A Non-parametric Approach for Acoustic Model Discovery

Chia-ying Lee and James Glass

MIT Computer Science and Artificial Intelligence Lab Spoken Language Systems Group

Acoustic Model

Acoustic Model

Training an Acoustic Model

• Manually transcribed data are required

Training an Acoustic Model

- Manually transcribed data are required
 - Phone transcriptions

/b/ /ax/ /n/ /ae/ /n/ /ax/

Training an Acoustic Model

- Manually transcribed data are required
 - Phone transcriptions
 - Word transcriptions

Towards Unsupervised Training

• Can we train an acoustic model with just speech input?

Towards Unsupervised Training

• Can we train an acoustic model with just speech input?

Towards Unsupervised Training

• Can we train an acoustic model with just speech input?

Related Work

• Inspiration

- A Bayesian framework for word segmentation: Exploring the effects of context [Goldwater et al., Cognition 2009]

Related Work

Inspiration

- A Bayesian framework for word segmentation: Exploring the effects of context [Goldwater et al., Cognition 2009]
- Unsupervised acoustic modeling
 - Towards unsupervised training of speaker independent acoustic models [Jansen and Church, INTERSPEECH 2011]
 - Unsupervised learning of acoustic sub-word units [Varadarajan et al., ACL 2008]
 - Keyword spotting of arbitrary words using minimal speech resources [Garcia and Gish, ICASSP 2006]
 - A segment model based approach to speech recognition [Lee et al., ICASSP | 988]

/b/ /ax/ /n/ /ae/ /n/ /ax/

• Unknown phone boundaries

- Unknown phone boundaries
- Unknown phone identities

- Unknown phone boundaries
- Unknown phone identities
- Unknown phone set

- A simple explanation of how a spoken utterance is generated
- Assumptions
 - HMM-based mixture model
 - Speech segments are i.i.d

• A simple explanation of how a spoken utterance is generated

• A simple explanation of how a spoken utterance is generated

• A simple explanation of how a spoken utterance is generated

i+1 1 i 2 i

/b/ /ax/ /n/ /ae/ /n/ /ax/

1

- Main latent variables
 - Phone boundaries (**b**)
 - Cluster labels (*c*)
 - HMM parameters (θ)

• A simple explanation of how a spoken utterance is generated

- Main latent variables
 - Phone boundaries (**b**)
 - Cluster labels (*c*)
 - HMM parameters (θ)
 - # of HMMs

 $b_{1} \dots b_{2} \dots b_{16} \dots b_{28} \dots b_{37} \dots$ $i_{1} \dots i_{1} \dots$

Unknown Number of HMMs

• An unknown set of phone units

Unknown Number of HMMs

- An unknown set of phone units
 - Impose a Dirichlet Process prior to guide inference on the number of HMMs

Unknown Number of HMMs

- An unknown set of phone units
 - Impose a Dirichlet Process prior to guide inference on the number of HMMs
- Is Dirichlet process (DP) a proper prior for this task?
 - Does phone frequency inherit power law?

Phone Frequency -- Monophone

Phone Frequency -- Triphone

Unknown Number of HMMs

- An unknown set of phone units
 - Impose a Dirichlet Process prior to guide inference on the number of HMMs
- Is Dirichlet process (DP) a proper prior for this task?
 - Does phone frequency inherit power law?

Unknown Number of HMMs

- An unknown set of phone units
 - Impose a Dirichlet Process prior to guide inference on the number of HMMs
- Is Dirichlet process (DP) a proper prior for this task?
 - Does phone frequency inherit power law?
 - DP should be a reasonable prior to start with

Generative Story

• A simple explanation of how a spoken utterance is generated

- Phone boundaries (**b**)
- Cluster labels (*c*)
- HMM parameters (θ)
- # of HMMs

Generative Model

Generative Model

Inference Procedure

Iterate n times

- n = 20,000 in our experiments

Inference Procedure

Iterate n times

- n = 20,000 in our experiments

- A Chinese restaurant process representation
 - Each table is a phonetic unit
 - Each speech segment is a customer $s_i = [x_t, x_{t+1}, ..., x_{t+Li}]$

- A Chinese restaurant process representation
 - Each table is a phonetic unit
 - Each speech segment is a customer $s_i = [x_t, x_{t+1}, ..., x_{t+Li}]$

C1 = 1

- A Chinese restaurant process representation
 - Each table is a phonetic unit
 - Each speech segment is a customer $s_i = [x_t, x_{t+1}, ..., x_{t+Li}]$

- A Chinese restaurant process representation
 - Each table is a phonetic unit
 - Each speech segment is a customer $s_i = [x_t, x_{t+1}, ..., x_{t+Li}]$

- A Chinese restaurant process representation
 - Each table is a phonetic unit
 - Each speech segment is a customer $s_i = [x_t, x_{t+1}, ..., x_{t+Li}]$

• For a new segment (s_i), the posterior probability distribution of c_i :

- For a new segment (s_i), the posterior probability distribution of c_i :
 - si sits at an occupied table \longrightarrow si is not a new phone

- For a new segment (s_i), the posterior probability distribution of c_i :
 - si sits at an occupied table \longrightarrow si is not a new phone

- For a new segment (s_i), the posterior probability distribution of c_i :
 - si sits at an occupied table \longrightarrow si is not a new phone

- For a new segment (s_i), the posterior probability distribution of c_i :
 - si sits at an occupied table \longrightarrow si is not a new phone

$$p(c_i = k, 1 \le k \le K | \dots) \propto \frac{n_k}{N - 1 + \alpha} p(s_i | \theta_k)$$
posterior probability DP prior likelihood

- n_k : number of customers at table k
- N : number of costumers seen so far
- lpha : concentration parameter of DP

- For a new segment (s_i), the posterior probability distribution of c_i :
 - si sits at an occupied table \longrightarrow si is not a new phone

$$p(c_i = k, 1 \le k \le K \mid \dots) \propto \frac{n_k}{N - 1 + \alpha} p(s_i \mid \theta_k)$$

- si opens a new table \longrightarrow si is a new phone

- For a new segment (s_i), the posterior probability distribution of c_i :
 - si sits at an occupied table \longrightarrow si is not a new phone

$$p(c_i = k, 1 \le k \le K \mid \dots) \propto \frac{n_k}{N - 1 + \alpha} p(s_i \mid \theta_k)$$

- si opens a new table \longrightarrow si is a new phone

$$p(c_i = K + 1 | \dots) \propto \frac{\alpha}{N - 1 + \alpha} \int_{\theta} p(s_i | \theta) d\theta$$

• For a new segment (s_i), the posterior probability distribution of c_i : - s_i sits at an occupied table \longrightarrow s_i is not a new phone

$$p(c_{i} = k, 1 \le k \le K | \dots) \propto \frac{n_{k}}{N - 1 + \alpha} p(s_{i} | \theta_{k})$$

$$- \text{ si opens a new table } \longrightarrow \text{ si is a new phone}$$

$$p(c_{i} = K + 1 | \dots) \propto \frac{\alpha}{N - 1 + \alpha} \int_{\theta} p(s_{i} | \theta) d\theta$$
Generate a sample for ci

Inference Procedure

- Iterate n times
 - n = 20,000 in our experiments

Inference for HMM Parameters (θ)

- HMM is used to model each phone
 - Three states with only left-to-right and self transitions
 - Always start from the first state
 - A 8-mixture diagonal GMM is used for the emission distributions

Inference for HMM Parameters (θ)

- HMM is used to model each phone
 - Three states with only left-to-right and self transitions
 - Always start from the first state
 - A 8-mixture diagonal GMM is used for the emission distributions
- Latent variables
 - Transition probabilities (a)
 - Mixture weights (**w**)
 - Mean (μ)
 - Variance (σ^2)

Priors and Posteriors for HMM

- Priors
 - Dirichlet distributions for transition probabilities (a) and mixture weights (w)
 - Normal-gamma distributions for Gaussian parameters ($\mu,\sigma^{2})$

Priors and Posteriors for HMM

• Priors

- Dirichlet distributions for transition probabilities (a) and mixture weights (w)
- Normal-gamma distributions for Gaussian parameters ($\mu,\sigma^{2})$
- Posteriors
 - Gather relevant counts from customer segments

Priors and Posteriors for HMM

• Priors

- Dirichlet distributions for transition probabilities (a) and mixture weights (w)
- Normal-gamma distributions for Gaussian parameters ($\mu,\sigma^{2})$

Posteriors

- Gather relevant counts from customer segments
- Update prior distributions
- Sample new values for the latent variables

Inference Procedure

Iterate n times

- n = 20,000 in our experiments

Inference on Phone Boundaries (b)

- Boundary variables
 - Naively, every frame can be a phone boundary

Inference on Phone Boundaries (b)

- Boundary variables
 - Naively, every frame can be a phone boundary
 - Boundary variables take binary values

• Prior

• Prior

- Fixed prior probabilities $p(b_t = 1) = \alpha_b$ and $p(b_t = 0) = 1 - \alpha_b$

- Posterior: examine one boundary variable (*b*_t) at a time
 - Fix the current values of other boundary variables
 - Consider both 0 and 1 for b_t and the respective segmentation outcomes

• Prior

- Posterior: examine one boundary variable (*b*_t) at a time
 - Fix the current values of other boundary variables
 - Consider both 0 and 1 for b_t and the respective segmentation outcomes

• Prior

- Fixed prior probabilities $p(b_t = 1) = \alpha_b$ and $p(b_t = 0) = 1 \alpha_b$
- Posterior: examine one boundary variable (*b*_t) at a time
 - Fix the current values of other boundary variables
 - Consider both 0 and 1 for b_t and the respective segmentation outcomes

• Prior

- Posterior: examine one boundary variable (*b*_t) at a time
 - Fix the current values of other boundary variables
 - Consider both 0 and 1 for b_t and the respective segmentation outcomes

• Prior

- Posterior: examine one boundary variable (*b*_t) at a time
 - Fix the current values of other boundary variables
 - Consider both 0 and 1 for b_t and the respective segmentation outcomes

• Prior

- Posterior: examine one boundary variable (*b*_t) at a time
 - Fix the current values of other boundary variables
 - Consider both 0 and 1 for b_t and the respective segmentation outcomes
Acoustic Landmarks

- Naively, every frame can be a phone boundary
 - In fact, some frames are more likely to be boundaries and some are less likely
 - Compute landmarks [Glass et al. 2003] and only do inference on landmarks
 - A language-independent method

Acoustic Landmarks

- Naively, every frame can be a phone boundary
 - In fact, some frames are more likely to be boundaries and some are less likely
 - Compute landmarks [Glass et al. 2003] and only do inference on landmarks
 - A language-independent method

Acoustic Landmarks

- Naively, every frame can be a phone boundary
 - In fact, some frames are more likely to be boundaries and some are less likely
 - Compute landmarks [Glass et al. 2003] and only do inference on landmarks
 - A language-independent method

• Advantage

- Reduce inference load

Experiments

- Data set
 - TIMIT training and test sets
 - Multi-speaker, clean read speech, 16kHz sampling rate

Experiments

- Data set
 - TIMIT training and test sets
 - Multi-speaker, clean read speech, 16kHz sampling rate
- Qualitative assessment
 - Correlation between induced phone units and English phones
 - Compare results of 300 and 3696 utterances

Experiments

- Data set
 - TIMIT training and test sets
 - Multi-speaker, clean read speech, 16kHz sampling rate
- Qualitative assessment
 - Correlation between induced phone units and English phones
 - Compare results of 300 and 3696 utterances
- Quantitative assessment
 - Spoken term detection
 - Phone segmentation

- 43 phone units discovered from 300 TIMIT utterances
 - Phone units are correlated with English broad phone classes

- 43 phone units discovered from 300 TIMIT utterances
 - Phone units are correlated with English broad phone classes

- 43 phone units discovered from 300 TIMIT utterances
 - Phone units are correlated with English broad phone classes

• 43 phone units discovered from 300 TIMIT utterances

- Phone units are correlated with English broad phone classes

- 43 phone units discovered from 300 TIMIT utterances
 - Phone units are correlated with English broad phone classes

- 123 phone units discovered from 3696 TIMIT utterances
 - A finer correlation between discovered phones and English phones

- 123 phone units discovered from 3696 TIMIT utterances
 - A finer correlation between discovered phones and English phones

- 123 phone units discovered from 3696 TIMIT utterances
 - A finer correlation between discovered phones and English phones

- 123 phone units discovered from 3696 TIMIT utterances
 - A finer correlation between discovered phones and English phones

- 123 phone units discovered from 3696 TIMIT utterances
 - A finer correlation between discovered phones and English phones

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units

x : a single frame of feature vector

 $State_{i,j}$: the j-th state of the i-th HMM

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units

x: a single frame of feature vector

 $State_{i,j}$: the j-th state of the i-th HMM

$$posterior-gram(x) = \left[\frac{p(State_{i,j} \mid x)}{\sum_{i=1}^{K} \sum_{j=1}^{3} p(State_{i,j} \mid x)} \right] \text{ for } 1 \le i \le K \text{ and } 1 \le j \le 3$$

K: the total number of HMMs

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units
 - Apply dynamic time warping to keyword detection [Zhang et al, 2009]

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units
 - Apply dynamic time warping to keyword detection [Zhang et al, 2009]
 - 10 selected keywords

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units
 - Apply dynamic time warping to keyword detection [Zhang et al, 2009]
 - 10 selected keywords

P@N: the average precision of top N hits

P@N	EER
	EER

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units
 - Apply dynamic time warping to keyword detection [Zhang et al, 2009]
 - 10 selected keywords

P@N: the average precision of top N hits

	P@N	EER
English Monophone (Supervised)	74.0	11.8
Thai Monophone Model (Supervised)	56.6	14.9
Our model	63.0	16.9

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units
 - Apply dynamic time warping to keyword detection [Zhang et al, 2009]
 - 10 selected keywords

P@N: the average precision of top N hits

	P@N	EER
English Monophone (Supervised)	74.0	11.8
Thai Monophone Model (Supervised)	56.6	14.9
Our model	63.0	16.9
Zhang 2009 (GMM) (Unsupervised)	52.5	16.4
Zhang 2012 (DBM) (Unsupervised)	51.1	14.7

Phone Segmentation

• TIMIT training set

Phone Segmentation

• TIMIT training set

	Recall	Precision	F-score
Dusan et al. (2006)	75.2	66.8	70.8
Qiao et al. (2008)	77.5	76.3	76.9
Our model	76.2	76.4	76.3
Landmarks	87.0	50.6	64.0

- An unsupervised framework for discovering acoustic model
 - Assume phone frequency adheres to power law
 - Use Dirichlet Process to guide inference on the unknown set of phones

- An unsupervised framework for discovering acoustic model
 - Assume phone frequency adheres to power law
 - Use Dirichlet Process to guide inference on the unknown set of phones
- Experimental results
 - Discovered units are highly correlated with standard phones
 - More accurate spoken term detection performance among top hits (P@N)
 - Segmentation results beat the state-of-the art unsupervised method

- An unsupervised framework for discovering acoustic model
 - Assume phone frequency adheres to power law
 - Use Dirichlet Process to guide inference on the unknown set of phones
- Experimental results
 - Discovered units are highly correlated with standard phones
 - More accurate spoken term detection performance among top hits (P@N)
 - Segmentation results beat the state-of-the art unsupervised method
- Towards unsupervised training methods

- An unsupervised framework for discovering acoustic model
 - Assume phone frequency adheres to power law
 - Use Dirichlet Process to guide inference on the unknown set of phones
- Experimental results
 - Discovered units are highly correlated with standard phones
 - More accurate spoken term detection performance among top hits (P@N)
 - Segmentation results beat the state-of-the art unsupervised method
- Towards unsupervised training methods

- An unsupervised framework for discovering acoustic model
 - Assume phone frequency adheres to power law
 - Use Dirichlet Process to guide inference on the unknown set of phones
- Experimental results
 - Discovered units are highly correlated with standard phones
 - More accurate spoken term detection performance among top hits (P@N)
 - Segmentation results beat the state-of-the art unsupervised method
- Towards unsupervised training methods

Thank you.

Future Work

• Explore context information

- Revisit the assumption that phones are generated independently
- Learn proper HMM structures from data
 - Replace the fixed 3-state and 8 GMM structure
- Apply to more languages
 - Looking into the OGI corpus
 - Babel data