necessarily fire on every cycle of the stimulus but, when firings

do occur, they occur at roughly the same phase of the waveform each time. It has been

shown [?] that phase-locking begins to decline at about 600 Hz and is no longer detectable

above 3.5-5 kHz. It is suggested that the cause of this decline is the low-pass filtering of the

a.c. component by the hair-cell membrane [?]. Both efferent and afferent nerves exhibit a

spontaneous firing rate and also a saturation firing rate; no matter how stimulated a nerve

becomes, it can not fire faster than the saturation rate.

Efferent neurons have spikes that travel towards the cochlea, and thus carry information

from the higher levels of the auditory system, specifically the superior olivary complex,

back to the cochlea. Lateral olivocochlear efferents terminate on the afferent dendrites

coming from the IHCs. Medial olivocochlear efferents terminate in granulated endings that

dominate the neural pole of the OHCs. More discussion on the role of the MOC efferents

is included in the next section.

2.1.3 The Medial Olivocochlea Efferents

Detailed morphological and neurophysiological description of the medial olivocochlear

(MOC) efferent feedback system is provided in [?, ?, ?, ?, ?, ?, ?]. MOC efferents originate

from neurons that are medial, ventral or anterior to the medial superior olivary nucleus, have

myelinated axons, and terminate directly on OHCs. Medial efferents project predominantly

to the contralateral cochlea with the crossed innervation biased toward the base compared to

the uncrossed innervation [?]. Roughly two-thirds of medial efferents respond to ipslateral

sound, i.e. one-third to contralateral sound, and a small fraction to sound in either ear.

Medial efferents have tuning curves that are similar to, or slightly wider than, those of

auditory nerve fibers, and they project to different places along the cochlear partition in a

tonotopical manner. Finally, medial efferents have longer latencies and group delays than
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auditory nerve fibers.

Current understanding of the functional role of the MOC efferent feedback mechanism

is incomplete. However, one speculated role, which is of particular interest for this thesis,

is a dynamic regulation of the cochlear operating point depending on background acous-

tic stimulation, resulting in robust human performance in perceiving speech in a noisy

background [?]. Several neurophysiological studies support this role. Using anesthetized

cats with noisy acoustic stimuli, [?] showed that by stimulating the MOC nerve bundle

electrically, the dynamic range of discharge rate at the auditory nerve is partly recovered.

Measuring neural responses of awake cats to noisy acoustic stimuli, [?] showed that the

dynamic range of discharge rate at the auditory nerve level is only moderately affected by

changes in levels of background noise. Both studies indicate that MOC efferent stimulation

plays a role of regulating the auditory nerve fiber response in the presence of noise.

2.1.4 Links to Thesis Work

Based on physiological data in support of the role of MOC efferents in dynamically regulat-

ing the operating point of cochlea and, in turn, enhancing signal properties at the auditory

nerve level, particularly when the signal is contaminated by noise, a closed-loop speech

feature extraction algorithm is developed in this thesis. The goal of the closed-loop algo-

rithm is to model the effect of MOC efferents on the mechanical properties of the cochlea

by computing feedback information and adjusting the cochlea model accordingly. Based

on the observation that the human cochlea reacts nonlinearly to signal levels, a nonlinear

filter, multi-band path nonlinear (MBPNL) model, is integrated in the speech feature extrac-

tion algorithm for the purpose of modeling human cochlea more precisely. The proposed

closed-loop algorithm is described in Chapter 3, and the MBPNL model is introduced in

more detail in Chapter ??.

2.2 Related Work

This section presents the research literature related to this thesis work. It starts with re-

search that inspired the development of the closed-loop speech representation algorithm,
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and it discusses auditory-based feature extraction algorithms, nonlinear filter bank designs,

and finally, other non-auditory based approaches for robust speech recognition.

2.2.1 Closed-loop Auditory Model

A closed-loop auditory speech processing model has been proposed in [?], which explores

the role of the medial olivocochlear efferent pathway in the human auditory periphery. The

MOC component provides feedback from the brain stem to the peripheral auditory system,

which is modeled by a closed-loop feedback mechanism in the model. The advantage of

the feedback mechanism proved to be in adjusting the gain and the bandwidth of the filters

in the filter bank to different kinds of noise levels, which is promising for producing robust

speech representations.

The model was tested on speech signals containing three different levels of additive

speech-shaped noise, and the recognition task was an energy-based template-matching and

time-aligned Diagnostic Rhyme Test (DRT). Specifically, the recognition was mostly done

on a synthetic database which was composed of consonant-vowel-consonant (CVC) words,

where the initial consonant to vowel transition region for each word was time aligned to

200 ms and DRT word pairs were synthesized so that the formants’ final target values of

the vowel in a given word pair were identical past 400 ms into the file, restricting stimulus

differences to the initial diphones. Noise was added to each word to obtain test tokens at

various presentation levels and SNR: 70 dB, 60 dB and 50 dB SPL and 10 dB, 5 dB, 0 dB

SNR.

There are two DRT template matching operations: two template comparisons and multi-

ple template tokens. In the DRT template matching operation of two template comparisons,

the DRT task was accomplished by having the computer compute the mean-square-error

(MSE) distance between the presented diphone and the two possible diphone templates,

corresponding to each possible diphone in the test pair. Templates were selected from a

single SPL and SNR condition and used for each MSE computation. The test stimuli were

the same diphone tokens in different noise intensity levels and different values of SNR.

For a given test token, the template with the smaller MSE distance from the test token was
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selected as the simulated DRT response of the computer. For the case of multiple template

tokens, the MSE distance metric was computed for each template condition. The final tem-

plate token was selected by picking the template resulting in the smallest distance to the

test tokens.

The results show that the model is able to mimic human performance in the consonant

discrimination task, and the best performance of the system exceeded that of humans on the

presentational levels and SNRs evaluated. Based on these results, a closed-loop auditory-

based speech representation algorithm is proposed in this thesis. However, instead of using

only one type of noise, multiple kinds of noises, both stationary and non-stationary are

tested in the thesis. In addition, the recognition task done in this thesis is an HMM-based

continuous digit recognition task rather than a time-aligned template matching task. Over-

all, the problem to be solved in this thesis is more difficult and challenging.

2.2.2 General Auditory Models

Much effort also has been put in seeking signal processing techniques motivated by hu-

man auditory physiology and perception. A number of signal processing schemes have

been designed to mimic various aspects of the human auditory system. For example, in

[?], an auditory model that simulates, in considerable detail, the outer parts of the audi-

tory periphery up through the auditory nerve level is described. The model consists of 190

cochlear channels, distributed from 200 Hz to 7 kHz, according to the frequency-position

relation suggested by [?]. Each channel comprises Goldstein’s nonlinear model of the hu-

man cochlea [?], followed by an array of five level-crossing detectors that simulate the

auditory nerve fibers innervating on inner hair cells. The simulated auditory nerve firing

patterns are processed, according to observed properties of actual auditory nerve response,

to form speech representations. The representation used in [?] is ensemble interval his-

togram (EIH), which is a measure of the spatial extent of coherent activity across the simu-

lated auditory nerve. The performance of this model was tested on a DRT suggested by [?],

and it concluded that the performance was improved by replacing a conventional speech

representation by the auditory model, but was still short of achieving human performance.
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A variant of the EIH model was proposed in [?]. The proposed zero-crossings with

peak amplitudes (ZCPA) model is composed of cochlear band-pass filters and a nonlin-

ear stage at the output of each band-pass filter. The bank of band-pass filters simulates

frequency selectivity of the basilar membrane in the cochlea, and the nonlinear stage mod-

els the auditory nerve fibers, which fire in synchrony with the stimulation. The nonlinear

stage consists of a zero-crossing detector, a peak detector, and a compressive nonlinearity.

Frequency information is obtained by the zero-crossing detector, and intensity information

is also incorporated by the peak detector followed by the compressive nonlinearity. It is

shown analytically that the variance of the level-crossing interval perturbation increases

as the level value increases in the presence of additive noise. Thus, the zero-crossing is

more robust to noise than the level-crossing, and it offers the motivation for utilizing zero-

crossings for robust speech recognition in noisy environments. The zero-crossing with

peak amplitudes model is computationally efficient and free from many unknown param-

eters compared with other auditory models. Experimental comparisons showed that the

ZCPA method demonstrated greatly improved robustness especially in noisy environments

corrupted by white Gaussian noise. In this thesis, zero-crossing rate information is not

utilized; therefore, it could be interesting to incorporate zero-crossing information into the

closed-loop algorithm and see whether the combined model can generate even more robust

speech representations.

Other examples of auditory-based speech representations, including the standard MFCC

feature extraction algorithm [?], and the gammatone filter bank based feature extraction

procedure [?], usually contain a high-pass filter which represents the middle ear in human

auditory system, and a filter bank which mimics the frequency selectivity phenomena in

the human cochlear. In this thesis the mel-scale frequency filter bank and the gammatone

filter bank are both applied to the closed-loop model and their performances are analyzed.

The nonlinear auditory model used in this thesis for the purpose of modeling the hu-

man cochlea more precisely is the multi-band path nonlinear (MBPNL) model designed

by Goldstein [?]. The MBPNL model represents and generalizes measurements of basilar-

membrane mechanical responses in terms of a rapid nonlinear mixing at each place of an

insensitive, linear-like low-pass filter with a sensitive, compressive band-pass filter. The
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dual filters are associated with the tails and tips of cochlear frequency tuning curves. The

MBPNL model is utilized in the thesis because [?, ?] have shown promising experimental

results using the MBPNL model in their feature extraction methods.

Another example of nonlinear filter bank design for mimicking the human cochlea is

shown in [?]. This research produces a functional model of the auditory nerve response of

the guinea-pig that reproduces a wide range of important responses to auditory stimulation.

A dual-resonance nonlinear filter architecture is used to reproduce the mechanical tuning

of the cochlea.

Another nonlinear cochlea filter bank is presented in [?]. In that article, the authors

point out that some cochlear filter banks are nonlinear but are fitted to animal basilar mem-

brane responses. Others, like the gammatone, are based on human psychophysical data,

but are linear. A human nonlinear filter bank is constructed by adapting a computational

model of animal basilar membrane physiology to simulate human basilar membrane non-

linearity as measured by psychophysical pulsation-threshold experiments. The approach is

based on a dual-resonance nonlinear type of filter whose basic structure was modeled using

animal observations. The filter is fitted at a discrete number of best frequencies for which

psychophysical data are available for a single listener, and for an average response of six

listeners. The filter bank is then created by linear regression of the resulting parameters to

intermediate best frequencies.

2.2.3 Feature Normalization Algorithms

Numerous studies have addressed feature normalization for robust speech recognition.

Methods such as cepstral mean normalization (CMN) [?] and cepstral mean variance nor-

malization (CMVN) [?] aim at removing the speech signal variation caused by the varying

characteristics of transmission channels. The normalization algorithm can be easily imple-

mented in any speech recognition system and the recognition performance can be improved

by normalizing the speech representation with these methods.

More advanced feature normalization techniques include histogram equalization (HEQ)

[?] and mean subtraction, variance normalization, and auto-regression moving-average fil-
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tering (MVA) [?]. HEQ proposes generalizing the normalization by transforming the fea-

ture vector probability density function to a reference probability density function for each

component of the feature vectors representing the speech signal. Such transformations

can compensate for the distortion the noise produces over the different components of the

feature vector. The MVA approach integrates CMN, CMVN and time sequence filtering

into a post-processing technique; specifically, it applies an auto-regression moving-average

(ARMA) filter in the cepstral domain. Both HEQ and MVA produce promising robust

speech recognition performance for low SNR speech signals. Also, both techniques have

been applied to the Aurora2 [?] database and tested on unseen noises. The MVA post-

processing algorithm has shown to achieve an error rate reduction of 65% on mismatched

tasks. However, both of the approaches require off-line computation; on the contrary, the

proposed closed-loop feature in this thesis is capable of normalizing speech signals on the

fly.
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Chapter 3

The Closed-loop Feedback Model

Since the MOC feedback mechanism in the human auditory periphery system has shown

promising potential in speech intelligibility, we would like to explore ways to integrate the

feedback mechanism into a feature extraction algorithm for robust speech recognition. We

call the procedure with feedback closed-loop feature extraction. In this chapter, we briefly

review the MOC feedback mechanism of the auditory periphery, and we will describe the

structure of the closed-loop algorithm, and show how to apply the concept to the standard

feature extraction procedure, and how this closed-loop model reduces the effects of noise.

3.1 Feedback in the Human Auditory System

Previous papers [?, ?, ?, ?, ?, ?, ?] have suggested that the MOC efferent feedback system

may play an important role in robustness of the human auditory periphery in the presence

of background noise. Under noisy conditions, the MOC efferent system sends feedback

signals that depend on the background noise to the cochlea, which accordingly regulates

its operating points in all critical bands. This regulation also affects the inner hair cell

(IHC) response in the presence of noise. The feedback mechanism seems to enable the

human auditory system to generate a more consistent speech representation under various

noise conditions. Even though we still do not have a complete, clear picture of the way

the MOC works to enhance robustness, studies e.g. [?, ?, ?, ?, ?, ?] consistently show

that the feedback in the MOC may be the key to robust performance of the human auditory
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system, and we are motivated to apply this concept to create a closed-loop feature extraction

algorithm for speech recognition.

3.2 Closed-loop Feature Extraction Overview

We construct a closed-loop feature extraction algorithm by including a feedback mecha-

nism in the loop. The structure of the closed-loop model is shown in Figure ??. The upper

path of the figure consists of several auditory-based components and reflects partially how

the human auditory periphery works. First, the filter bank models the processing of the

human cochlea, and an inner hair cell module (IHC) is included to mimic the behavior of

the human IHC. The IHC module is then followed by a dynamic range window (DRW),

which corresponds to the observation of the instantaneous rates of firing auditory nerves.

We then smooth the output signals of the DRW module to capture temporal information,

which is sent to a nonlinearity transformer. Finally, we perform a discrete cosine trans-

form to convert signals to a final speech representation that will be passed to the automatic

speech recognizer (ASR). The lower path computes the energy of the speech signal. The

outputs of the upper path and the lower path in the model are combined together to form

the final representation, r(i), for ASR. We explain each component in the model in more

detail and then focus on the feedback mechanism in following sections.

3.3 Filter bank

The purpose of the filter bank is to model the processing of cochlea; in general, all auditory-

based filter banks which model the human cochlea could be used as an filter bank module

in the closed-loop algorithm. In this thesis, we begin by applying the feedback concept to

the Mel-scale frequency filter bank and create a closed-loop model to extract new features,

and then we extend the framework to use a linear gammatone filter bank, and the multi-

band path non-linear (MBPNL) filter bank as the cochlear model in the feature extraction

procedure. Each of these filter banks will be described in more detail in the next two

chapters.

30



Figure 3-1: The closed-loop model for feature extraction. Note that the filter bank module
could be replaced by any auditory-based filter banks. The upper path consists of several
auditory-based components and reflects partially how human auditory periphery works.
The filter bank models the processing of human cochlea, and an inner hair cell module
(IHC) is included to mimic the behavior of human IHC. The IHC module is followed by a
dynamic range window (DRW), which corresponds to the observation of the instantaneous
rates of auditory nerves. The output signals of the DRW module are smoothed to capture
the temporal information, which is sent to a nonlinearity transformer. The discrete cosine
transform is applied to convert signals to speech representations. The lower path computes
the energy of speech signals. The outputs of the upper path and the lower path in the model
are combined together to form the final representation for speech signals.

One thing that should be pointed out is that instead of using an FFT-based power spec-

trum analysis, we use bandpasss filters to implement the auditory filter bank in the closed-

loop model. Therefore, we filter an entire utterance through the filter bank, so that the input

signal is transformed into an array of output signals indicated by the multiple parallel lines

connecting blocks in Figure ??, each representing an individual signal within the corre-

sponding frequency band. In order to distinguish the FFT-based approach and the bandpass

filter-based approach, for the rest of the thesis, we refer to the FFT-based extraction algo-

rithm as FFT-based baseline (FFT baseline) and the one implemented with real filters as

the filter bank baseline (FB baseline).

3.4 Inner Hair Cell Module

After the filter bank, the signals are sent into an IHC model, which is composed of a

half-wave rectifier and a Johnson lowpass filter with poles at 600 Hz and 3000 Hz [?, ?,

?]. The half-wave rectifier transforms input waveforms of a cochlear channel into a nerve
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firing response. According to [?], as the center frequency of a cochlear filter increases,

the bandwidth of the cochlear filter increases and information on the fine structure of the

waveform is lost. The phenomenon is modeled by a Johnson filter in the IHC module. A

more concrete example of how the IHC module works is illustrated in figures ?? and ??.

The input signal is a vowel filtered by a gammatone filter centered at 1 kHz. We can see the

effect of passing the signal through the half-wave rectifier in the IHC module from Figure

?? and also loss of the fine structure in the signal after the signal goes through the Johnson

lowpass filter in Figure ??. All of the designs are based on observations of the human

auditory periphery.
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Figure 3-2: A partial clean speech signal of a vowel is first filtered by a gammatone filter
with a characteristic frequency of 1 kHz and then sent to the IHC module. The figure shows
the effect of passing the signal through the half-wave rectifier.

3.5 Dynamic Range Window

The IHC module is followed by the DRW module. The DRW is motivated by the dynamic

range observed in the firing rates of auditory nerves; therefore, the DRW is modeled as

a hard limiter with a lower and an upper bound, representing spontaneous and saturation

firing rate, respectively. Specifically, the relation of the input and the output signal values
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Figure 3-3: A partial clean speech signal of a vowel from Figure ?? is first filtered by a
gammatone filter with a characteristic frequency of 1 kHz and then sent to the IHC module.
The figure the shows how Johnson lowpass filter models the observation of loss of the fine
structure in signal information.

can be described by the following function, where LB represents the lower bound of the

DRW module and UB represents the upper bound of the DRW module. The DRW module

is depicted in Figure ??. Figure ?? illustrates how the DRW module works by showing

the input and output signals of the module. The input signal used in the example is a

half-rectified sine wave, s(t) = 120× sin(2πft) + 40, where f = 400Hz.

DRW (x) =


LB x ≤ LB

x x > LB and x < UB

UB x ≥ UB

(3.1)

3.6 Smoothing

In order to extract the temporal information of signals, the DRW output signal is analyzed

on a frame-by-frame basis. In our implementation, the length of each frame is 25 ms long,

and the analysis rate is 10 ms per frame. Including 25 ms of information in one frame
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Figure 3-4: The DRW module models the dynamic range observed in the firing rates of
human auditory nerves. The upper and lower bound of the DRW represent the spontaneous
and the saturation firing rate of auditory nerves.
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Figure 3-5: An example of how the DRW module works by showing the input and output
signals of the module. As illustrated in the example, all signal values below the lower
bound of DRW are brought to the lower bound, and all signal values that are larger than the
upper bound of the DRW are suppressed to the upper bound level.

is a standard approach for speech recognition; however, according to [?], the length of

each frame has great influence on the performance of its back-end system, i.e. the ASR.

Therefore, we suggest further investigations on the influence of the length of each frame
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on the recognition performance as potential future work.

In each frame, we sum the absolute value of the signal and calculate the logarithmic

value of the sum to simulate the nonlinear response of the basilar membrane. When sum-

ming up the absolute value of signals within one frame, we apply the window shown in

Figure ?? to each frame [?]. The window has two 3 ms cosine square ramps at both ends

and 19 ms flat region between the ends of the window. The d-dimensional vectors become

the input to the discrete cosine transform (DCT) component, where d is the number of

filters in the filter bank.
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Figure 3-6: The 25 ms window has two 3 ms cosine square ramps at its two ends and a 19
ms flat region between the two ends. When signals are segmented into overlapping frames,
the window is applied to the signals to compute the sum of the absolute value of signals
within each frame.

3.7 Discrete Cosine Transform

The DCT module is used to reduce the dimensionality of vectors generated by passing

signals through all previous modules. More specifically, in our experiment setup, the DCT

module transforms each of the d-dimension vectors into a 13-dimension vector, where d

is the number of filters in the filter bank used in the feature extraction procedure. Even
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though the DCT is widely used in standard speech feature extraction algorithms such as

MFCCs, whether or not the DCT module is suitable for the closed-loop feature extraction

algorithm is still questionable. More discussions on this issue will be presented in Chapter

??. Finally, the log frame energy (lower path of the model in Figure ?? ) along with the

13-dimension vector for each frame form the speech feature generated by the closed-loop

model.

3.8 The Feedback Mechanism

Two major differences between the closed-loop model and an open-loop procedure can be

distinguished: namely, the dynamic range window (DRW) and the gain control. In fact, the

DRW and the gain controller in Figure ?? work together to form the feedback mechanism.

We now focus on explaining how the lower bound of the DRW and the gain profile are

determined.

3.8.1 Dynamic Range Window

As mentioned in Section ??, the lower bound of the DRW module represents the spon-

taneous firing rate of the auditory nerve. Therefore, we first analyze the response of the

open-loop model to some background noises and treat the responses of the IHC module

as the spontaneous firing rate of the auditory nerves. We then decide an appropriate lower

bound for the DRW based on the observations. Specifically, in order to set the lower bound

of the DRW, we pass pure noises of different levels through the open-loop model. These

pure noise signals are theoretically easy to collect for real-world ASR systems, since we

can keep the recognizer continuously listening in the background. We calculate the average

energy level of the noise signals at the output of the IHC module, and we then set the lower

DRW bound of all channels to one parameter, which is larger than the average energy level

of the noise signals for all channels. This constant represents the spontaneous firing rate

of auditory nerves. Once determined, the DRW lower bounds remain fixed. Examples of

energy distribution of different noises and the setup of the lower bound of DRW are shown

in Figure ??.
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Figure 3-7: The energy distribution of the five noises; namely, speech-shaped, white, pink,
train and subway. The closed-model has a Mel-scale frequency filter bank. The lower
bound of the DRW that was set for this case is indicated by the magenta line in the figure.

3.8.2 Gain Controller

In contrast to the fixed DRW lower bound, the gain per frequency channel is slowly chang-

ing, following long-term changes in the noise spectral distribution. To estimate the gain

profile we assume a long enough time-window that is signal free (i.e. which contains only

noise) which can be estimated from background noise. We pass the noise signal through

the open-loop model with the DRW lower bound fixed, and adjust the gain until the level

of the average noise energy at the output above the lower bound of DRW is of a prescribed

value. More specifically, suppose Gi is the gain for the ith filter in the filter bank, and XGi

is the noise energy we observe at the output of the ith channel after the filter is multiplied

with Gi. Let the lower bound of DRW be Y . Then we select G∗
i , the gain for the ith filter

in the gain profile, to be the value that satisfies the following equation:

G∗
i = arg

Gi

|XGi
− Y | < ε (dB) (3.2)

In order to make the concept more clear, an example of gain profiles for each of the
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noise types shown in Figure ?? tuned according to the pre-set DRW lower bound is shown

in Figure ??. The filter bank used in this example is the Mel-scale frequency filter bank. As

shown in the example, the larger the average energy of one channels, the smaller the gain

for that channel is.
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Figure 3-8: Examples of the gain profile for different noise signals under the closed-loop
model with a Mel-scale frequency filter bank. The five gain profiles are for the five noise
signals whose energy distribution across all frequencies are shown in Figure ??. Notice
that the higher the sound pressure level of the noise at a given frequency, the smaller the
values of its gain profile are.

After the lower bound of the DRW is set and the gain profile found, the feedback mech-

anism is formed, and we can generate speech representations for each utterance with the

closed-loop model.

In summary, the combination of the gain controller and the DRW lower bound forms

the feedback mechanism for our auditory model. This feedback mechanism ensures the

energy level of noise contained at the output of the DRW is within a prescribed value,

independent of noise type. With this function inherited in it, the closed-loop model can

generate a more consistent representation of the speech signal, embedded in the noise, even

if the background noise varies. More visual comparisons between closed-loop and open-
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loop model generated speech representations will be shown in the following two chapters,

where we will describe the filter banks used in this thesis in more detail.
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Chapter 4

Linear Filter Bank

As Chapter 3 points out, we can incorporate any design of auditory filters in the closed-

loop filter bank module. In this chapter, we explore properties of two linear filter banks, the

gammatone filter bank and the Mel-scale frequency filter bank, and inter grate these two

linear filter banks into the closed-loop algorithm as the role of human cochlea. Further, we

also plot spectrograms generated by these two filter banks in both open-loop and close-loop

cases to see how effective the closed-loop algorithm is able to reduce the differences among

speech contaminated by different types of noise.

4.1 Mel-Scale Frequency Filter Bank

The Mel-scale frequency filter bank we use in this research consists of 23 filters placed

along the frequency axis. The center frequencies are equally distributed along the Mel-

scale, inspired by psychophysical findings in auditory perception. The filters are triangle

shaped, and the adjacent filters overlap 50%. This filter bank is used in the standard MFCCs

feature extraction algorithm [?], where the center frequency of each channel is defined as

follows:

Mel(x) = 2595× log10(1 +
x

700
) (4.1)

The entire Mel-scale frequency filter bank used in this thesis is shown in Figure ??. The
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lowest frequency covered by the filter bank is 64 Hz and the highest frequency is half of

the sampling rate (i.e. 8 kHz).
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Figure 4-1: The frequency response of the Mel-scale frequency filter bank. The filter
bank is composed of 23 filters placed along the frequency axis. The center frequencies are
equally distributed along the Mel-scale. Also, the filters are triangle shaped, and adjacent
filters are half-overlapping. The lowest frequency covered by this filter bank is 64 Hz and
the highest covered frequency is half the sampling rate (i.e. 8 kHz).

As shown in Figure ??, the amplitude of the filters at high frequency is roughly the

same as that of filters at low frequency. Indeed, this design may over-emphasize the high

frequency components of speech signals; however, the filter bank design is used in the

standard MFCCs feature extraction algorithm, which has been shown to be an effective

feature extraction procedure for continuous digit sequence task. Therefore, we leave it as

what it was in our implementation of the Mel-scale frequency filter bank.
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4.1.1 Closed-loop Model with Mel-scale Frequency Filter Bank

In order to construct a closed-loop model with the Mel-scale frequency filter bank, we inte-

grate the Mel-scale frequency filter bank described in Section ?? into the feature extraction

procedure described in Chapter 3. The resulting closed-loop model is shown in Figure ??.

Figure 4-2: The closed-loop model with Mel-scale frequency filter bank for feature extrac-
tion.

The lower bound of the DRW module and the gain profile, G, in Figure ?? are tuned

according to Section ??. Once the parameters are found, the input signal then goes through

each of the components in Figure ?? sequentially and then, finally, are converted to a

closed-loop speech representation for the input signal. In Section ??, we show visual com-

parisons between the open-loop and the closed-loop models with Mel-scale frequency filter

bank for one utterance embedded in several types of background noises.

4.1.2 Spectrograms of Mel-Scale Frequency Filter Bank

In this section, we visualize the differences between the speech representations generated

by the open-loop model and the closed-loop model with the Mel-scale frequency filter bank.

The utterance used in this comparison is a sequence of digits, 8936233. In order to see how

consistent the speech representations generated by the two models for different noises are,

the utterance is embedded in five different kinds of noise; namely, speech-shaped, white,

pink [?], train station and subway station noise [?]. Notice that the noise signals embedded

in the speech are of the same energy level, and the noisy speech signals are of the same

signal to noise ratio (SNR). The goal is to see if the closed-loop model is more capable of

producing a more robust speech representation for various types of noise than the open-
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loop model. Before showing the spectrograms, we show the segmented spectrums of these

five types of noise in Figure ?? to see how different these five noises are. The spectrums

are computed using a hamming window and a 512-point FFT window length.
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Figure 4-3: The segmented spectrums of speech-shaped, white, pink, train station, subway
station noises. It can be seen that the energy distribution of these five noises are quite
different from each other. The spectrums are computed using a hamming window and a
512-point FFT window length.
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As shown in Figure ??, different types of noise may have very different enery distribu-

tions, which make robust speech recognition difficult.
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Figure 4-4: Outputs of five noisy signals resulting from the FFT baseline model. The five
noisy signals have the same digit sequence, 8936233, but each of them has a different type
of noise. The blue color represents low energy, and the red color indicates high energy.
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Figure 4-5: Outputs of five noisy signals resulting from the closed-loop model with Mel-
scale frequency filter bank. The five noisy signals are the same digit sequence, 8936233,
but each of them has a different type of noise. The blue color represents low energy, and
the red color indicates high energy.

Figures ?? and ?? show a visual comparison of the open-loop and the closed-loop model
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for an utterance embedded in five types of noise. Notice that the closed-loop representa-

tions have a more consistent background appearance even though there is some loss of low

intensity speech information.

4.2 Gammatone Filter Bank

Recalling that the Mel-scale is rooted in a psychophysical origin (pitch perception), we

would like to use a filter bank related to cochlear mechanics. In our study, in the category

of linear filters, we use the gammatone filter bank. The center frequency distribution of the

gammatone filter bank is according to the equivalent rectangular bandwidth (ERB) scale

[?].

The gammatone filter bank used in this research project was designed by Malcom

Slaney [?]. The gammatone filter bank consists of 112 overlapping linear gammatone fil-

ters; the bandwidth of each filter increases proportionally with center frequency, and the

ERB of the filter bank matches psychoacoustic data. The impulse response of the gamma-

tone filters can be described as [?]:

Y (t) = atn−1e−2πbt cos(2πfct+ ϕ), t > 0 (4.2)

The parameter b controls the duration of the impulse response. We set b = 1.019 ×

ERB(fc), ERB(fc) is the equivalent rectangular bandwidth of the filter with center fre-

quency fc. The ERB(fc) function is described as:

ERB(fc) = 24.7 + 0.108× fc (4.3)

The parameter n in equation ?? determines the slope of the skirts of the filter; in our

experiment, we set n = 4. Lastly, the parameter a in equation ?? is a normalization

constant. The frequency response of the filter with center frequency at 766 Hz designed by

Slaney is shown in the following figure.

With both equation ?? and equation ??, we can expect that the bandwidth of the filters

in the gammatone filter bank will be proportional to their center frequencies. Figure ??
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Figure 4-6: The frequency response of the gammatone filter with center frequency at 766
Hz designed by Slaney.

shows the impulse response of twenty five selected filters from the filter bank. From this

figure, we can see the relation of the center frequency and the bandwidth for each filter.

4.2.1 Closed-loop Model with Gammatone Filter Bank

In order to construct a closed-loop model with the gammatone filter bank, we integrate

the gammatone filter bank described in Section ?? into the feature extraction procedure

described in Chapter 3. The resulting closed-loop model is shown in Figure ??.

The lower bound of the DRW module and the gain profile, G, in Figure ?? are tuned

according to Section ??. Once the parameters are found, the input signal then goes through

each of the components in Figure ?? sequentially and then, finally, are converted to a

closed-loop speech representation for the input signal. In Section ??, we show visual com-

parisons between the open-loop and the closed-loop models with gammatone filter bank

for one utterance embedded in several types of background noises.
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Figure 4-7: The frequency response of twenty five selected filters in the gammatone filter
bank. The entire gammatone filter bank consists of 112 overlapping linear gammatone
filters; the bandwidth of each filter increases proportionally with center frequency, and
the ERB of the filter bank matches psychoacoustic data. The impulse response of the
gammatone filters is described in equation ??.

4.2.2 Spectrograms of Gammatone Filter Bank

In this section, we visualize the speech representations generated by both the open-loop

model and the closed-loop model with the gammatone filter bank. We then compare the

differences between the two representations and discuss the strengths and weakness of each

model. The utterance and the noise signals are the same as those used in Section ??. Figure

?? and Figure ?? show the visual comparisons.

As pointed out in Section ??, the closed-loop representations have a more consistent

background appearance. This consistency is helpful for robust speech recognition for dif-

ferent types of noise. However, as noticeable in the case of white noise for the closed-loop

model, some speech signals are lost at high frequencies. The loss of speech information

happens because the energy levels of white noise at high frequencies are relatively high;

therefore, the gains found for these high frequency channels are small. As a result, when
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Figure 4-8: The closed-loop model with gammatone filter bank for feature extraction.

speech signals go through these filters, signals within those sub-bands are amplified rel-

atively less than other channels. Consequently, the energy of speech in those channels

appears weaker than others. Therefore, there is a trade-off between production of a more

consistent background appearance and loss of speech information when the gain is small.

We discuss the trade-off and present the effects the two issues have on speech recognition

results in Chapter ??. Furthermore, we introduce the multi-band path non-linear model in

next chapter and explain how the MBPNL model can balance the trade-off better.
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Figure 4-9: Outputs of five noisy signals resulting from the open-loop model with the
gammatone filter bank. The five noisy signals have the same digit sequence, 8936233, but
each of them has a different type of noise. The blue color represents low energy, and the
red color indicates high energy.
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Figure 4-10: Outputs of five noisy signals resulting from the closed-loop model with gam-
matone filter bank. The five noisy signals are the same digit sequence, 8936233, but each
of them has a different type of noise. The blue color represents low energy, and the red
color indicates high energy.
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Chapter 5

Multi-Band Path Non-Linear Model

One of the noticeable characteristics of the human cochlea is its non-linear mechanics.

However, neither the Mel-scale frequency filter bank nor the gammatone filter bank are

capable of modeling the non-linearities even though the design of these filters is based on

psychophysical findings. Therefore, inspired by [?], we apply the Multi-Band Path Non-

Linear (MBPNL) model to our feature extraction procedure to mimic the non-linearities

of the human cochlea [?]. More specifically, the MBPNL model changes its bandwidth

and gain according to the input intensity, which matches physiological and psychophysical

observations of the cochlea.

In this chapter, we describe and analyze the characteristics of the MBPNL model. Fur-

ther, we show the potential beneficial use of the MBPNL model for speech recognition by

comparing it with a linear filter bank. Finally, we explain how to construct a closed-loop

feature extraction procedure with the MBPNL model and show speech representations gen-

erated by the model.

5.1 MBPNL Model Description

The MBPNL model, depicted in Figure ??, operates in the time domain, and is composed

of two paths: The upper path is a linear filter, which represents the insensitive, broadband

linear tail response of basilar-membrane tuning curves. The lower path is a compressive

non-linear filter, which represents the sensitive, narrow-band compressive nonlinearity at
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the tip of the basilar membrane tuning curves [?].

The GAIN component controls the gain of the tip of the basilar membrane tuning

curves, which models the inhibitory efferent-induced response in the presence of noise.

In order to understand the MBPNL model better, we examine the frequency responses of

the MBPNL model in next section.

Figure 5-1: The Multi-Bank Path Non-Linear filter [?]. The upper path is a linear filter
that represents the broadband linear tail response of basilar-membrane tuning curves, and
the lower path is a compressive non-linear filter that models the narrow-band compressive
nonlinearity of the basilar membrane tuning curves. The parameter Gain controls the gain
of the tip of the basilar membrane tuning curves. The gain is controlled by the efferent
feedback mechanism.

5.2 Characteristics of the MBPNL Model

In order to observe the non-linear mechanics of the MBPNL model, we create chirp signals

of different amplitudes and pass the signals through the model to see how the bandwidth

and the gain of the model change with input intensity. Another parameter, the GAIN com-

ponent, mainly affects the operating point of the model; therefore, we also set up the model

with different values for the GAIN component and measure the MBPNL model output for

each setting.

The chirp signals are s(t) = Asin(w0t), with its amplitude, A, varying from 0 dBSPL
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to 120 dBSPL. The GAIN component is set to 10 dB and goes up to 40 dB with a gap of

10 dB between adjacent settings. The frequency respose of the MBPNL with the center

frequency at 1820 Hz for different input intensities and setup for the GAIN component is

show in both Figure ??.
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Figure 5-2: The frequency response for the MBPNL model, with the center frequency
at 1820 Hz, for different input intensities (20-100 dB) and different values for the GAIN
component. From left to right, the first row is for GAIN = 40 and 30 dB, and the second
row is for GAIN = 20 and 10 dB.

There are two important non-linear characteristics of the MBPNL model that should be

pointed out from Figure ??. First of all, when the value of GAIN is fixed, say, 40 dB, which
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refers to the upper-left sub-graph in Figure ??, the gain of the filter increases when the input

intensity decreases. This feature is helpful for reducing the dynamic range of the output

signal of the model. Second, the bandwidth of the model decreases as the input intensity

becomes smaller. The variable bandwidth has beneficial use in increasing the instantaneous

signal to noise ratio (SNR), which is elaborated in Section ??. Also, the GAIN component

influences the range of gain that the MBPNL model has for different input intensities. We

can see from the upper-left and lower-right sub-graphs, where GAIN equals to 40 dB and

10 dB respectively, in Figure ?? that the range of gain of the MBPNL when GAIN is 40 dB

is larger than that when GAIN is set to 10 dB. The way to find an appropriate value for the

GAIN component of each channel is described in Section ??.

5.3 Enhancement of Instantaneous Signal-to-Noise Ratio

As pointed out in Section ??, the property of variable bandwidth of the MBPNL model has

a beneficial use in increasing the instantaneous SNR. In this section, we explain how the

enhancement of instantaneous SNR happens theoretically, and give concrete examples to

illustrate the idea.

5.3.1 Theoretical Analysis

Figure ?? shows the composition of two noisy signals which are synthesized by adding a

white noise filtered by a gammatone filter centered at 1820 Hz, depicted in Figure ??. The

noise is added to two sine waves of f = 1820Hz with different amplitudes:

si(t) = A sin(2πft), where A =

0.01 for i = I

0.1 for i = II

(5.1)

Instantaneous SNR for Gammatone Filter Bank

The instantaneous SNR for the two signals, signal I and signal II as indicated in Figure ??,

of the noisy signal after the signal is filtered by the gammatone filter, SNRgamma, in Figure
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Figure 5-3: Two noisy signals synthesized by adding two sine waves with different ampli-
tudes to a white noise filtered by the filter illustrated in Figure ??. Signal I has a low SNR
and signal II has a relatively higher SNR.
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Figure 5-4: The gammatone filter, centered at 1820 Hz, is used to filter the white noise for
synthesizing the noisy signal analyzed in Section ??.

?? can be described as:

SNRgamma,I =
E[S]gamma,I

E[N ]gamma

(5.2)

57



SNRgamma,II =
E[S]gamma,II

E[N ]gamma

(5.3)

E[S]gamma,i is the energy of the sine wave of signal i, i = I or II, and E[N ]gamma is the

energy of the white noise. The noise energy added to the two signals is the same because

length of the two signals is the same.

Instantaneous SNR for MBPNL Filter Bank

The instantaneous SNR for the two signals after both of them go through an MBPNL model

centered at 1820 Hz, depicted in Figure ??, is analyzed in the following paragraphs.

As the two signals go through the MBPNL model sequentially, the filter changes its

behavior as the input intensity changes. More specifically, when signal I goes through the

filter, the filter behaves as a narrow bandpass filter with a large gain, see filter I in Figure

??, because of the weak intensity. On the other hand, signal II goes through the filter, the

filter behaves as a wide bandpass filter for its stronger intensity. A conceptual illustration

is shown in Figure ??, in which we represent the noisy signal in frequency domain. As

it shows in Figure ??, the second noisy signal is filtered by a wide bandpass filter, which

almost covers the entire bandwidth of the signal. On the contrary, the first noisy signal

is filtered by a much narrower bandpass filter, which filters out most of the noise signal.

Therefore, the instantaneous SNR of the two signals filtered by the MBPNL model can be

described as follows:

SNRMBPNL,I =
E[S]MBPNL,I

E[N ]MBPNL,I

(5.4)

SNRMBPNL,II =
E[S]MBPNL,II

E[N ]MBPNL,II

(5.5)

The relation of SNRMBPNL and SNRgamma can be shown as follows:
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Figure 5-5: MBPNL frequency response of an MBPNL filter with the center frequency at
1820 Hz for different values of input sound pressure levels. The GAIN parameter for the
MBPNL filter is set to 40 dB. The filter behaves as a narrow band bandpass filter with a
large gain when the input intensity is relatively weak, and behaves as a wide bandpass filter
for stronger input intensity.
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Figure 5-6: A conceptual illustration of how the MBPNL model enhances instantaneous
SNR. The noisy signals are represented in frequency domain imposed with the filters of the
two signals goes through. The filter that the second signal goes through behaves as a wide
bandpass filter which almost covers the entire bandwidth of the signal. On the contrary, the
first signal is filtered by a narrow bandpass filter that only allows partial noise signal to go
through, which, in turn, increases the instantaneous SNR of the first part of the signal.

SNRMBPNL,I =
E[S]MBPNL,I

E[N ]MBPNL,I

>
G2

IE[S]gamma,I

G2
I
E[N ]
KI

= K
E[S]gamma,I

E[N ]gamma

> SNRgamma,I

(5.6)59



SNRMBPNL,II =
E[S]MBPNL,II

E[N ]MBPNL,II

' G2
IIE[S]gamma,I

G2
IIE[N ]

=
E[S]gamma,II

E[N ]gamma

= SNRgamma,II

(5.7)

GI and GII are the gain of filter I and filter II in Figure ?? respectively. K is the ratio

of the bandwidth of the gammatone filter in Figure ?? to the bandwidth of filter I in Figure

??.

The analysis shows that, under the condition of stable background noise level, when the

SNR of an input signal is high, the SNRs for signals filtered by the MBPNL model and a

linear model are roughly the same. On the contrary, if the SNR for the input signal is low,

which indicates a weaker signal intensity, then the MBPNL model is capable of enhancing

the SNR because the non-linear mechanic of the MBPNL model allows a narrow bandpass

filter to operate on the signal, which filters out most of the noise signal.

5.3.2 SNR-grams Comparison

In order to demonstrate the strength of the MBPNL model, we generate by the SNR-grams,

a graph shows the instantaneous SNRs of an utterance on a frame-by-frame and channel-by-

channel basis. We compare the SNR-grams of the MBPNL model and a linear model, i.e.

the gammatone filter bank for this discussion. Both of the models used in this discussion are

open-loop models. The GAIN profile for the open-loop MBPNL is described in [?], which

was chosen to best mimic psychophysical tuning curves of a healthy cochlea in quiet.

The utterance is a TIMIT utterance embedded in a speech-shaped noise, which is de-

scribed in more detail in Section ??. The SNRs for the entire tested utterances are 20 and

10 dBSNR. We synthesize the signal by fixing the background noise level and adjusting the

amplitude of the clean speech to achieve the required SNRs, and then sum the noise and

speech signals together. In the following two sections, we describe how we simulate the

instantaneous SNR for the gammatone filter bank and the MBPNL model respectively.
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Instantaneous SNR for Gammatone Filter Bank

Because the gammatone filter bank is linear, we are allowed to simulate the instantaneous

SNR by filtering the noise and clean speech signals separately through the filter bank, and

compute the energy of the clean speech and the noise signal within each frame for each

channel independently. The final instantaneous SNR for each frame and each channel can

be calculated by dividing the energy of the clean speech by the energy of the noise signal.

The frame rate and the frame length used in the calculation is the same as those in Section

??. In other words, for a particular frame i and channel c, the instantaneous SNR can be

computed as follows:

SNRi,c =
E[S]i,c
E[N ]i,c

(5.8)

E[S]i,c is the energy of the clean speech signal within frame i of channel c, and E[N ]i,c

is the counterpart element for the noise signal. E[S]i,c and E[N ]i,c can be computed by fil-

tering the clean speech and the noise signal through the filter bank separately. Specifically,

let s(t)c and n(t)c be the output signals by filtering the speech signal and the noise signal

through the c-th filter in the filter bank.

E[S]i,c =
∑
t

sc(t)
2 for t within frame i (5.9)

N [S]i,c =
∑
t

nc(t)
2 for t within frame i (5.10)

Instantaneous SNR for MBPNL model

Since the MBPNL model is non-linear, we cannot use same method that was applied to the

gammatone filter bank to compute the instantaneous SNR for the MBPNL model; i.e, filter-

ing the speech and noise signals separately and calculate the energy for both of them inde-

pendently. Instead, we need to bound the instantaneous SNR at the output of the MBPNL

model by using SNR values that we are able to compute precisely.

From the composition of the MBPNL model shown in Figure ??, we know the SNR
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of the output signal is the same as the SNR of the signals at the output of the compressor,

which will be refereed as SNRMBPNL, since H2 is a wide bandpass filter. Also notice that

the input to the compressor is the sum of the upper path signal, s(t)upper and the lower path

s(t)lower signal. Therefore, we bound the SNRMBPNL according to the following three

cases.

First, when s(t)upper � s(t)lower, the upper path signal dominates the addition. As a

result, we can ignore the lower path and view the over all model as a linear filter because the

upper path contains an expandor which cancels out the effect of the compressor. Therefore,

in this case, SNRMBPNL ' SNRH3 , where SNRH3 is the SNR of output signals of the

linear filter in the upper path, H3.

Second, when s(t)lower � s(t)upper, then the lower path signal dominates the addition.

Again, we can omit the upper path and view the over all model as if it contains only the

lower path. We then bound SNRMBPNL by SNRH1 , the SNR value of the output signal

of H1. Finally, when s(t)lower ' s(t)upper, we bound SNRMBPNL by the minimum of

SNRH1 and SNRH3 . Because H1 and H3 are both linear filters, we can compute SNRH3

and SNRH1 by following the procedure we use for the gammatone filter bank. The in-

stantaneous SNR of the MBPNL model for each frame for each channel can be defined as

follows:

SNRMBPNL,i,c '


SNRH3,i,c if s(t)H3,i,c � s(t)H1,i,c

SNRH1,i,c if s(t)H1,i,c � s(t)H3,i,c

min(SNRH3,i,c, SNRH1,i,c) if s(t)H1,i,c ' s(t)H3,i,c

(5.11)

With the analysis, we generate SNR-grams for both the gammatone filter bank and

the MBPNL model for a TIMIT utterance, ”biologists use radioactive isotopes to study

microorganisms”, embedded in a speech-shaped noise. The entire SNRs for the tested

utterance are 20 and 10 dBSNR relatively. The SNR-grams as well as a spectrogram are

presented in Figure ?? and Figure ??. The spectrogram is generated by using a 256-point

FFT window, a 256-point Hamming window with a 78% overlapping rate between adjacent

62



frames.

The differences between the SNR-gram for the gammatone filter bank and that for the

MBPNL model are not very clear for the 20 dBSNR utterance. However, for the 10 dB-

SNR utterance, as highlighted by the squares in Figure ??, the MBPNL model enhances

the instantaneous SNR of frames for both consonants and vowels. The capability of in-

creasing instantaneous SNR for utterances when the input intensity is relatively low should

be beneficial for robust speech recognition.

5.4 Integration of MBPNL Filter Bank to Speech Feature

Extraction Procedure

Inspired by [?, ?, ?] and the analysis in Section ??, we are motivated to incorporate the

MBPNL model in the feature extraction algorithm. This is done by inserting the MBPNL

filter bank in the filter bank module in Figure ??. The lowest frequency covered by the

implementation of the MBPNL model used in the thesis is 100 Hz, and the highest covered

frequency is half of the sampling rate of input signals. Further, a closed-loop MBPNL

model is formed by setting up the DRW module and the gain profile according to the

procedure described in Section ??. The closed-loop MBPNL model is depicted in Figure

??.

5.4.1 Spectrograms of MBPNL Model

One visualization of the speech representations generated by the closed-loop MBPNL

model for an utterance embedded in five types of noises shown in Figure ??. As the rep-

resentations produced by the closed-loop models described in Chapter ??, the closed-loop

MBPNL model is capable of generating consistent background representation. In addition,

the non-linear mechanics of the MBPNL model are shown to be helpful for increasing the

instantaneous SNR for weak signals; therefore, the MBPNL may have the potential for

solving the problem of loss of speech information which occurs in the closed-loop linear ,

i.e. the gammatone filter bank and Mel-scale frequency filter bank, models. We set up an
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Figure 5-7: The SNR-grams for the gammatone filter bank and the MBPNL model along
with the spectrogram of a 20 dBSNR TIMIT utterance, ”biologists use radioactive isotopes
to study microorganisms”. The red color indicates frames with high SNR valuses and the
blue color shows frames with low SNR values.

experiment and compare the performances of open-loop models and the three closed-loop

models in Chapter ??.
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Figure 5-8: The SNR-grams for the gammatone filter bank and the MBPNL model along
with the spectrogram of a 10 dBSNR TIMIT utterance, biologists use radioactive isotopes
to study microorganisms. The red color indicates frames with high SNR valuses and the
blue color shows frames with low SNR values. The squares highlight frames where the
MBPNL model enhanced the instantaneous SNR value compared with the gammatone fil-
ter bank. The graphs demonstrate the capability of increasing instantaneous SNR of the
MBPNL model.
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Figure 5-9: The closed-loop model with the MBPNL filter bank.
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Figure 5-10: Outputs of five noisy signals resulting from the closed-loop model with
MBPNL filter bank. The five noisy signals are the same digit sequence, 8936233, but
each of them has a different type of noise. The noise energy is 70 dBSPL and the SNR is
20 dB for all of the five utterances.The blue color represents low energy, and the red color
indicates high energy. As the closed-loop linear models, the closed-loop MBPNL model
is able to produce speech representations with a consistent background; further, with the
non-linear mechanics of the MBPNL model shown in Section ??, the MBPNL model has
the potential for solving the problem of loss of speech information which happens to the
closed-loop linear models.
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Chapter 6

Experiment Setup and Results

This chapter describes the experiment conducted to show one of the goals of the thesis: the

strength of the closed-loop feature extraction algorithm for mismatched noise conditions.

It begins with describing the experimental setup. Then, it presents and analyzes the recog-

nition results of models discussed in the thesis; namely, the FFT-based open-loop mel-scale

frequency filter model, the closed-loop model with the Mel-scale frequency filter bank, the

gammatone filter bank, and the MBPNL filter bank.

6.1 Data Setup

This section describes the development of the noisy speech dataset used for this research.

It describes the clean speech dataset and the noise dataset first, and then it explains the

synthesis process used to create the noisy speech.

6.1.1 TIDigits Database

We use utterances from the TIDigits database as the clean speech for the automatic speech

recognition (ASR) experiment. TIDigits is a database for speaker independent digit recog-

nition; specifically, each utterance consists of a sequence of digits spoken in a quiet envi-

ronment. In our experiments, 6,752 utterances are chosen for the training set, and 1,001 ut-

terances are used for the test set. All the speech data are re-sampled at a sampling frequency
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of 8 kHz. For the purpose of comparison, the Aurora Project Database 2.0 (Aurora2) also

uses utterances from the TIDigits in its development of dataset [?].

6.1.2 Noise Dataset

The speech-shaped noise used in [?] is included in the noise dataset. The speech-shaped

noise, though stationary, is challenging, since it has a similar effect to the masking produced

by a number of other speakers speaking at the same time (i.e. babble noise). In addition,

two more stationary noises, white noise and pink noise [?], are also included to broaden

the variety of the dataset. Furthermore, for the purpose of proving the robustness of closed-

loop models, two non-stationary noises, subway noise and train noise, are picked from

the noise database of Aurora2. Therefore, the models are tested on both stationary and

non-stationary noises.

6.1.3 Data Synthesis

Five training sets are created for the experiments, and each of them consists of noisy speech

synthesized by adding one of the five noises described in Section ?? with the 6,762 chosen

clean speech from the TIDigits. For each training set, the 6,752 sentences are evenly di-

vided into four subsets, and each of the four subsets contains 1,688 noisy speech files of 5

dBSNR, 10 dBSNR, 15 dBSNR and 20 dBSNR, respectively. We adjust the amplitude of

noise signals to create noises at an energy level of 70 dBSPL, and then adjust the amplitude

of clean speech so that when it is added to the noise signals, it creates noisy speech of one

of the SNR values described above. In the synthesis process, we apply the ITU software

[?] to determine noise energy levels and SNRs. The energy distribution of the five noises

we use in this experiment is presented in Figure ??. It should be noted that instead of fixing

the speech signals and adjusting the amplitude of noise signals, we fix the noise signals and

adjust the amplitude of speech signals to form noisy data at different SNRs.

Five test sets are set up, and each one of the five test sets consists of noisy speech data

synthesized by adding one of the noise types listed above to the 1,001 chosen test utterances

from the TIDigits database. The procedure used to generate the test data sets is the same as
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that used for creating the training set. All the noisy speech in the test dataset has an SNR

value of 20 dB. No overlap occurs between any training and testing utterances.

For closed-loop models, the gain profile which adjusts the operating point of the filter

bank should be determined before the speech signals are processed. In fact, the gain profile

is designed to respond to background noise on a real-time basis, so that the filter bank can

adapt to a new environment rapidly. Therefore, in order to enable the real-time computation

for the gain file, for each utterance, we add 300 ms of noise at the beginning of the signal.

As a result, when the speech signal goes through the closed-loop form of feature extraction

procedure, the first 300 ms of noise is used to compute the gain profile for the filter bank.

When the speech part of the signal comes in, the filter bank is already regulated to a proper

operating point to process the speech signal.

6.2 Mismatched Noise Experiments

This section describes the experimental setup and explains how the performance of differ-

ent models are compared. Also, it depicts the recognizer used in the experiments. At the

end, it presents the recognition performance of all the models discussed in this thesis and

analyzes the experiment results.

6.2.1 Setup

One strength of the closed-loop models is their capability of generating consistent speech

representations even if the background noise varies. In order to validate that the closed-

loop model generates a useful speech representation, we conduct speech recognition exper-

iments for mismatched training and test noise conditions.

Six models are compared in the thesis; namely, 1) the FFT baseline model, 2) the FFT

baseline model with noise normalization, 3) the FFT baseline model with speech normal-

ization and 4) the closed-loop models with the mel-scale filter bank, 5) the gammatone

filter bank and 6) the MBPNL filter bank. We use the software in the Aurora2 database [?]

as our FFT baseline model implementation. For the FFT baseline with normalized speech

signals, the speech data are scaled to a fixed maximum value. The FFT baseline with noise
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normalization utilizes the first 300 ms of noise at the beginning of each utterance to ac-

complish the normalization task. Specifically, it computes the total energy of the noise and

finds a gain such that after being multiplied with the gain, the energy of the noise at the

beginning of each utterance will be a fixed level. After the gain is found, we then scale the

entire speech signal with that gain. The FFT baseline therefore can be viewed as a simpli-

fied version of the closed-loop model which has only one universal gain for all channels.

For each model and each type of noise described previously, the recognizer is trained by

the speech features generated by the model and tested on speech data contaminated by all

of the five kinds of noise. Therefore, for each model, there are twenty five training and test

combinations. All experiments use a 42-dimensional feature vector, including energy and

13 cepstral coefficients and their first- and second-order time derivatives.

6.2.2 Recognizer

An HMM based recognizer is specified in the Aurora2 database [?], based on the HTK

software package. The recognizer is utilized for the digit recognition task in the thesis.

More specifically, the digits are modeled as a whole word HMM with 16 states, and each

state is a mixture of 3 diagonal Gaussian mixtures. Two pause models are defined. One

is the “sil” model, which models the silence at the beginning and the end of an utterance,

consisting of 3 states and 6 diagonal Gaussians in each state; the other is the “sp” model,

which models the pauses between words, consisting of a single state. In the recognition

phase, each utterance can be modeled as a sequence of digits with the possibility of “sil” at

the beginning and the end of one utterance and “sp” between words [?].

6.2.3 Results

This section presents the recognition results of six models described in the thesis. For each

model, the recognizer is trained by speech data of one type of noise, and the recognizer

is tested on all of the five kinds of noise described in Section ??. Therefore, for each

model, there are twenty five training and test conditions; five of them correspond to matched

training and test noise conditions and twenty of them represent mismatched conditions. The
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results for the six models discussed in the thesis are shown from Table ?? to Table ??

FFT Baseline Model

Table ?? shows the recognition results of the twenty five training and test conditions of the

FFT baseline model. The baseline model is adopted from the Aurora2 [?] database. The

red color highlights the cases where the recognition performance degrades substantially.

Table 6.1: The word accuracy (%) produced by the FFT baseline model. The rows state
what type of noise the models are trained on, and the column specifies on which type of
noise the models are tested. The numbers in each cell represent the recognition accuracy
rate. The red color highlights the cases where the recognition result drops below 80%.

Speech-shaped White Pink Train Subway
Speech-shaped 98 53 61 95 56
White 62 97 70 38 46
Pink 63 76 98 42 44
Train 98 95 97 98 94
Subway 98 53 61 95 98

FFT Baseline Model with Noise Normalization

Table ?? shows the recognition results of the twenty five training and test conditions of

the FFT baseline model with noise normalization. This baseline feature extraction model

is adopted from the Aurora2 [?] database. The red color highlights the cases where the

recognition performance degrades substantially.

Table 6.2: The word accuracy (%) produced by the FFT baseline model with noise nor-
malization. The rows state what type of noise the models are trained on, and the column
specifies on which type of noise the models are tested. The numbers in each cell represent
the recognition accuracy rate. The red color highlights the cases where the recognition
result drops to less than 80%.

Speech-shaped White Pink Train Subway
Speech-shaped 98 70 54 69 52
White 62 97 58 41 46
Pink 80 75 95 75 73
Train 96 93 93 95 89
Subway 71 90 84 75 94
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FFT Baseline Model with Speech Normalization

Table ?? shows the recognition results of the twenty five training and test conditions of

the FFT baseline model with speech normalization, which is the standard way to do speech

recognition. This baseline feature extraction model is adopted from the Aurora2 [?] database.

The red color highlights the cases where the recognition performance degrades substan-

tially.

Table 6.3: The word accuracy (%) produced by the FFT baseline model with speech nor-
malization. The rows state what type of noise the models are trained on, and the column
specifies on which type of noise the models are tested. The numbers in each cell represent
the recognition accuracy rate. The red color highlights the cases where the recognition
result drops significantly to less than 80%.

Speech-shaped White Pink Train Subway
Speech-shaped 98 52 59 96 66
White 62 97 89 57 57
Pink 78 81 98 71 54
Train 98 95 97 89 96
Subway 97 78 90 90 98

Closed-loop Model with the Mel-scale Filter Bank

Table ?? shows the recognition results of the twenty five training and test conditions of the

closed-loop model with the mel-scale filter bank. The feature extraction model is described

in Chapter ??. It can be seen that the recognition results across all training and test cases

are more consistent when the closed-loop model with the Mel-scale Filter Bank is applied.

Table 6.4: The word accuracy (%) produced by the closed-loop model with the mel-scale
filter bank. The rows state what type of noise the models are trained on, and the column
specifies on which type of noise the models are tested. The numbers in each cell represent
the recognition accuracy rate.

Speech-shaped White Pink Train Subway
Speech-shaped 97 84 89 94 89
White 90 96 95 90 86
Pink 94 94 97 93 82
Train 97 89 94 97 92
Subway 93 82 83 92 97
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Closed-loop Model with the Gammatone Filter Bank

Table ?? shows the recognition results of the twenty five training and test conditions of

the closed-loop model with the gammatone filter bank. The feature extraction model is

described in Chapter ??.

Table 6.5: The word accuracy (%) produced by the closed-loop model with the gammatone
filter bank. The rows state what type of noise the models are trained on, and the column
specifies on which type of noise the models are tested. The numbers in each cell represent
the recognition accuracy rate.

Speech-shaped White Pink Train Subway
Speech-shaped 96 82 88 93 87
White 90 96 95 89 85
Pink 94 94 97 93 82
Train 97 89 93 97 91
Subway 93 80 83 90 97

Closed-loop Model with the MBPNL Filter Bank

Table ?? shows the recognition results of the twenty five training and test conditions of the

closed-loop model with the MBPNL filter bank. The feature extraction model is described

in Chapter ??.

Table 6.6: The word accuracy (%) produced by the closed-loop model with the MBPNL
filter bank. The rows state what type of noise the models are trained on, and the column
specifies on which type of noise the models are tested. The numbers in each cell represent
the recognition accuracy rate. The numbers in bold indicate the cases where the closed-loop
MBPNL model outperform other models significantly.

Speech-shaped White Pink Train Subway
Speech-shaped 97 89 93 94 84
White 93 95 95 90 85
Pink 95 94 97 93 88
Train 96 91 95 96 93
Subway 97 93 95 95 96
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6.3 Results Analysis

From the recognition performances shown in Table ?? to Table ??, it can be seen that the

performance of the open-loop models degrade severely when the training and test noises are

mismatched. On the contrary, the closed-loop models are able to generate more consistent

recognition performances across all training and test conditions. In this section, we analyze

the results in more detail and discuss the performances of the six models for both matched

and mismatched training and test conditions.

6.3.1 Matched Conditions

Figure ?? shows the recognition word accuracy rates of the six feature extraction proce-

dures for the five matched training and test conditions. The recognizer was trained on

features generated by one of the six algorithms described above from speech contained one

of the five noises; namely, speech-shaped, white, pink, train and subway noises, and then it

was tested on speech contaminated by the same noise. From Figure ??, it can be seen that

the recognition word accuracy rates of FFT baseline for the five matched training and test

cases are better than those of the closed-loop models by 1.4% on average. However, even

though the performances of the closed-loop models degrade slightly by a small percentage

compared with the FFT baseline, the recognition performances of the closed-loop models

are consistent. More details are shown in Table ??.

Table 6.7: The table shows the average recognition word accuracy rates and the variances of
the recognition performance of the six feature extraction algorithms across the five matched
training and test conditions. Some notations: FFT/Noise stands for the algorithm of the FFT
baseline with noise normalization, FFT/Speech stands for the FFT baseline with speech
normalization.

FFT FFT/ FFT/ Closed-loop Closed-loop Closed-loop
Baseline Noise Speech Mel-scale Gammatone MBPNL

average 97.79 95.81 96.21 96.70 96.59 96.26
(%)

variance 0.18 2.98 15.48 0.03 0.04 0.33
(%×%)
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Figure 6-1: The figure shows the recognition word accuracy rates for the six feature ex-
traction algorithms for five matched training and test conditions. The six feature extraction
algorithms are FFT baseline, FFT baseline with noise normalization, FFT baseline with
speech normalization, closed-loop model with Mel-scale frequecy filter bank, closed-loop
model with gammatone filter bank and closed-loop model with MBPNL filter bank. The
five noises are speech-shaped, white, pink, train and subway noises. The recognizer was
trained on features generated by one of the six extraction procedures from speech contained
one of the five noises and tested on speech embedded in the same noise type. It shows that
the performance of the FFT baseline is slightly better than the closed-loop models; how-
ever, the performances of the FFT baseline and the performances of the closed-loop models
are consistent.

The numbers shown in Table ?? are computed from raw data which have a higher

precision than numbers shown in Table ?? to Table ??. It lists the average recognition word

accuracy rates and the variances of the recognition performance of the six feature extraction

algorithms across the five matched training and test conditions. According to the table, we

can see that the performances of the closed-loop models are quite consistent for all of the

five training and test sets because the variances of the recognition rates for the closed-loop

models are small.

6.3.2 Mismatched Conditions

We discuss the performance of the six feature extraction procedures for mismatched train-

ing and test conditions. Specifically, the recognizer was trained on feature representations

generated by one of the six algorithms for speech containing one type of noise in the noise
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data set, and tested on speech embedded in the four kinds of remaining noises. For each

feature extraction algorithm, there are twenty mismatched training and test conditions. Ta-

ble ?? shows the average word accuracy rates for the six models for the twenty mismatched

training and test conditions. We used raw data to compute the numbers in Table ??; there-

fore, the numbers shown in this table have a higher precision. Figure ?? visualizes the data

shown in Table ??, where the x-axis represents the variance of the performances for one

feature extraction algorithm, and the y-axis represents the average word recognition accu-

racy rate across all the mismatched conditions. The more upper-left the point locates in the

figure, the better the performance of the model represented by the point is.

Table 6.8: The table shows the average recognition word accuracy rates and the variances of
the recognition performance of the six feature extraction algorithms across the twenty mis-
matched training and test conditions. Some notations: FFT/Noise stands for the algorithm
of the FFT baseline with noise normalization, FFT/Speech stands for the FFT baseline with
speech normalization.

FFT FFT/ FFT/ Closed-loop Closed-loop Closed-loop
Baseline Noise Speech Mel-scale Gammatone MBPNL

average 69.86 72.28 78.08 90.07 89.40 92.32
(%)

variance 465.27 262.33 284.12 21.00 22.51 13.31
(%×%)

As Figure ?? shows, the closed-loop models tend to have higher average word accuracy

rates and the performances of the closed-loop models are more consistent across all training

and test conditions than the FFT baseline models.

6.3.3 Overall Performances

From the analysis shown in the previous two sections, we can see that even though the

FFT baseline model generated slightly better recognition results for matched training and

test conditions, its performance degraded severely and varied substantially for mismatched

training and test conditions. In contrast, even though the closed-loop models performed

slightly worse than the FFT baseline model by 1.4% on average for matched training and
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Figure 6-2: This figure visualizes the data shown in Table ??, which are the averages
and the vairances of the performances of the six feature extraction procedures for twenty
mismatched training and test conditions. The x-axis represents the variance of the perfor-
mances for one feature extraction algorithm, and the y-axis represents the average word
recognition accuracy rate across all the mismatched conditions. The more upper-left the
point locates in the figure, the better the performance of the model represented by the point
is.

test conditions, their recognition performances remained consistent for mismatched train-

ing and test conditions. Figure ?? visualizes the overall, including both matched and mis-

matched training and test conditions, performances of the six feature extraction procedures

discussed in this thesis. The x-axis and y-axis represent the average recognition word ac-

curacy rate and the variance recognition word accuracy rate respectively.

Figure ?? shows that for all of the twenty five training and test conditions, the closed-

loop models reached higher average recognition accuracy rates and performed more con-

sistently than the FFT baseline models. Among the closed-loop models, the one with the

MBPNL filter bank performed the best. The better performance that the closed-loop model

with the MBPNL filter bank obtained could attribute to several reasons. First, as shown in

Section ??, the nonlinearities of the MBPNL model potentially increase the instantaneous

SNR values for the weak part of a signal, which should be helpful in enhancing the speech

recognition performance. Second, the MBPNL filter bank contains 112 filters spreading

through the entire bandwidth of the speech signals, i.e. from 100 Hz to half of the sampling

rate. Compared with the Mel-scale frequency filter bank which consists of only twenty
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Figure 6-3: This figure visualizes the overall performances of the six feature extraction
procedures discussed in this thesis over both matched and mismatched conditions. The x-
axis represents the variance of the performances for one feature extraction algorithm, and
the y-axis represents the average word recognition accuracy rate across all the mismatched
conditions. The more upper-left the point locates in the figure, the better the performance
of the model represented by the point is.

three filters in our implementation, the MBPNL filter bank is supposed to have a finer fre-

quency resolution. More potential research directions for further improving the recognition

rates of the closed-loop models are discussed in Chapter ??.
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Chapter 7

Conclusions and Potential Work

After analyzing the experimental results, we reached various conclusions from this thesis

work. In the following sections, we summarize the main findings for the proposed closed-

loop auditory-based algorithm and point out the contributions of the thesis. In addition,

the idea of integrating a feedback mechanism with speech feature extraction algorithms

is examined in this thesis; however, the concept of exploiting a feedback mechanism to

regulate the operation points of filters in a feature extraction algorithm has not yet been

widely explored yet. An auditory-based approach to determine the operating points has

been proposed in this thesis; nevertheless, there are other potential approaches to uncov-

ering appropriate feedback information. These additional potential approaches as well as

directions for future work are discussed at the end of this chapter.

7.1 Conclusions

A new feedback mechanism is added to the standard feature extraction method to form a

closed-loop model to address the problem of unseen noise for robust speech recognition.

The feedback mechanism is motivated by the MOC efferent system, which consistent ev-

idence suggests is critical to the robust performance of the human auditory periphery. In

order to show that the closed-loop model produces consistent output, we created a database

based on TIDigits, in which five kinds of noise are added to the speech at different signal

to noise ratios (SNRs) and a constant sound pressure level (SPL). The closed-loop model
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is constructed with the Mel-scale filter bank, the gammatone filter bank, and the MBPNL

filter bank. The closed-loop method shows an average of absolute reduction of 9.7%, 9.1%

and 11.4% in word error rate, respectively, compared with the standard MFCC method

when the noise in the training data and the test data are mismatched.

In addition, the MBPNL model [?, ?] is introduced to the speech feature extraction

algorithm. The nonlinear behavior of the MBPNL model is analyzed and shown to be

helpful in increasing the instantaneous SNR of a signal if the intensity of the signal is

relatively weak. This feature may have more potentially beneficial applications to robust

speech recognition.

7.1.1 Contributions

In summary, the thesis makes two major contributions.

1) Integrating a Feedback Mechanism for ASR Feature Extraction

First, we apply the concept of the efferent feedback mechanism introduced in [?, ?, ?] to de-

velop a closed-loop feature extraction algorithm, which allows the filter bank to adapt to the

background environment dynamically. In Chapter ??, the feedback information was shown

to have the potential to address the problem of unseen noise for robust speech recognition.

2) Analysis of the Non-linear Behavior of the MBPNL Model

Secondly, we analyzed the MBPNL model further and systematically demonstrated its ca-

pability of increasing the instantaneous SNR of weak noisy signals.

7.2 Potential Future Work

This section discusses the potential future research directions, focusing specifically on the

two main directions, modifications of the feedback mechanism and applications of the

MBPNL model to robust speech recognition tasks.
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7.2.1 Setup of DRW and Gain Profile

In this thesis, the procedure applied to set up the lower bound of the DRW and to determine

the gain profile of the filter bank in a closed-loop model is inspired by observations of the

human auditory periphery. Based on the idea of the spontaneous firing rate of the auditory

nerves, the gain profile, in particular, one major component of the closed-loop model, is

tuned such that when one noise signal goes through the filter bank, the energy of the noise

signal at each channel is just below the lower bound of the DRW. This method is just one

means of configuring the gain profile; other ways may exist. For example, the gain profile

can also be adjusted based on other feedback information, such as recognition confidence

scores, just as the gain profile can be adjusted iteratively until the confidence score on a

certain set of test data is high enough. Seeking out an efficient algorithm by which to

achieve fast convergence of the gain profile based on confidence scores may be a research

area worthy of exploration.

7.2.2 Alternatives to DCT

In this thesis, the output signals of the filter bank are converted to input vectors for the rec-

ognizer via the discrete cosine transformation (DCT). The discrete cosine transformation

has proven itself to be an efficient way to reduce the complexity of the output signals of

a filter bank for open-loop models, such as the FFT baseline model. However, whether

nor not DCT is the best complexity reduction technique that can be applied to the output

signals of a closed-loop model has yet to be examined. In particular, the closed-loop model

changes the energy distribution of the output signals, thereby resulting in a very different

distribution than that of open-loop models. As a result, even though DCT has been shown

to be an effective complexity reduction method for open-loop models, it is not necessar-

ily as effective for closed-loop models. Furthermore, DCT was used in this research to

transform d-dimensional vectors to 13-dimensional vectors, where d represents the number

of filters. The decision to utilize thirteen dimensions was based on the procedure of ex-

tracting MFCCs for speech signals; this number may not actually be the optimal option for

closed-loop models.
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Investigating both the optimal complexity reduction technique and the optimal dimen-

sion choice for the final speech representation of closed-loop models should prove interest-

ing in future research.

7.2.3 Application of MBPNL model to Robust Speech Recognition

The nonlinear mechanics of the MBPNL model is further examined in this thesis, and it

shows that the nonlinearity of the MBPNL model is shown to be helpful with increasing

instantaneous SNR of speech signals. This is a powerful feature of the MBPNL model;

however, we believe that this powerful feature of the MBPNL model has not been exploited

to the fullest extent. The challenge that remains is to design a feature extraction system

with components that can maximize the use of the feature and leverage the strength of the

MBPNL model for robust speech recognition.
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