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Abstract

Mobile devices nowadays contain state-of-the-art technologies and are considered
“smart”. However, we and others around us are often interrupted or embarrassed
by these smart devices because the calls and messages received by the devices are not
always presented to us at the right moment with the appropriate modality. Our work
investigates what information a device like this needs to know, and how the device
should make use of such information in order to behave “politely”.

We began by investigating the human definition of “politeness” in the context of
handling voice calls and text messages, and we found the common properties shared
by the scenarios where a device is expected to behave politely. Next, we built a rule-
based decision-making system that infers user interruptability and decides when and
how the device should interrupt the user. We then determined whether the vocabulary
defined in our rule set has captured general users’ definition of a polite device. We
also determined that users were able to understand the system’s vocabulary and
customize the rule set for their own needs. To further accommodate individual users’
needs, we created a debugging interface that allows users to explore the rule set and
modify the rules when the device “misbehaves”. After that, we identified two major
challenges in debugging: user’s willingness to debug, displaying the structure of the
rule set on a small screen real estate. Lastly, we pointed out the aspects that can
be investigated in the future to improve our current work, including: augmenting
the vocabulary when more signals become available, considering users of different use
habits and cultural backgrounds, and designing a better interface that addresses the
challenges in debugging.
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Chapter 1

Introduction

1.1 Motivation

With the popular use and ubiquity of mobile devices, various technologies have been

applied to make these devices “smarter”. However, whenever a mobile device, con-

taining advanced technologies, receives incoming information (voice or text) that

addresses its user, the device typically initiates an interaction by ringing or vibrat-

ing, requesting the user’s full attention. As a result, the user is always interrupted

regardless of their current activity. If the current activity requires that the user be

fully engaged with others, or that all participants pay full attention, the interrup-

tion caused by the mobile device will typically be seen as unfavorable or socially

unacceptable.

Attempts have been made to make mobile devices more polite and less distracting.

For example, Hinckley and Horvitz [12] prototyped a mobile phone that could choose

a notification modality with less attentional demand, based on user’s initial reaction

to the audio/visual alert. For example, if the phone rings and the user is not ready

to answer it, the user can touch the phone to lower the volume of the ringer; if the

user is holding the phone, the phone will vibrate (instead of ringing) when there is

an incoming call. Yet such a device still interrupts its user in the first place when a

phone call is received.

As humans, we can easily find out whether someone is busy or available by ob-
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serving various visual and aural cues. Alternatively, we ask politely for the person’s

attention, or choose another interaction modality in a manner appropriate to the sit-

uation at hand [35]. With the advancements in technology, we would hope for the

same from a “smart” mobile device; that is, it ought to be as polite as a human in

terms of handling interruptions, and being able to intelligently determine whether to

interrupt its user upon receiving an incoming call or message.

1.1.1 Example Scenario

Suppose the user is at the movies, and a voice call is received from the user’s coworker.

In our work, the smart mobile device knows the following facts from its sensors and

access to the user’s electronic calendar:

• Caller is a coworker (based on caller ID and user-preset contact list)

• Incoming call type is voice (as opposed to text message)

• Location is “AMC Lowes Boston Common 19” (the tag on the electronic map

is acquired by GPS coordinates)

• The user is barely moving (detected by accelerometers)

• The current calendar entry reads “Harry Potter @ AMC”

The decision-making system in the device contains a rule that says if the following

conditions hold, the mobile device should tell the caller that the user is busy, and if

the caller still wants to talk to the user, the mobile device should vibrate:

1. Caller is a coworker

2. Incoming call type is voice

3. Caller did not indicate that the call is urgent

4. The current calendar entry contains keywords related to performing arts

5. The user will be irritated by aural disruption
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6. The user will be irritated by visual disruption

7. Others around the user will be irritated by aural disruption

8. Others around the user will be irritated by visual disruption

Based on the facts known to the mobile device, conditions 1 to 3 hold. The

keyword-spotting mechanism in our system recognizes names of movie theaters such

as “AMC” and relates them to performing arts, which becomes a known fact to the

mobile device. For conditions 5 to 8, our system infers whether each of them is true

by using other rules. For example, the system finds a rule stating that condition 5 is

true if the user is in a performance venue and barely moving. The system also finds

other rules stating that conditions 6, 7, and 8 are true if the user is in a performance

venue and barely moving. Since all 8 conditions are true, the mobile device now

tells the caller that the user is busy, without interrupting the user. If the caller still

indicates the intention to talk to the user, the mobile device will vibrate to inform

the user of the incoming call.

1.2 Summary

In order for a mobile device to behave as “politely” as the example illustrated above,

first of all we need to determine when it is important for the phone to be polite; that

is, what is the human definition of “politeness” with regard to handling voice calls and

text messages. Next, we need to determine what the mobile device needs to know,

and how the device could make use of the information acquired or inferred in order to

behave politely. Finally, we need to recognize that it is impossible for a polite mobile

device constructed this way to cover all the situations in life where it is expected to

behave politely; it is also impossible for such a device to cater to individual needs

and preferences. Hence, we need to provide a means to allow the user to add to the

device’s store of knowledge about politeness when the device misbehaves.

To address these issues, we started out by collecting real-life scenarios where users

think it is important that the mobile device behave politely. We then found the
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common properties shared by the 30 unique scenarios where most users would find it

embarrassing or irritating if a device initiates the interruption with the wrong timing

or wrong modality: (1) the user’s aural/visual attention is not to be disrupted (2)

the aural/visual attention of the bystanders (others around the user) is not to be

disrupted (3) the user is not physically available to respond to the call.

Next, we selected the output modalities a mobile device could use in interacting

with the user and the caller. We also investigated what would be helpful for the

device to know in order to behave politely, and came up with a list of signals and

inferred information that were realistic for our work.

Then, we defined the vocabulary for our system based on the scenarios collected

and the common properties they share; at the same time, we conducted a user study

to look into the vocabulary used by general users to describe the scenarios that require

a mobile device to be polite, and the vocabulary of how the users would teach the

mobile device to behave politely. The result shows that the vocabulary defined in our

system is able to cover 42% of the user vocabulary.

With the intention of making the reasoning process transparent to the user, we

chose a rule-based approach for the decision-making system. The system makes in-

ferences of user interruptability based on information available to the device, in order

to determine how the device should respond to an incoming call or message. The

current rule set used by the system contains 250 rules. Based on our user study, 2/3

of the rules could be understood perfectly by at least half of the programmers without

any assistance.

The rule set is meant to be customizable; hence we conducted another user study

to find out whether users would be able to create rules using the vocabulary defined

in our work. With a minimal amount of introduction to the vocabulary, syntax, and

the basics of rule writing, most users were able to create rules with the vocabulary

for their own needs. For rules produced by programmers, at least half of the user

vocabulary is covered by the existing rule set in most cases.

To make the system more accommodating to individual users’ needs and to cope

with scenarios that are not covered by the existing rule set, we created a debugging
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interface for the users to modify existing rules and create new rules. A user study

was then conducted to see whether such an interface was usable. When subjects in

our user study were told to debug purposefully defective rules to correct the behavior

of the device, most of them were able to fix the rules using our debugging interface.

However, we noticed two major issues that would prevent users from debugging –

user’s unawareness of the concept of “debugging”, and the difficulty of keeping track

of the structure of the rule set on a small screen estate.

There is substantive room for improvement before our current system could be-

come a product released to the general public. The findings from the exploratory

studies have helped us point out the issues and questions that shall be addressed in

the future (such as user’s willingness to debug, presenting the structure of the rule

set on a small screen real estate, user demographics, etc.), in hopes of constructing a

polite mobile device.
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Chapter 2

The “Politeness” of a Smart

Mobile Device

Before constructing a polite mobile device, we first need to understand when it is

important to have a device that behaves politely. Then we need to determine what

output modalities a mobile device could use, in order to behave politely under different

circumstances. We also need to investigate what signals and inferred information the

device needs to know to behave politely, and decide on a list of signals and inferred

information realistic for our work.

2.1 User Study: Calendar Data Collection

In order to find out in what situations users would want a device to behave politely, we

recruited 6 subjects (including 4 MIT students) for a data collection study. We asked

the subjects to record their daily activities on Google Calendar for 7 consecutive days,

in the form of 30-minute log entries without blanks. Each entry in the log contains

the activity, location, and participants. Figure 2-1 shows a portion of the calendar

data of one subject. Notice that some entries contain acronyms or the initials of

participants. Some subjects would put “private” in their entries to indicate activities

they were not willing to disclose.

The subjects were interviewed individually to review each log entry, so that they
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could point out what device behavior would be considered polite or otherwise in

different scenarios. Subjects were asked to describe the location of each activity,

the physical movement involved, the relation between self and each participant when

applicable. (Subjects were not asked to reveal the identity of event participants or

the content of the private activities; we were only interested in how such information

can be represented with the available information from a mobile device’s point of

view.) While reviewing each entry, the subjects were asked, “Suppose you have a

smart assistant who knows everything about you and handles your phone calls and

messages. If you have an incoming call or text message at this moment, what should

your assistant do?”. Then the subjects were asked to explain what the assistant

should do and why other possible behaviors would be considered impolite. (For

example, “I don’t want to disrupt the meeting, so the assistant should just take the

message for me instead of letting my phone go off. I can get back to them after the

meeting.”)

Based on the calendar data collection effort, there were about 30 unique scenarios

where it is important for a device to behave politely. The scenarios can roughly be

categorized as follows:

1. late at night

2. meeting, concert, movie, class, group work

3. working, library, in court, visiting police department, visiting embassy

4. shower, studying, “me time”

5. napping, sleeping, hangover

6. at home with significant other, significant other sleeping

7. lunch/dinner with significant other or with friends, talking to others

8. long bus/train trip

9. short bus/subway ride
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10. biking

11. rehearsal

12. clubbing, party, bar

Given the diversity of these scenarios, we decided to go for a general approach

to answer the question: what are the factors that make it important to have a polite

device? With the explanations from the subjects, we were able to extract the common

properties shared by the scenarios mentioned above, which are:

• User’s aural attention

• User’s visual attention

• Others’ aural attention

• Others’ visual attention

• User’s perceived privacy

• User’s physical availability (e.g. User’s hands are too busy to reach for the

device.)

• Urgency of incoming information

2.2 What Can a Mobile Device Do?

After understanding the different circumstances where a device is expected to behave

politely, we would like to know what output modalities could be used to notify the

user under these circumstances. The following is a list of output modalities that can

be chosen to notify or present the information to the user:

1. Ring

2. Vibrate
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3. Silent

4. Flash

5. Beep

6. Beep2: beep differently to indicate “I need your attention when you get a

chance”

7. Reveal-busy: tell the caller that the user seems busy, and let the caller decide

whether the phone call should go through

8. Reveal-location: tell the caller where the user seems to be, and let the caller

decide whether the phone call should go through

9. Read out loud the content of a text message

10. A combination of the above: for example – reveal-location, if the caller wants

the phone call to go through, vibrate and ring

The first 5 modalities already exist in current smart phone models. Beep2 is

a more gentle way to request the user’s attention. Reveal-busy and reveal-location

allow the device to interact with the caller prior to interrupting the user. Reading out

loud the content of a text message is helpful when the user is physically unavailable

to reach for the device (for example, doing dishes in the kitchen). The option of

combining multiple modalities allows the device to notify the user with more levels

of intensities than a typical smart phone.

2.3 What Does a Mobile Device Need to Know?

With the fast advancement of technology, we can imagine a future mobile device

embedded with all kinds of sensors, and our environment being instrumented with

devices that emit or collect various signals. Without limiting ourselves to the mobile

technologies available at present, we would like to investigate what would be good for

a device to know in order to behave politely.
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To simplify our discussion, we define 3 terms:

• Signals: measurements or data that can be acquired directly from a mobile

device, using its built-in sensors or electronic calendar entries

• Inferred information: what can be inferred from signals

• Information: a general term to refer to signals and/or inferred information

Information that will be helpful for a mobile device to become polite may be

concerned with a variety of elements in the world. For example:

1. Environment

2. Device

3. Presence

4. Physical information about the user

5. Motion

6. Activity

7. Time

8. User-perceived control (over the situation/device)

9. User preference

10. Nature of interruption

In Tables 2.1 to 2.10, we list the signals and inferred information related to each

element, along with how the information can be obtained, the tools/technologies

required, and an example that signifies the importance of such information. In the

tables, the word phone is used to refer to ‘built-in sensor(s) in a smart mobile device”.

Take the first 6 tables for example: In Table 2.1, if the mobile device knows the

location of the user via its GPS/WLAN positioning mechanisms, it will know not
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environment
signal how to obtain tool required example (importance of the

information)

location GPS/WLAN
positioning

phone movie theater vs. home

humidity humidity phone taking shower
temperature temperature phone taking shower
ambient acousti-
cal information

echo, reverbera-
tion

phone, micro-
phone in room

living room vs. stadium

illumination illumination light sensor in
room, phone
(not in pocket)

dark room implies user
sleeping

building type location knowledge base residence vs. office
room type location knowledge base seminar room, restroom, of-

fice
particular loca-
tion in a room

location pressure/light
sensor in room

cooking in the kitchen

vehicle type location, vehicle
ID

knowledge
base, sensor in
vehicle

car, bus, train

Table 2.1: Signals and inferred information related to “environment” that would be
good for a mobile device to know in order to behave politely.

to make a sound when the location is a movie theater. In Table 2.2, if the device

knows it is being flipped over, it is likely that the user does not want to be disturbed.

In Table 2.3, if the device is able to detect the number of speakers, it will know

not to make a sound when there is only one person speaking. In Table 2.4, if the

device recognizes the hand gesture made by the user, then it knows not to interrupt

the user when the user is waving his hand. In Table 2.5, if the device detects that

the user suddenly accelerates, it is likely that the user is in a rush and cannot take

any incoming calls. In Table 2.6, if the device has access to the user’s calendar and

understands the content of the entries, it will know not to interrupt the user when

the current calendar entry says “mid-term exam”.

In our work, we do not intend to instrument the environment with sensors or any

devices; nor do we intend to attach objects to the user’s body or to build a knowledge

base. With this in mind, the list of signals considered available to the mobile device

in our work is only a subset of those listed in Tables 2.1 to 2.10. To be more specific,

26



device
signal how to obtain tool required example (importance of the

information)

connection to/of
other devices

device connec-
tion

phone, signal-
sniffing instru-
ment in room

laptop-projector connection
implies a presentation

motion of device speed, accelera-
tion

phone phone being flipped over
(gesture for “do not dis-
turb”), user in a vehicle

Table 2.2: Signals and inferred information related to “device” that would be good
for a mobile device to know in order to behave politely.

presence
signal how to obtain tool required example (importance of

the information)

number of
speakers

voice(s) of
speaker(s)

phone (with
speaker
identifica-
tion/diarization)

before vs. during a lecture

number of oth-
ers present

number of
other personal
devices

phone (with
bluetooth),
pressure sensor
on chair

group vs. individual meet-
ing

speaker iden-
tity

voice or face
image of
speaker

phone (with
speaker identifi-
cation), camera
in room (with
face identifica-
tion)

supervisor vs. family
member

Table 2.3: Signals and inferred information related to “presence” that would be good
for a mobile device to know in order to behave politely.
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physical information about the user
signal how to obtain tool required example (importance of

the information)

body tempera-
ture

body tempera-
ture

phone working out vs. asleep

blood pressure blood pressure phone working out vs. asleep
heart rate heart rate phone working out vs. asleep
gesture, gaze, eye
contact avoidance

line of sight, ges-
ture

camera in room
(gesture un-
derstanding
required), phone
(not in pocket)

“give me 5 minutes”

Table 2.4: Signals and inferred information related to “physical information about
the user” that would be good for a mobile device to know in order to behave politely.

motion
signal how to obtain tool required example (importance of the

information)

user motion
(walking, run-
ning, sitting,
etc.)

acceleration phone, motion
sensor in room

running implies being in a
rush

current motion
of others

acceleration motion sensor in
room

audience sitting still vs.
standing in a concert

duration of no
active user mo-
tion

acceleration,
timestamp

phone, motion
sensor in room

lying down implies sleeping

transition be-
tween user
motions

acceleration phone, motion
sensor in room

standing up after lecture is
over

Table 2.5: Signals and inferred information related to “motion” that would be good
for a mobile device to know in order to behave politely.
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activity
signal how to obtain tool required example (importance of

the information)

user interaction
with software
application

which application
is on top; what
else are open

known informa-
tion

Eclipse vs. Solitaire

current task that
the user is attend-
ing to

planned events on
calendar

text under-
standing

movie, exam

physical objects
currently being
used/touched

physical objects
currently being
used/touched

sensor on ob-
ject

steering wheel, machinery,
flask, spatula

Table 2.6: Signals and inferred information related to “activity” that would be good
for a mobile device to know in order to behave politely.

time
signal how to obtain tool required example (importance

of the information)

day of week, time
of day

day of week, time
of day

known informa-
tion

3:00am implies sleep-
ing

time until the
next (planned)
event takes place

planned events on
calendar

text understand-
ing

20 minutes before
exam

Table 2.7: Signals and inferred information related to “time” that would be good for
a mobile device to know in order to behave politely.

user-perceived control (over the situation/device)
signal how to obtain tool required example (importance of the

information)

door openness door openness sensor in room closed door implies “do not
disturb”

window opaque-
ness

window opaque-
ness

sensor in room closed blinds implies “pri-
vacy please”

crowdedness
(density)

number of peo-
ple/area

sensor in room,
knowledge base

packed bus vs. alcove

psychological
control: free-
dom of deciding
with whom to
share personal
information

identity of by-
stander

inference from
calendar entry,
camera in room
(with face iden-
tification)

significant other vs. un-
known bystanders

Table 2.8: Signals and inferred information related to “user-perceived control” that
would be good for a mobile device to know in order to behave politely.
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user preference
signal how to obtain tool required example (im-

portance of the
information)

a fixed period of time
(specified by the user)
where no interruption
is allowed

time specified by
the user

known informa-
tion

during exam

Table 2.9: Signals and inferred information related to “user preference” that would
be good for a mobile device to know in order to behave politely.

nature of interruption
signal how to obtain tool required example (importance of the

information)

nature of the in-
coming informa-
tion

email, phone
call, IM, text
message

known informa-
tion

text messages are perceived
as more private than normal
calls or emails; calls may be
more urgent than IM

sender sender name
and/or email
address, caller
ID

known informa-
tion

(self-explanatory)

number of recip-
ients

number of recip-
ients

known informa-
tion

cc’ed, unclosed-recipients

nature of sender
and recipients

nature of sender
and recipients

knowledge base supervisor vs. friend

case of email uppercase / low-
ercase

known informa-
tion

URGENT!!!

content of the
header and body

content of the
header and body

inference (nat-
ural language
understanding
required)

family emergency vs. spam

Table 2.10: Signals and inferred information related to “nature of interruption” that
would be good for a mobile device to know in order to behave politely.
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the following signals were used in our system:

1. Environment: location (GPS, IP address), ambient noise, vehicle type

2. Device: moving pattern of the device (e.g. being flipped over)

3. Presence: number of companions, other device detected

4. Motion: moving speed and moving pattern of the user (e.g. running)

5. Activity: user’s calendar entries

6. Time: day of week, time of day

7. Nature of interruption: nature of incoming information (voice call vs. text

message), sender, sender’s intention

In addition, our system makes inferences about the following information using

the signals available:

• Location (calendar)

• Bystanders’ ears/eyes busy

• Bystanders irritated by aural/visual disruption

• User’s ears/eyes busy

• User irritated by aural/visual disruption

• User’s hands busy

• User’s perceived control over privacy
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Figure 2-1: A portion of the calendar data from a subject32



Chapter 3

Steps Towards Constructing a

Polite Mobile Device

After investigating (1) when it is important for a mobile device to be polite, (2)

what the device can do to respond to incoming calls and messages, and (3) what

information it needs to know in order to behave politely, we would like to focus on

the next question: How does a mobile device make use the information available to

determine when and how to interrupt the user?

3.1 The Decision-making System

To make decisions about when and how to interrupt the user, we used a rule-based

approach [8] to keep the reasoning process transparent to the user. We defined the

vocabulary for the rules based on available signals and the result of a data collection

study (described in 2.1), and created rules that help the device make use of the

information available to determine how to behave.

A rule-based decision-making system requires expert knowledge to build the rules.

In our case, users of a mobile device know when they do not want to be interrupted;

they also know in what situations they would feel embarrassed or irritated if a device

suddenly rings, speaks, vibrates, or flashes. The users are able to describe the reasons

why it is appropriate (or otherwise) for a device to go off at a given moment (further
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described in Section 3.1.3). In other words, every user of a mobile device qualifies

as an “expert” in this particular domain. The rules written for the decision-making

system will not describe the entire universe; instead, these rules are to describe how

a device should behave, simply from the scope of the device itself (based on the

information collected, measured, or inferred).

3.1.1 Rule Creation

As humans, when we make a decision on whether to interrupt someone, we tend

to first consider the scenario the person is in (for example, having a meeting with

a supervisor, making an important client presentation, etc.), and then to consider

how to interact with the person in order to minimize the cost of interruption. We

could choose to create rules to describe each scenario, and map the scenario to re-

sponses that are considered polite; however, it is impossible to enumerate all possible

scenarios in real life. There are several fundamental properties that many scenar-

ios share (as described in 2.1), and hence a device only needs to learn about these

fundamental properties to determine how to behave. To be more concrete, if a user

does not want his device to ring when he is meeting with his supervisor, or when

he is making an important presentation in front of clients, then his device should

have a rule that says: whenever it is during regular work hours, the user

is surrounded by at least one person in a quiet environment, and both the

user and others around him will be irritated by aural disruption, then remain

silent. Note that “time of day is during regular work hours”, “there is at least one

companion”, “the environment is quiet”, “user will be irritated by aural disruption”,

and “others around the user will be irritated by aural disruption” are the properties

shared by these scenarios, and that the rule above given to the device also applies to

the scenario where the user is sitting in a lecture. Without having to predict whether

the user is actively or passively participating in a meeting or whom the user is with,

the device only needs to know the facts stated in the rule in order to behave politely.

Using this idea, we came up with around 250 rules that cover the 30 unique

scenarios from the calendar data collection effort (Section 2.1). The end of Chapter
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2 has described how we defined the vocabulary used in the rules, listed in Tables 3.1

to 3.4.

what the device can do
Attribute Operators Values

response =, !=

is, is not

flash

ring

beep

beep2

vibrate

reveal-busy

reveal-location

silent

read message content out loud

any combination of the above

Table 3.1: Vocabulary for what the device can do
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what signals the mobile device knows
Attribute Operators Values

ambient noise >, <, =

greater than,

less than,

equals

any number (dB)

call type =

is

voice

sms

caller =, !=

is, is not

important caller

expected caller

boss

coworker

rejected caller

any user-defined categories

any name in the contact list

current calendar

entry

=

is

‘‘any text’’

caller

class

meal

meeting

party

performing arts

significant other

spots

friend

any combination of the above

location

(GPS)

=

is

tagged location name

moving pattern =, !=

is, is not

phone immobile face down

phone immobile face up

user running

user sitting

user walking

Table 3.2: Vocabulary for what signals the mobile device knows
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what signals the mobile device knows (cont.)
Attribute Operators Values

moving speed mph >, <, =

greater than,

less than,

equals

any non-negative number (mph)

number of

companions

>, <, =

greater than,

less than,

equals

any non-negative integer

other device

detected

=

is

bluetooth headset

landline phone

other cell phone

tv

projector

physical location

(IP address, WLAN

location)

=

is

classroom

embassy

gym

library

public vehicle

home

restaurant

time of day =

is

between(start time, end time)

urgency =, !=

is, is not

urgent

work-related

Table 3.3: Vocabulary for what signals the mobile device knows, continued
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what the device can infer
Attribute Operators Values

bystanders ears

busy

=

is

true

false

bystanders eyes

busy

=

is

true

false

bystanders

irritated by aural

disruption

=

is

true

false

bystanders

irritated by

visual disruption

=

is

true

false

hands busy =

is

true

false

location =

is

performance venue

public location

quiet public location

private location

tagged location name

my ears busy =

is

true

false

my eyes busy =

is

true

false

me irritated by

aural disruption

=

is

true

false

me irritated by

visual disruption

=

is

true

false

perceived control

over privacy

=

is

high

low

medium

Table 3.4: Vocabulary for what information the mobile device can infer
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3.1.2 Example Scenario

To demonstrate how our rule-based system works, we use the same example scenario

as in Chapter 1: the user is at the movies, and a voice call is received from the user’s

coworker.

Scenario: user is at the movies, call is received from user’s coworker

When the user is at the movies and there is an incoming call, it is somewhat

impolite to leave the seat to take the call. However, if the call is from someone

important and the message is urgent, the user still wants to be notified immediately

and to have the chance to take the call. When the incoming call type is in the form

of a voice call, we do not require the mobile device to predict its urgency; instead, the

device would reveal the user’s availability state and leave the decision to the caller.

If the caller decides to interrupt the user, it would be polite for the device to notify

the user with a less intrusive modality (for example, vibration).

We are going to show a set of rules that a device uses to determine how to react

in such scenario. Suppose the device knows the following facts:

• Caller is a coworker (based on caller ID and user-preset contact list)

• Incoming call type is voice

• Location is “AMC Loews Boston Common 19” (the tag on the electronic map

is acquired by GPS coordinates)

• Moving pattern detected is user sitting

• Moving speed is 0.01 mph

• The current calendar entry reads “Harry Potter @ AMC”

In the rule set, each rule starts with the conclusion (indicated by the => symbol),

followed by one or more conditions. All the conditions are connected with AND by

default. The number next to the conclusion indicates how strongly the system should

believe in such conclusion.
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The decision-making system first searches the rule set for all the rules that contain

the attribute response in the conclusion (i.e. rules that suggest how the device

should respond). After examining whether each condition in the rules holds, and how

strongly each conclusion can be believed, the system selects the conclusion with the

highest strength of belief and makes the device behave as described in the conclusion.

In this example, we start by selecting one of these rules to demonstrate the rea-

soning process of the decision-making system:

=> response = (reveal-busy, vibrate) 1.0

call_type = voice

urgency != urgent

caller = coworker

current_calendar_entry = performing_arts

perceived_control_over_privacy = low

me_irritated_by_aural_disruption = true

me_irritated_by_visual_disruption = true

bystanders_irritated_by_aural_disruption = true

bystanders_irritated_by_visual_disruption = true

The first rule says that if there is a non-urgent voice call from a coworker, the

user’s current calendar entry contains words associated with performing arts, the

user seems to have low control over his privacy, the user will be irritated by aural and

visual disruptions, and others around the user will be irritated by aural and visual

disruptions, then the device should believe with full (1.0) confidence that it is right

to respond to the voice call by telling the caller that the user is busy; if the caller still

wants to talk to the user, then the mobile device should vibrate.

We can build a tree structure, with the conclusion being the root node, and the

conditions being the leaf nodes (as in Figure 3-1).

Step 1 – Based on the information it already has, the phone knows that the 1st

and 3rd conditions hold. The caller did not indicate that the call was urgent, so the

2nd condition holds. The 4th condition holds because the keyword spotting mechanism
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Figure 3-1: Tree structure, illustrating the first rule.

in our system recognizes the name of the movie theater (AMC) and associates it with

the concept of performing arts. Now the system needs to find out whether the rest of

the conditions hold by exploring rules related to these conditions. (See Figure 3-2.)

Figure 3-2: The first 4 conditions of the first rule hold, and hence the first 4 leaf
nodes are marked with checks.

Step 2 – The system finds a rule:

=> perceived_control_over_privacy = low 0.8

moving_pattern = user_sitting

location = performance_venue

which says that if the moving pattern indicates that the user is sitting, and the

user’s location is a performance venue, then the system should believe with 0.8 (80%)

strength that the user has low control over his privacy. The first condition holds

based on the information known to the device. Now the system needs to find out

whether the second condition holds by exploring the rules set. (See Figure 3-3.)
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Figure 3-3: The first condition holds, and hence the first leaf node is marked with a
check.

Step 3 – The system finds a rule:

=> location = performance_venue 0.9

current_calendar_entry = performing_arts

which says that if the user’s current calendar entry contains words associated with

performing arts, then the system should believe with 0.9 strength that the user’s

location is a performance venue. The condition in this rule holds, and thus the rule

is fired with 0.9 strength. This means that the second condition of the rule in Step 2

holds, with a strength of 0.9. (See Figure 3-4.)

Figure 3-4: The rule in Step 3 is fired with strength of 0.9, which is the strength of
the condition of the rule in Step 2.

Step 4 – Both conditions of the rule in Step 2 hold; hence the rule is fired with a

strength of min(1.0, 0.9) ∗ 0.8 = 0.72. This means that the 5th condition of the rule

in Step 1 holds, with a strength of 0.72. (See Figure 3-5.)
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Figure 3-5: The rule in Step 2 is fired with strength of 0.72, which is the strength of
the 5th condition of the first rule.

Step 5 – To figure out whether the 6th condition of the rule in Step 1 holds, the

system finds a rule:

=> me_irritated_by_aural_disruption = true 0.8

perceived_control_over_privacy = low

location = performance_venue

which says that if the user seems to have low control over his privacy, and the user’s

location is a performance venue, then the system should believe with 0.8 strength that

the user will be irritated by aural disruption. The first condition holds due to Step 4,

and the second condition holds due to Step 3. Hence the rule is fired with a strength
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of min(0.72, 0.9)∗0.8 = 0.576. And the 6th condition of the rule in Step 1 holds, with

a strength of 0.576. (See Figure 3-6.)

Figure 3-6: The rule in Step 5 is fired with strength of 0.576, which is the strength
of the 6th condition of the first rule.

Step 6 – To figure out whether the 7th condition of the rule in Step 1 holds, the

system finds a rule:

=> me_irritated_by_visual_disruption = true 0.8

perceived_control_over_privacy = low

location = performance_venue

which says that if the user seems to have low control over his privacy, and the user’s

location is a performance venue, then the system should believe with 0.8 strength that

the user will be irritated by visual disruption. This rule shares the same conditions
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as the previous rule, and hence the rule is fired, and the 7th condition of the rule in

Step 1 holds, with a strength of 0.576. (See Figure 3-7.)

Figure 3-7: The rule in Step 6 is fired with strength of 0.576, which is the strength
of the 7th condition of the first rule.
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Step 7 – To figure out whether the 8th condition of the rule in Step 1 holds, the

system finds a rule:

=> bystanders_irritated_by_aural_disruption = true 0.7

perceived_control_over_privacy = low

location = performance_venue

which says that if the user seems to have low control over his privacy, and the user’s

location is a performance venue, then the system should believe with 0.7 strength that

the bystanders (others around the user) will be irritated by aural disruption. This

rule shares the same conditions as the previous rule, and hence the rule is fired with

a strength of min(0.72, 0.9) ∗ 0.7 = 0.504. And the 8th condition of the rule in Step

1 holds, with a strength of 0.504. (See Figure 3-8.)

Figure 3-8: The rule in Step 7 is fired with strength of 0.504, which is the strength
of the 8th condition of the first rule.
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Step 8 – To figure out whether the 9th condition of the rule in Step 1 holds, the

system finds a rule:

=> bystanders_irritated_by_visual_disruption = true 0.7

perceived_control_over_privacy = low

location = performance_venue

which says that if the user seems to have low control over his privacy, and the user’s

location is a performance venue, then the system should believe with 0.7 strength that

the bystanders (others around the user) will be irritated by visual disruption. This

rule shares the same conditions as the previous rule, and hence the rule is fired, and

the 9th condition of the rule in Step 1 holds, with a strength of 0.504. (See Figure

3-9.)

Figure 3-9: The rule in Step 8 is fired with strength of 0.504, which is the strength
of the 9th condition of the first rule.
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Step 9 – Looking at the first rule again:

=> response = (reveal-busy, vibrate) 1.0

call_type = voice

urgency != urgent

caller = coworker

current_calendar_entry = performing_arts

perceived_control_over_privacy = low

me_irritated_by_aural_disruption = true

me_irritated_by_visual_disruption = true

bystanders_irritated_by_aural_disruption = true

bystanders_irritated_by_visual_disruption = true

we now have the strength of belief of each condition in this rule, and the minimum

is 0.504. Hence, the rule will fire with a strength of 0.504 ∗ 1.0 = 0.504. This is the

rule that tells the device to respond with reveal-busy and vibrate. The decision-

making system will explore each rule that fires (i.e. all of its conditions hold) and

pick a conclusion that has the highest strength of belief as its final decision. (See

Figure 3-10.)

Figure 3-10: The weakest strength of belief in the conditions is 0.504; the rule is fired
with a strength of 0.504 ∗ 1.0 = 0.504.

The concept of backward chaining and attaching a strength of belief to each piece

of evidence is not new [8], and therefore it is not described in detail in this thesis.
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The strengths of belief of the conclusion accumulate, if the conclusions are the same.

In our system, this principle applies to all rules except the ones with the attribute

response. To be more specific, if there are multiple rules that suggest the device

to perform the same action (for example, multiple rules fire with the conclusion =>

response = (reveal-busy, vibrate)), the strengths of these rules do not accumu-

late; the system simply picks the conclusion with the highest strength as its final

recommendation to the device. One may argue that the principle should apply re-

gardless of the attribute. However, in our rule set, rules with the same conclusion

on response may share conditions: if the conditions in a rule are a subset of the

conditions in another rule, the rule with fewer conditions is assigned with a lower

strength of belief; the rule with more conditions is assigned with a higher strength of

belief, because it requires more pieces of evidence to make all of its conditions hold.

It would be unfair to accumulate the strengths of these particular rules because their

conclusions in fact come from the same sources.

3.1.3 User Study: Vocabulary Collection

With the creation of rules, we came up with vocabulary that implicitly defined po-

liteness for our system, with regard to handling voice calls and text messages. At the

same time, we were curious about the vocabulary that is used by general users, and

how much of the user vocabulary our vocabulary has captured.

Seven native speakers of English and eight non-native speakers were recruited for

this study. The subjects were first given six scenarios (in class, at the movie, in

a meeting, on a long bus trip, biking, and sleeping) where their phone would ring,

and then they were asked to identify whether the phone was behaving (i.e. whether

having the phone ringing was appropriate) in each scenario. Figure 3-11 shows the

“votes” each scenario received for being identified as “phone misbehaving”; the X-axis

indicates the number of subjects, and the Y-axis indicates the names of the scenarios.
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Figure 3-11: Number of subjects considering the phone misbehaving in each scenario.

50



Then, the subjects were asked why they would consider the phone misbehaving in

the scenario(s) identified, and how they would teach the phone not to do this again

if they were able to carry on a conversation with the phone. The verbal responses

were transcribed to find out what vocabulary was used to describe the scenarios, and

what vocabulary was used to instruct the phone what information to utilize.

Figures 3-12 to 3-17 show the vocabulary used by the subjects when describing why

their phone would be considered misbehaving in each scenario. The transcriptions

were processed by removing stop words and stemming each word. If a transitive

verb is followed by different objects of different meanings (for example, “distract

me”, “distract the teacher”), the verb would be listed multiple times on the Y-axis

based on the objects. The X-axis indicates the number of subjects who used the

word/phrase; the color green represents subjects who are native speakers of English,

and the color orange represents non-native speakers.

To compare the existing vocabulary in our system with the subjects’ vocabulary,

words in the existing vocabulary (attributes and values) were stemmed and individ-

ually compared with each word listed on the Y-axis. As long as the same word is

found, or if the words are synonyms of each other (using WordNet [27]), we consider

the word in our vocabulary has covered the subjects’ intent. Words/phrases in the

figures that are highlighted in yellow are the ones covered by existing vocabulary.

The average vocabulary coverage for all six scenarios is 34%.
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Figure 3-12: Vocabulary used by the subjects to describe why the phone misbehaved
in the “class” scenario.
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Figure 3-13: Vocabulary used by the subjects to describe why the phone misbehaved
in the “movie” scenario.
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Figure 3-14: Vocabulary used by the subjects to describe why the phone misbehaved
in the “meeting” scenario.
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Figure 3-15: Vocabulary used by the subjects to describe why the phone misbehaved
in the “long bus trip” scenario.

Figure 3-16: Vocabulary used by the subjects to describe why the phone misbehaved
in the “biking” scenario.
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Figure 3-17: Vocabulary used by the subjects to describe why the phone misbehaved
in the “sleeping” scenario.
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Figures 3-18 to 3-22 show the vocabulary used by the subjects when describing how

they would teach their phone to behave for each scenario. Using the same approach

to compare the existing vocabulary in our system with the subjects’ vocabulary, the

average vocabulary coverage for all six scenarios is 42%.
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Figure 3-18: Vocabulary used by the subjects to describe how they would teach the
phone to behave in the “class” scenario.

58



Figure 3-19: Vocabulary used by the subjects to describe how they would teach the
phone to behave in the “movie” scenario.
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Figure 3-20: Vocabulary used by the subjects to describe how they would teach the
phone to behave in the “meeting” scenario.
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Figure 3-21: Vocabulary used by the subjects to describe how they would teach the
phone to behave in the “long bus trip” scenario.
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Figure 3-22: Vocabulary used by the subjects to describe how they would teach the
phone to behave in the “sleeping” scenario.
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If the vocabulary coverage were 100%, we could say our vocabulary has fully cap-

tured what general users use to define politeness for a mobile device. If the coverage

were 0%, we could say we have a very different set of vocabulary than the general users

when it comes to defining politeness for a device. With the current coverage, we see

that this exploratory study shows us there are consequences of interruptions we did

not think of (for example, the user gets stares from others if the mobile device rings

in class), and there are technologies we might be able to utilize in the future when

they become available (for example, the device should listen for “academic words” to

find out that the user is in class).

3.1.4 User Study: Rule Understanding Study

The reasoning process of our system is transparent to the general users only when

they are able to understand the rule set. To find out whether general users are able to

understand the rules used in the system, we chose 25 rules from the existing rule set

and asked the subjects to translate each rule to plain English, in the form of free text.

The study was designed as a 5-day online game, and each day the subjects would

be presented with 5 different rules. The subjects were recruited randomly online.

Some subjects chose to participate in the game for multiple days, while others only

participated in one of the 5-day game. Subjects were asked to identify themselves as

programmers or non-programmers, because we assume that programmers would be

more comfortable interpreting expressions written in the form of “attribute, operator,

value”.

Figure 3-23 is the breakdown of the subject pool: There were 32 unique partici-

pants in total, with 10 programmers and 2 non-programmers as returning participants.

Every day there were more programmers than non-programmers, and hence for the

analysis of the result, we focus on the responses from programmers.

The following text would be presented to the subject at the beginning of the game

each day:

“You are hired by a high-level executive, who has a set of rules (written in an

unusual form of language) on how his incoming phone (voice) call and text messages
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should be handled.”

“Translate the rules into plain English, so that the assistant who handles the phone

calls and messages can easily learn from you what the executive wants.”

Then the subject would see 5 rules to be translated. The “unusual form of lan-

guage” is in fact the syntax of the rule, in the form of “attribute, operator, value”.

An example rule is shown below. Notice that the syntax here is different from the

syntax shown in section 3.1.2. The IF and THEN are now mentioned explicitly, instead

of being represented by a symbol (or no symbol). The conditions are mentioned prior

to mentioning the conclusion. The purpose of changing the syntax in this study is

to conform to the “If . . . then . . . ” sentence structure in English, and to reduce the

subjects’ cognitive burden of figuring out the syntax – we were interested in whether

the subjects could understand the meaning of a rule, which should be independent of

the syntax.

IF

call_type = text_message

caller = important_caller

others_willingness_redirect_visual = low

my_willingness_redirect_visual = low

THEN

response = vibrate, certainty = 0.8

The rule above means “If I receive a text message from someone important, others

are not willing to redirect their visual attention, and I am not willing to redirect my

visual attention, then the phone should be 80% certain that it should vibrate.”

When comparing a subject’s interpretation of the rule against the meaning of the

rule, we would like to know much overlap in vocabulary there is between the two.

Suppose a subject who did not completely understand the rule came up with such an

interpretation: “If it’s a text from someone important, and there seem to be a lot of

other people around, then vibrate my phone”, when we look for vocabulary matches,

we look at the verbs, adjectives, adverbs (indicating strength of certainty) in their
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stemmed form; we also look at their synonyms with the help of WordNet [27], as well

as phrases that convey the same meaning as these words. The stopwords are ignored,

but words indicating negation are kept in the interpretation as they are crucial to

correctly interpreting the meaning of the rule.

The nouns are manually compared with different levels of strictness. Due to the

design of the study, the noun (noun phrase) indicating the receiver of a call in the “if”

clause could be “the executive”, “I”, “your boss”, “you”, “the phone”, or “it”; and the

noun (noun phrase) indicating the agent of responding the call in the “then” clause

could be “the assistant”, “you” (sometimes omitted when the sentence is imperative),

“the phone”, or “I”. These terms are generally not considered in the matching process

because they were only used to indicate the receiver/agent roles. Meanwhile, nouns

(noun phrases) indicating the caller, the user, and the bystanders are considered in

the matches, because they are crucial to understanding the conditions of how a call

should be handled.
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Figure 3-23: Number of participants of the rule understanding study

Figure 3-24: Matching subject’s interpretation against the meaning of the rule. Text
highlighted in blue indicates a match; text highlighted in red indicates a mismatch.
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As demonstrated in Figure 3-24, text highlighted in blue indicates a match; text

highlighted in red indicates a mismatch. To be more specific, terms that should be

matched in the meaning are:

1. text message

2. someone important

3. others

4. not willing (tied to “others”)

5. redirect (tied to “others”)

6. visual attention (tied to “others”)

7. I

8. not willing (tied to “I”)

9. redirect (tied to “I”)

10. visual attention (tied to “I”)

11. 80% certain

12. vibrate

The subject’s interpretation of the rule includes 4 (out of 12) matches; in other

words, there is a 33% match. Hence, we can say that the subject has 33% under-

standing of the rule. Yet, we can be harsh in the evaluation and look at whether or

not the subject’s interpretation is a perfect match of the meaning of the rule, because

in real life, if the assistant (or the device) misunderstands the rule, it is very likely

that a wrong decision will be make when a call is received.

By looking at the subjects’ interpretations in a binary sense (i.e. whether or not a

subject understood a rule perfectly), we have a visual representation, shown in Figure

3-25, of the percentage of subjects having perfect understanding of each rule. Data
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points in red are collected from non-programmers; data points in blue are collected

from programmers. The X-axis contains the label for the rules: for example, 2-1

means the first rule a subject would see on day 2 of the study. Because each day

the number of participants were different, the Y-axis is labeled with the percentage

of subjects (programmers and non-programmers are accounted for separately). Since

programmers made up the majority of the subject pool, the data points are sorted

based on the percentage of programmers that understood a rule perfectly. From the

figure, we can see that 2/3 of the rules were understood perfectly by at least 50% of

the programmers.

In the study, subjects were asked to type “I don’t understand” if they could not

understand a rule. Some subjects would insert question marks in their interpretations

to indicate that they did not understand part of a rule. To find out how many subjects

were unable to understand a rule at all, we have a visual representation, shown in

Figure 3-26, of the percentage of subjects unable to understand a rule at all. The

X- and Y-axes are labeled the same way as the previous figure. For the ease of

visualization, the data points are sorted based on the percentage of non-programmers

that were unable to understand a rule at all. From the figure, we can see that in the

worst case, only 25% of the programmers were not able to understand a rule.

Based on the subjects’ interpretation, we have found that there are several terms

in the vocabulary that were considered confusing or difficult to understand:

1. “others” could be interpreted as the caller.

2. “redirect” could be interpreted as redirecting a voice call to text message or

voicemail, the likelihood of being eavesdropped, or the priority of the incoming

information.

3. “perceived privacy” could be interpreted as the level of confidentiality of the

incoming information, or the user-desired privacy.

4. the meaning of “acceleration” and “orientation” were considered unclear.

Due to these confusions, some of the attributes in the vocabulary are reworded:
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• others willingness redirect hearing is reworded as

bystanders irritated by aural disruption

• others willingness redirect visual is reworded as

bystanders irritated by visual disruption

• my willingness redirect hearing is reworded as

me irritated by aural disruption

• my willingness redirect visual is reworded as

me irritated by visual disruption

• perceived privacy is reworded as perceived control over privacy

• acceleration orientation pattern is reworded as moving pattern

69



Figure 3-25: Percentage of subjects who understood a rule perfectly

Figure 3-26: Percentage of subjects unable to understand a rule at all
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3.1.5 User Study: Rule Writing Study

In order for a decision-making system to be customizable, users should be allowed to

modify existing rules and create new rules, so that the behavior of a device can be

polite in its owner’s point of view. Before we went ahead to design an interface for

such customization, we first wanted to know whether general users are able to write

rules, using the vocabulary defined in our work, to describe scenarios they expect the

device to behave politely.

The same 15 subjects (9 programmers and 6 non-programmers) in the vocabulary

collection study were asked to perform tasks in this study. Among the 9 programmers,

4 had participated in a previous study (the rule understanding study or the calendar

data collection study). All 15 subjects were introduced to the vocabulary of our

system (Tables 3.1 to 3.4), the “IF . . . THEN . . . ” syntax for writing the rules, and

the concept of backward chaining, which is typically used in rule-based systems.

After the introduction, the subjects were asked to write rules describing the scenarios

previously identified as “phone misbehaving”, using the existing vocabulary in our

system. Subjects were free to write their rules on a piece of paper, or to type the

rules using a computer with a plain text editor.

To define whether a subject has successfully written a rule, the criterion we use is

whether the subject has written a rule to convey what was previously said out loud.

For example, a subject who did not want his phone to ring in the “in class” scenario

would say, “I’d tell my phone if you see the word ‘class’ on my calendar, and my

location is the same as what I wrote on my calendar, then you know I’m in class.”

Then the subject would write down

IF

current_calendar_entry = class

location = calendar.current.location

THEN

scenario = class

The attributes used by the subject in this rule were all defined in our vocabulary.
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Although the value calendar.current.location requires that the system perform

beyond its current capability, we still consider that the subject has successfully written

a rule. Even if a subject’s verbal expression does not seem to make common sense

(for example, “if my moving speed is 30 miles per hour, then I’m in class”), as long

as the subject was able to come up with a rule to describe what had previously

been verbalized (IF moving speed = 30 THEN scenario = class), we consider this

a success.

There are multiple ways to fail this rule-writing test: if a subject came up with

a rule that did not describe what had been verbalized, it is considered a failure; if

a subject was unable to finish the task (writing rules for at most 6 scenarios in 30

minutes) in time, it is considered a failure; if a subject had trouble writing down what

had been verbalized, it is also considered a failure.

Among all 15 subjects, 1 programmer could not finish the task in time, and 1 non-

programmer had trouble writing down what she had verbalized.1 Out of 64 attempts,

57 were successful (89%). We can say that most subjects were able to write rules

successfully for their own needs. However, we were curious to what extent has the

existing rule set in our system captured the subjects’ view of “the world” – in this

study, the six example scenarios.

Observing the rules written by the subjects, we find that most of the rules only

made use of the raw signals available to the device, and almost no backward chaining

was used to construct inferred information that might be useful for the device to

figure out the scenario. If we simply compare the subject’s rule:

IF

current_calendar_entry = class

location = calendar.current.location

THEN

scenario = class

1The subject said, “I want my phone to check my calendar. If my calendar says ‘class’, then you
should vibrate.” When being asked to write this down as rule for her phone, the subject responded,
“I don’t know what you want me to write; the phone should automatically check my calendar. ”.
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with the existing rule in our system that describes the same scenario:

IF

perceived_control_over_privacy = low

bystanders_irritated_by_visual_disruption = true

bystanders_irritated_by_aural_disruption = true

me_irritated_by_visual_disruption = true

me_irritated_by_aural_disruption = true

THEN

scenario = class

we can easily say that there is no vocabulary overlap between these rules. However,

once we expand the existing rule with lower-level rules that make use of raw signals

available to the device, we will end up with a rule that is more comparable to the

subject’s rule. To demonstrate this in detail, the 5 conditions in the existing rule can

each be expanded separately by another rule existing in our system:

IF

location = public_location

moving_speed_mph < 3

number_of_companions > 20

THEN

perceived_control_over_privacy = low

IF

current_calendar_entry = class

location = public_location

THEN

bystanders_irritated_by_visual_disruption = true

IF

current_calendar_entry = class
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location = public_location

THEN

bystanders_irritated_by_aural_disruption = true

IF

current_calendar_entry = class

location = public_location

THEN

me_irritated_by_visual_disruption = true

IF

current_calendar_entry = class

location = public_location

THEN

me_irritated_by_aural_disruption = true

When we replace the 5 conditions with the conditions used in the 5 rules above,

we have a new rule:

IF

current_calendar_entry = class

location = public_location

moving_speed_mph < 3

number_of_companions > 20

THEN

scenario = class

which is more comparable to the rule written by the subject.

We take into account the fact that most of our subjects did not have prior exposure

to the vocabulary defined in our system, and that the subjects might not be aware of

all the possible attributes that could be used to describe a scenario. Therefore, when

comparing the existing rule with a subject’s rule for vocabulary overlap, we consider

how much of the subject’s rule has the existing rule covered. In the example we have
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brought up here (Figure 3-27), the first condition in both rules are exactly the same.

The second condition in the subject’s rule shares the same attribute (location) as the

existing rule, but the values are different; we consider this condition as a mismatch.

There are 2 conditions in the subject’s rule, and the exiting rule covers 1 condition;

therefore there is 50% of vocabulary overlap.

Figure 3-27: Subject’s rule and the existing rule for the “in class” scenario. The
condition in blue indicates a match in vocabulary, while the condition in red indicates
a mismatch.
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Figure 3-28: Averaged percentage of vocabulary overlap for rules produced by pro-
grammers.

Figure 3-29: Averaged percentage of vocabulary overlap for rules produced by non-
programmers.
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Applying the same approach to all the rules produced by our subjects, we have the

percentage of vocabulary overlap between the existing rule set and the subjects’ rules

for each scenario. Figures 3-28 and 3-29 shows the averaged percentage of vocabu-

lary overlap for rules produced by programmers and non-programmers, respectively.

The X-axis contains all 6 scenarios in the study. The Y-axis indicates the averaged

percentage overlap; that is, how much has the existing rule set covered the rules

produced by the subjects. For rules produced by programmers, at least 50% of the

vocabulary is covered by the existing rule set in most cases; for rules produced by

non-programmers, at least 40% of the vocabulary is covered by the existing rules set

in most cases.

Given the percentage of vocabulary overlap, it is difficult to conclude how well or

how poorly our vocabulary has covered the general users’ vocabulary. However, this

exploratory study has shown us what other capabilities the users expected our system

to possess: for example, comparing tags on the map with calendar entries, creating

new attributes and using them as flags to keep track of chronological changes of user

location, etc.

3.2 Building a Knowledge Base

Even though the current system in our work has 250 rules to cover scenarios where a

device is expected to behave politely, the rules are certainly not comprehensive enough

to cover all the possible scenarios in life. Besides, different users may have different

expectations for the device given the same scenario. Based on these concerns, we

constructed an interface to allow the users to debug the knowledge base when the

device misbehaves, and to customize the device or to build knowledge of the world

by creating new rules.

To be more concrete, a device equipped with our decision-making system is likely

to misbehave when any of the following happens:

1. there is no rule that covers a specific conclusion (a new rule needs to be created)
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2. a rule is too specific (one or more condition needs to be removed)

3. a rule is too general (one or more condition is missing)

4. the threshold (for example, the maximum/minimum moving speed) is set in-

correctly

5. the certainty factor (strength of belief) in a conclusion is set too high or too

low

In the next section, we demonstrate an example where a rule is too general, and

show how a user could fix this by adding a condition using the interface we propose.

3.2.1 Example Scenario

Suppose a user received a call from his labmate while in a meeting with a professor,

and the device rang. The user is curious what rule(s) caused the device to ring, and

wants to fix the rule(s) by using the debugging interface (as illustrated in Figures

3-30 to 3-44):
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1. The interface displays a list of call and message histories, as a regular cell phone

would do. The system also displays the response of the device when each incoming

call/message took place, to allow the user to identify the instance of misbehavior.

Figure 3-30: The interface displays a list of call and message histories.

2. The user selects an instance where the device was not expected to ring. The

“Don’t Do This Again” button allows the user to view the facts known to the device

when the misbehavior took place.

Figure 3-31: The user selects an instance where the device was not expected to ring.
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3. The interface displays the facts available to the device when the instance took

place. In the future, the interface may be augmented to allow the user to explore the

rules that directly make use of a particular fact in the condition.

Figure 3-32: The interface displays the information available to the device when the
misbehavior took place.

4. The user wants to see rules that might have caused the device to ring. The

user can also choose to see why the device did not flash, vibrate, etc. by selecting

another behavior.

Figure 3-33: The user wants to see rules that might have caused the device to ring.
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5. The interface displays the rule numbers of rules related to ringing. The visual

display of the rule numbers remains flat, no matter where in the tree structure a rule

is (see Figures 3-1 to 3-10 for tree structure examples).

Figure 3-34: The interface displays the rule numbers of rules related to ringing.

6. The user is able to view the content of the rules by clicking on the rule numbers.

The user clicks on rule #8, and the interface informs the user that the rule selected

was not applied to the situation.

Figure 3-35: The user is able to view the content of the rules by clicking on the rule
numbers.
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7. The user clicks through rules #10 and #17. Neither rule was applied to the

situation, because some conditions did not hold. The user keeps clicking through

rules #27 and #28, but neither was applied to the situation. Then the user proceeds

to explore more rules by clicking on the >> button. In the future, the interface

can be improved by displaying the rule numbers in a different manner, depending on

whether the rules were applied to the situation.

Figure 3-36: The rule selected (#17) was not applied to the situation, because some
conditions did not hold.

8. The user clicks through rules #29 and #74, and rule #74 was applied to the

situation because all conditions held.

Figure 3-37: The rule selected (#74) was applied to the situation.
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9. The user sees that the system thought the scenario was “work” when the

misbehavior took place (the urgency information is a known fact). The user then

selects the scenario condition and clicks on the “Show Selected” button to find out

which rule caused the condition to hold.

Figure 3-38: The user explores further to see why the system thought the scenario
was “work”.

10. Rule #73 caused the scenario condition to hold, because the time of day was

between 9am and 6pm. The user thinks that the rule makes sense but is too general.

Figure 3-39: The rule selected (#73) was applied to the situation because the condi-
tion held.
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11. The user decides to add a condition to rule #73 by clicking on the “Add

Condition” button. The interface also allows the user to delete conditions or to edit

existing conditions.

Figure 3-40: The user decides to add a condition to make the rule less general.

12. The user wants to make the rule less general by adding a condition related

to the number of companions. The user then selects this attribute from the pull-

down menu. The attributes are now sorted alphabetically; in the future, they can

be grouped or sorted based on the category listed in Tables 2.1 to 2.10 to make the

attribute selection more efficiently.

Figure 3-41: The user selects the attribute “number of companions” from the pull-
down menu.
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13. The user decides that the work scenario should hold when it is between 9am

and 6pm and the number of companions is greater than 2. Hence a new condition:

“number of companions >2” is added to the rule. The current interface requires

user’s prior knowledge of the legal values for each attribute.

Figure 3-42: The user completes the new condition: “number of companions >2”.

14. The rule has now been modified with the new condition “number of companions

>2”. (In addition to the pull-down menu, user is also allowed to modify any part of

the rule in free text.)

Figure 3-43: The rule has been modified with the new condition
“number of companions >2”.
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15. The modified rule is saved in the system. The user has the option of run-

ning regression testing to see whether the modified rule set is able to correct the

misbehavior.

Figure 3-44: The modified rule is saved in the system.

3.2.2 User Study: Debugging Interface Study

Having built an interface for debugging, we would like to know whether general users

are able to use such an interface to modify/create rules to correct the device when it

misbehaves.

Five subjects (current/former MIT students) were recruited for the user study.

They were first introduced to the vocabulary and syntax used in our system, as well

as the concept of backward chaining. Different from the rule-writing study in section

3.1.5, the syntax used in this study was in the following form:

=> conclusion certainty

condition

condition

...

condition

Then, the subjects were shown two scenarios that most subjects in previous user
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studies considered as “misbehaving”: (1) the device rings and flashes when the user

is in class (2) the device rings when the user is in a meeting. For the rule set used

in this study, one rule for each scenario was purposely “broken”, so that the device

running the rule set would misbehave. The subjects were asked to find out which rule

was broken for each scenario and fix the rule, using the debugging interface.

None of the subjects had prior exposure to the vocabulary. Considering the cog-

nitive load required to learn the vocabulary, the syntax, the concept of backward

chaining, and the interface, the limited amount of time to complete two bug-fixing

tasks, and the fact that there are several ways to “fix” a rule, we did not evaluate

the subjects’ production on the scene. As long as the subjects felt they had fixed the

rules, the study session was completed.

Based on the results after the study, all 5 subjects were able to debug the knowl-

edge base. While 3 subjects fixed the purposely broken rules by adding conditions,

changing the certainty factors, changing the value of a particular attribute, or creating

new rules that would suppress the “buggy” rule, the other 2 subjects modified other

rules to their liking. Given that subjects did not have time to explore the entire rule

set to find out what existing rules might be affected by their bug fixes, it would be too

harsh to evaluate the successfulness of the bug fixes by running the decision-making

system and see if the final recommendation for each scenario was corrected. By look

at the subjects’ production manually, the subjects who fixed the purposely broken

rules were able to stop the broken rules from firing with the bug fixes; one subject

who modified other rules was able to suppress the broken rule from firing, but the

other subject could not.

All 5 subjects asked questions while navigating the rule set to debug. Most ques-

tions were interface-related, for example, “What are these buttons?”, “How do I view

the details?”, etc. There were questions on a function that the current interface was

incapable of performing (how to see all the rules related to a particular caller or

calendar entry).

In addition to interface-related questions, there were questions and comments such

as “How can I set the phone to vibrate?”, “I wanted to see whether I could shut the
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phone off . . . ”. There were also comments about not being able to keep track of the

rules that had been previously visited. It seems that the subjects either did not have

the concept of debugging, or were overwhelmed by the depth of the rule chain.

For users who understand the concept of debugging, there is certainly room for

improvement for an interface that could better facilitate the debugging process. Be-

fore we start changing the interface, we first need to investigate what information

should be presented to the user at the beginning of the debugging process: the facts

that the device knew when the scenario took place? the one rule on the highest level

that caused the misbehaved response of the device? the rules on the highest level

related to the expected response? all the rules related to a particular piece of fact?

or other pieces of information we have not found out from this user study?

For users who are overwhelmed by the depth of the rule chain, a big design question

would be: how can we visualize large amount of data (i.e. the entire tree structure of

the rule set) given a small screen real estate? The interface we created here apparently

has not reached the goal. However, even with the “zoom in/out” function on some

current models of smart phones, users still have to mentally keep track of items that

can’t be seen on the screen.

For users who do not have the concept of debugging, or who do not want to spend

time debugging, there might be ways to obtain bug fixes through collaboration or

sharing mechanisms. We will discuss the possibility in Chapters 4 and 6.
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Chapter 4

Discussion

The previous two chapters described the steps of constructing a polite mobile device.

We explored the signals available to a smart mobile device and identified the ones

that are important to inferring when and how to interrupt the user when there is

an incoming voice call or text message. We found the major factors that a device

should be aware of in order to behave politely: the user’s (aural and visual) attention,

bystanders’ (aural and visual) attention, and the user’s physical availability. The rule

set in our work was built to express these major factors by making inferences from

the signals that can be measured or detected from the device. The vocabulary defined

in the rule set is intended to capture the general users’ definition of politeness with

regard to handling voice calls or text messages. An exploratory study has shown

that the vocabulary could be expanded to approximate the general users’ definition

of politeness, and we can look further into the impact on the behavior of the device

when a new attribute is added to the vocabulary.

Our decision-making system determines how the device should respond to a call

or message based on the information available to the device, and the rules used in the

system can be understood by users with programming experience. In addition, users

are able to use the vocabulary to come up with rules that meet their needs. When the

mobile device misbehaves, users who are curious about the reasoning process of the

system are able to fix the rule(s) by using the debugging interface we proposed, with

the assistance in the interface elements and some prior exposure to the vocabulary
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and the concept of rule creation.

Based on our findings and observations, obviously there is still a gap between

our current system and a product that can be distributed to the general public and

used immediately. We would like to know how big the gap is by looking into the

limitations in the domain itself, the technologies we have at the moment, and the

questions regarding interface design for a mobile device.

4.1 Limitations

With the increasing computational power and number of sensors on a smart mobile

device, it is natural for us to hope for a device that is, eventually, as polite as a

human. However, the device is typically carried inside a pocket or a bag, or is

sometimes placed in a location far away from its user. In other words, the device can

more realistically be compared to a human being who is blindfolded and muffled, or

a human assistant who is at a distance. The amount of information available to the

device is thus limited.

Different from some relevant work done by others, we would like all the signals

be gathered in a non-intrusive way: non-intrusive to the user, and non-intrusive to

the world around the user. Anecdotally, several subjects in our user studies made

the same comments about wanting the polite device to “monitor my dreams”, but

then immediately rejected the idea of being attached to sensors while sleeping. On the

other hand, if the world around the user is carefully instrumented, it is very likely that

the device will gather more information that will be helpful in determining when and

how to interrupt its user. In reality, it is impossible to instrument every corner of the

globe. That being said, given how pervasive and popular the WLAN-based and GPS

technologies have become in the past few years, we are optimistic that several years

from now, technology will enable us to collect more signals automatically (without

purposely instrumenting the world), and the device will be able to make use of the

signals for better inference.
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4.2 Simulated vs. Real Signals

For our work, the signals are simulated, and the decision-making system is run on a

computer, rather than on a smart phone. An attempt at collecting real signals with a

mobile computing device to predict user interruptability was made in 2005 [11]. The

attempt was unsuccessful due to several hardware issues: (1) the static generated by

the device itself created noise in the audio data collected by the microphone, which

adversely affected the quality of sound-related signals and the accuracy of speech

recognition, (2) the GPS receiver could not be plugged into the device directly, (3)

the battery power of the device restricted the duration it could be operated to collect

signals, and so on.

With the advancement of smart phone design in recent years, one may argue that

the hardware should no longer prevent us from collecting real signals with a mobile

device. We were able to collect real signals for 2/3 of the attributes listed in Tables

3.2 and 3.3. However, we did not want to restrict our work to the technologies at

present: to accurately predict the user’s moving pattern from accelerometer readings,

it requires a large amount of labeled training data [21]; to detect bluetooth-enabled

devices in a room, precise calibration is required to measure the distance between

devices; to detect the number of speakers in a room using speaker diarization, prior

knowledge of the speakers (example speech from the speakers) or the linguistic infor-

mation in the detected speech is required [39]. Vast research efforts have been devoted

to these areas of studies; by using simulated signals in our work, we assumed that all

the signals a device needs to know would be readily available in the near future, and

we were able to focus on how a device would behave using our system, and how the

system could be improved to make the task of constructing a polite device easier.

4.3 User Interface

In addition to how to present large amount of information on a small screen real estate,

and how the visual interface element should be designed to facilitate the presentation
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and navigation of the rule set, another important design question is: is there an

interface for users with different levels of interest in writing rules, programming, or

debugging?

Based on the user studies we conducted, users who identified themselves as pro-

grammers generally had an easier time learning the vocabulary and writing rules

(compared with non-programmers), and were more willing to spend time crafting

the rules and debugging, in order to customize the device for their own needs. The

non-programmers in our studies did show interest in creating rules, but most of them

preferred not to invest too much time (over 10 minutes) in “teaching the phone every-

thing”; in addition, some find the concept of “programming” or “debugging” intimi-

dating. We believe that a carefully designed interface could encourage users to start

creating rules or fixing rules without reminding them that this is a process equivalent

to “programming” or “debugging”. Alternatively, we can utilize social computing

and collaboration mechanisms to distribute the effort of creating/modifying the rules

and reporting the bugs.
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Chapter 5

Related Work

Prior research efforts and existing applications have partially addressed the “when

and how to interrupt the user” problem. Some have made use of sensors to infer the

physical and social situation where a mobile device is embedded and whether the user

is interruptable; some have helped the user prioritize incoming messages or schedule

events based on calendar entries and user preferences. Others adaptively learn how

each piece of information should be presented to the user based on user activities.

In this chapter, the related work is reviewed from three aspects: (1) context-aware

computing, (2) interruptability, and (3) privacy and social psychology.

5.1 Context-Aware Computing

Context-aware computing has been a concept subject to extensive research for decades.

Context refers to the physical and social situation in which computational devices are

embedded [2], which is essential information if the devices are to be smart and po-

lite. Bardram and Hansen [2, 3] developed a WLAN-based prototype application,

which was used in hospital for communication among medical personnel. In addi-

tion to WLAN-based location, physical objects used by medical personnel indicated

their activities. Judging from the indicated activities, the application would facilitate

social awareness and suggest courses of action that could be taken by the medical

staff. For example, if a nurse has entered the “active zone” (where a patient is) and
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has picked up a medicine container, the nurse’s current location and the medicine

container indicate that the nurse might be busy administering the medicine, and thus

might not respond to the doctor’s paging immediately. In our work, we did not have a

mechanism to detect what physical object is used by the user, but we did incorporate

location information to infer the user’s interruptability.

A context-aware application typically has to interact with its user in order to con-

firm that the context determined by the system is correct. With a proper internal

model built with enough training data, such interaction can be done unobtrusively,

without interrupting the user. For example, the personalized stock tracking applica-

tion by Yoo et al. [42] unobtrusively gathered positive and negative feedback from

its user by whether or not the user purchased the stock recommended by the appli-

cation. When the recommendation was rejected by the user, the user could provide

explicit feedback by clicking on a button next to the recommendation, and the feed-

back would change the internal model. In our work, the internal model was built

with rules inspired by calendar entries and interviews with real users. If the decision-

making system makes a wrong decision on how the device should respond, the user

is free to use the debugging interface to modify the rule set, which will then change

the internal model.

For other context-aware applications [28, 36, 7], various sensors, microphones, and

cameras were used to create user context in the form of “who, what, where, when,

how, and why”; machine learning techniques were used to predict user preference or

to help user perform form-filling actions. In our work, we did not install any sensor or

device in the surroundings of the user to create context. Our system collects signals

and measurements from the sensors on the mobile device. The context is then inferred

by a rule-based system using these signals, and the decision of how the device should

respond is made based on the inferred context.

There are some commercially-available products that relate context-aware com-

puting to the safe use of mobile devices: DriveAssist [1] and iZUP [18] are applica-

tions that prevent incoming phone calls and text messages from distracting the users

when they are in motion, and the users cannot use the mobile phone while driving.
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Key2SafeDriving [29, 30] is a bluetooth device embedded in a car key that turns off

the user’s mobile phone when the user is driving.

5.2 Interruptability

Attention is a precious resource. Whenever an agent (a person, a device, or an

application) initiates an interaction with its user, the agent must first interrupt the

user. However, interrupting a user’s attention could significantly delay the task that

the user is attending to [41], no matter whether the interruption is through personal

visit, phone call, email, or other means of interaction. Moreover, as pointed out by

[37] and [25], even when a piece of incoming information is potentially useful, the

user may not always be available to pay attention to it; hence, a polite device is

expected to evaluate both the interruptability of the user and the benefit of incoming

information, in order to wisely initiate the interruption if the incoming information is

worth the user’s attention, or if the information could considerably benefit the user’s

current task.

In the case of a device handling incoming phone calls, it is very difficult to find out

the urgency and the benefit of a call automatically until the communication between

the caller and the user has started. In our work, the device allows the caller to

indicate whether the call is urgent, work-related, etc. prior to requesting the user’s

attention; the indicated urgency will then be treated as a known fact and passed on

to the decision-making system.

5.2.1 Coordinating Interruptions

When considering when a device should interrupt its user, we found that Mcfarlane

[26] had pointed out four methods for an agent to coordinate interruptions:

1. The agent interrupts the user whenever a piece of information is received. This

is the most commonly used approach by most phones and email notification

software nowadays.
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2. The user decides not to redirect their attention to the incoming information

until the user becomes available.

3. The agent starts the interruption when the user seems available, or when the

incoming information seems valuable.

4. The user specifies a fixed period of time that does not allow any interruption.

Based on the study conducted by Mcfarlane, there is no one “best” choice of

method for coordinating interruptions, and the trade-offs between these methods

lie in the nature of the incoming information and the current task that the user is

attending to; the trade-offs also lie in the different expectations of user performance

of the current task (e.g. precision, efficiency, etc.). We agree that there is no best

choice among these four methods. In our work, we considered all four methods when

creating the rules: depending on the urgency of incoming information, user-specified

time frame, and the inferred user interruptability, the decision-making system would

decide on the most suitable method to initiate the interruption.

The Scope system by [40] learns the models of prioritizing incoming information

from user behaviors and from explicit user feedback. The system automatically as-

signs an urgency score to each piece of incoming information based on, for example,

uppercased words in the subject line of email, sender, nature and number of recipi-

ents, content of the header and body, etc. The more urgent items would be placed

more centrally on the visual interface. Nomadic Radio [32, 33] is an audio-only device

worn around the user’s neck. It determines user interruptability based on user actions

and prioritizes text-based messages sent to the user, and the user is then notified with

scalable audio cues. Our work focuses on devices that are typically placed in a pocket

or backpack, and our system currently does not handle incoming email messages. For

text messages, our system only checks the message sender to infer the urgency of in-

formation. In the future, we can incorporate the criteria used by Scope and Nomadic

Radio to better determine the urgency of incoming information in the form of text.

Garblephone [34] is a device that allows the caller to gauge the activity level of

the user by listening to the user’s conversational state, while allowing the user to
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screen the calls. In our work, the device is expected not to initiate the interruption

when the user seems to be uninterruptable. Our system reveals the user’s location

or availability to the caller when necessary, and the caller is given the opportunity to

indicate the urgency of the call prior to initiating the interruption.

Marti and Schmandt [24] built a system that determines whether a phone call

should be accepted by polling everyone who is in a conversation with the called party.

The ones alerted by the system (with a finger ring that vibrates) vote on whether

the conversation can be interrupted by the incoming call, without knowing whom

the phone call is intended for. In our work, the user and those around the user are

not meant to be interrupted in any fashion, if they don’t seem to be interruptable;

the interruptability is determined by signals available to the device and the inferred

information from the signals, without the input from others around the user.

In [25], McCrickard and Chewar discussed using the attentive user interfaces (AUI)

paradigm to model and adapt to a user’s attentional state, and hence to bring the

right information at the right time to the user. They proposed a framework that

allows costs and benefits to be described, where “costs” refer to sacrificing the at-

tention from other tasks the user is engaged in, and “benefits” refer to fulfilling the

user’s goals in aspects such as task comprehension, reaction to notifications, pacing

interruptions, and satisfaction of the overall experience. It was suggested that de-

signers of notification systems consider the AUI paradigm when trading off between

diverting user attention and delivering timely notifications. Our current system does

not compute the cost; it infers the interruptability of the user and others around

from available signals. Our system does not compute the benefit of an interrup-

tion; it determines whether the user should be interrupted based on caller ID and

caller-identified urgency.

5.2.2 Measuring User Interruptability

According to Hudson et al. [17], people tend to have a constant daily rhythm in the

attitudes toward interruptions: for example, those who feel more productive at work

in the morning may be less interruptable before lunch time. However, the attitudes
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may vary based on the current task a person is engaged in: if the current task is

planned, the person is generally less interruptable than if the task is unplanned or

spontaneous. If the task is a meeting, the interruptability is reversely correlated to the

size of the meeting. That being said, a person’s availability may change depending on

the nature of the interruption, and the attitudes toward interruption typically involve

the trade-off between wanting to avoid interruption and appreciating its usefulness.

In our work the device doesn’t know the usefulness of incoming information, but it

is able to infer the user’s attitude toward interruptions based on the user’s calendar

entry and the number of companions around the user.

The wizard-of-oz study by Fogarty et al. [9] used detailed events or situations

in a single-person office with manually simulated sensors, which were categorized

as occupant-related, guest-related, and environment-related. The result shows that

people often have strong feelings about particular times of day being “obviously not

interruptable”, but often have more ambivalent attitudes towards “partially inter-

ruptable” times. Their study used the machine learning approach to assess whether

“now is a bad time” to interrupt the user. In our work, the results from user studies

also show that there are particular times of day that is not interruptable (e.g. late

at night, in the morning before starting to work), and the times are specified in our

rule set using the “time of day” attribute.

Horvitz et al. [14, 15] have developed systems that sense signals about user at-

tention, and these signals are shared with other users to imply interruptability. Our

system utilizes some of the signals used by Horvitz et al., and they are incorporated

into the vocabulary of the rules for the user to describe her/his state of interruptabil-

ity. These signals include: ambient noise, user presence, readings from accelerometers,

calendar information, motion of devices, and location sensing via GPS signals.

Horvitz et al. have also built models to predict the cost of interrupting the user.

In their studies, the cost of interruption was based on self-reported mapped dollar

amount that the user was willing to pay to avoid each interruption. Measuring user

interruptability in this way seems better than the approach used in [17], where a device

would interrupt the subjects of the study and present them with a 8-question survey
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on their current interruptability. The system in our work does not measure or predict

the cost of interruption. Instead, the inferred information about the aural/visual

attention of the user (and of others around the user) is used as an indication of

whether and how the interruption should be initiated.

Ho and Intille [13] proposed that the transition between user motions could be an

indication of transition between tasks, and that no active motion for a long period of

time could be an indication of “having nothing to do”. Hence, the user would seem to

be more interruptable either when a transition between motions is detected, or when

the user appears to be “motionless” for a long while. However, it is a complicated

problem to determine whether the lack of motion indicates “having nothing to do”, as

there are situations where a doctor being seated is talking with patients, an attorney

being seated is talking with clients, or a chemist standing still is conducting an exper-

iment with a flask or beaker in hand. Despite the fact that a smart mobile device is

equipped with acceleration and orientation sensors and is capable of detecting various

moving patterns, we acknowledge that this is a hard problem, because more context

information is required to determine whether the user “has nothing to do” and can

be interrupted.

Bernstein et al. [5] used multiple sensors (accelerometer, potentiometer, and mi-

crophone) to predict user interruptability. Although the data for their study stemmed

from only one subject, they were able to point out that scenarios the user is in are

important to interruptability prediction. In a different fashion, Chen et al. [6] created

a task-independent model of interruptability based on user’s physiological state (e.g.

heart rate variability and electromyogram) and found out that the mental load of the

user contributes more to such a model than the user’s muscle activity. In our work,

we do not attach any sensors to the user to measure physiological state. We acknowl-

edge that having a “scenario” attribute in the rule set makes it easier for general

users to understand how the rules are constructed. However, different scenarios of-

ten share similar properties such as the concerns about user’s aural/visual attention,

bystanders’ aural/visual attention, and user’s physical availability, etc. The rules in

our system were created to express these common properties, rater than describing
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each scenario independently.

Kern and Schiele [21, 20, 22] proposed the notion of social interruptability and

personal interruptability. Multiple sensor streams were used (3D body-worn acceler-

ation sensors, microphone, and WLAN-based location sensor) to create 50 “low-level

contexts” expressed by acceleration, location, and audio information. Unlike other

studies mentioned previously, the subject wearing the sensors did not have to report

his interruptability. Instead, situational videos of the subject were made and anno-

tated with sensor measurements; other subjects in the study were asked to watch

each video and report their interruptability as if they were under such situation. In

this way, the subject being measured would not be interrupted, and the system would

learn the prediction model based on sensor measurement and the objective feedback

from subjects not wearing the sensors. In our user studies, the subjects were only

given text descriptions of the scenarios. Although we did not ask the subjects to

wear any sensors, the low-level rules in our system do make use of signals such as

acceleration, location, and audio information.

5.2.3 Existing Applications

Various applications have been developed in the past decade to address the preference

for interrupting the user to the minimal extent. For example:

OwnTime [31] is a timespace management system that attempts to allow flexible

meeting scheduling with minimal user interruption. The interface provides a subtle

notification when a meeting request is received, and the interface fades away if the

user does not respond for a certain period of time. The system has shown the potential

for minimally disrupting the user’s current task. In our work, we have “beep2” as

one of the output modalities for the device, which requests the user’s attention in a

gentle way. Our system also casts part of the responsibility of being polite to the

caller when it is unsure about the benefit of interrupting the user.

Locale [4] is an application for a mobile device. It automatically determines the

user’s location (by GPS, Wi-Fi, and GSM positioning) and changes the ringer volume

setting based on user-preset values. In our work, location is an important piece of
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information that indicates the current activity of the user. In addition to GPS and

Wi-Fi signals, our system also accesses the user’s calendar entry to infer where the

user might be.

Cell phone manufacturer HTC has announced a feature named HTC Sense [16].

A device running HTC Sense is able to automatically adjust the volume of the ringer

depending on whether the device is in a bag/pocket or has been picked up; if the

device is then flipped over, it is a gesture of silencing the device. In our work, the

decision-making system determines whether or not the user should be interrupted

prior to initiating any form of interruption. Hence, a device in a bag will not ring if

the system has decided not to interrupt the user by making a noise, and this saves

the user from having to reach for the device, take it out of the bag, and flip it over.

5.3 Privacy and Social Psychology

The level of user-perceived privacy can be determined by multiple factors: physical

space, property of incoming information, size of display device, and level of perceived

control (over a piece of information or a situation). The research efforts mentioned

in this section have provided the basis and inspiration for our work.

Kaya and Weber [19] looked into the relationship between the level of privacy and

the physical space. They defined density as the “physical condition involving space

limitations” and crowding as “subjective, psychological experience that is associated

with a feeling of lack of control over the physical environment”. If the level of crowding

decreases then the achieved level of privacy increases, while the density of the physical

space may remain the same. Our current system has yet to be capable of detecting

or inferring the level of crowding. Further research can be conducted to determine

how crowding can be expressed from a mobile device’s point of view.

As for the type of incoming information, Häkkilä and Chatfield [10] discovered

that SMS (text) messages are perceived as more private than normal calls. They also

discovered that text messaging is not comparable with any other form of electronic

communication (for example, emails, which are commonly forwarded without the
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sender’s consent), but are more comparable with traditional letters. Although our

work mainly focuses on handling voice calls, a device should handle text messages

with more concern about privacy than other forms of incoming information.

The “western models of privacy” mentioned in Little et al. [23] serve as a good

reference to distinguish different forms of user-perceived privacy:

• Physical: how physically accessible a person is to others

• Psychological: a person’s right to decide whom to share personal information

with

• Social: control social interactions by controlling distance between people

• Informational: a person’s right to reveal personal information to others

Spiekermann [38] investigated the (perceived) privacy and the (perceived) con-

trol in ubiquitous computing environments and found that “it is really more about

perceived control than it actually is about the end state of privacy itself”. In Spiek-

ermann’s research, “privacy” is defined as the control a person has over information

about himself or herself; if one does not feel competent enough to master a situation,

s/he will not feel in control. Similar to devices in ubiquitous computing, a polite

device should carefully consider how much information to reveal to the caller/sender,

and how to protect user privacy when presenting the incoming information to the

user.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

We investigated the human definition of “politeness” in the context of handling voice

calls and text messages in mobile devices and obtained a first approximation. We

also found the common properties shared by the scenarios where most users would

find embarrassing or irritating when the device initiates the interruption with the

wrong timing or wrong modality: (1) the user’s aural/visual attention is not to be

disrupted (2) the aural/visual attention of the bystanders (others around the user) is

not to be disrupted (3) the user is not physically available to respond to the call. We

interviewed subjects and examined the vocabulary used in our system to describe the

scenarios and how a device could learn how to behave. At the same time, we explored

the signals that would be good for a device to know and identified those important

to determining when and how to interrupt the user. We compared the vocabulary

used by the subjects and the one in our system, and the 42% overlap suggests that

we have captured some of the user intention, but there is still room for improvement.

We built a rule-based decision-making system, which infers user interruptability

from the above-mentioned common properties using the information available to the

device, and then determines how the device should respond to an incoming call or

message. The current size of the rule set is about 250 rules. And 2/3 of the rules in

our system could be understood perfectly by at least half of the programmers in our
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user study without any assistance.

With a minimal amount (30 minutes) of introduction to the vocabulary, syntax,

and the basics of rule writing, almost all subjects in our user studies were able to

create rules for their own needs, using the vocabulary defined in our work. Among

the 37 rule-writing attempts by programmers, 34 of them (92%) had over 50% of

vocabulary overlap with the rule set in our system; particularly, 19 of them (51%)

had 100% vocabulary overlap. As for the 25 attempts by non-programmers, 17 of

them (68%) had over 50% of vocabulary overlap. The existing rule set in our work

has a decent vocabulary coverage of scenarios where a device is expected to behave.

To make the system more accommodating to individual users’ needs, we created

a debugging interface allowing users to modify existing rules and create new rules.

The major non-interface issue observed from our user study is the unawareness of

the concept of “debugging”. Given the fact that most users are accustomed to the

existing mobile devices on the market, their initial reaction to a misbehaving device

tends to be how to turn off the device, or how to force the change of the device’s

output modality, rather than figuring out why the device (mis)behaved as such, or

how come the device did not follow what it had been told to do. That being said, when

subjects in our user study were asked to debug the rules to correct the behavior of the

device, all of them were able to modify the rules using our debugging interface, with

the introduction to the vocabulary and syntax, and with the assistance on interface

navigation.

Another major issue observed from our user study is the difficulty of keeping track

of the structure of the rule set. We see this as an interface design problem beyond

selecting and arranging interface elements – it is a problem about how to present large

amount of information on a small screen real estate. With the current capability of

a smart mobile device, it is not a difficult task to implement the “zoom in/out”

function for the users to control the amount of information being displayed on the

screen. However, when the users have to navigate a complex tree structure to debug

the rule(s) in a rule set, it seems unavoidable that they have to mentally keep track

of nodes and branches that have been previously visited but are not displayed on the
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screen at the moment. At this point we do not have a solution to this problem, but

we do see this as an opportunity for further research in the area of interface design

for small form factors.

6.2 Future Work

There is still room for improvement for our work to become a product that can be

released to the general public. Future work can be addressed from the following three

aspects.

6.2.1 When more signals on the wishlist are granted

With the advancement of technology, we do expect more signals will be available to

a smart mobile device. As more signals become available, experiments can be done

to see whether augmenting the vocabulary with new signals and rewriting the rules

will help the device make better decisions.

6.2.2 User demographics

1. In our user studies, most subjects who are Blackberry users expected the device

in our work to behave differently when the device is plugged into the charger.

This is a gesture we were unaware of when we defined the vocabulary for our

rule-based decision-making system. Some Blackberry users also expressed the

need of prioritizing email messages from different accounts, on top of text mes-

sages and voice calls. Before one starts modifying the vocabulary and the rules

for these anecdotal requests, it will be helpful to investigate the use habits of

users of different smart phone models and evaluate the importance of incorpo-

rating certain features and use habits into the rules.

2. In some cultures, the output modality of a mobile device is restricted by the

airtime or power available. In some other cultures, the use of a mobile device

is strictly prohibited in a certain locations. Currently, our work allows users
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to create new rules if the existing rules are insufficient. In the future, rules for

different cultures can be created in advance and be applied according as soon

as the device finds out its geographical location, so that the device will auto-

matically conform to the local etiquette and prevent its user from committing

a faux pas.

6.2.3 A better debugging interface

1. According to our user study on the debugging interface, different users seemed

to have different requests on what information to be presented at the beginning

of the debugging process. To make the debugging process easier, one has to

find out how to present the relevant information to the users without making

them feel overwhelmed or confused.

2. For users who have no prior experience or interest in debugging, one can inves-

tigate how to design an interface that allows the users to customize the rules

without making them feel the pressure of having to program.

3. Along the same line, it will be interesting to look into how much does a user need

to know about the rules, the decision-making system, and the debugging. If a

user has no interest in finding out the root cause of why the device misbehaved

and only wants a “quick fix”, is there any way to make the phone behave politely

without the user fixing the bug? One possible approach is to make use of social

computing and remote collaboration to distribute the effort of bug reporting

and bug fixing among multiple users. To figure out the most efficient approach,

experiments can be conducted on connecting users, categorizing bugs, creating

ownership and resolving editing conflicts, mechanisms for selectively updating

the rule set, building a sound reward system, etc.

4. Last but not least, an important question that remains to be answered is: how

shall we represent large amount of data on a small screen real estate? How shall

we design an interface that allows the user to navigate through complex rule
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structure, without the burden of memorizing information that is not visible on

the screen? We are curious to find out the challenges and what it will take to

possibly solve the problem.

107



108



Bibliography

[1] AegisMobility. Driveassist. http://www.aegismobility.com, 2008.

[2] Jakob E. Bardram. Applications of context-aware computing in hospital work:

examples and design principles. In SAC ’04: Proceedings of the 2004 ACM

symposium on Applied computing, pages 1574–1579, New York, NY, USA, 2004.

ACM.

[3] Jakob E. Bardram and Thomas R. Hansen. The aware architecture: supporting

context-mediated social awareness in mobile cooperation. In CSCW ’04: Pro-

ceedings of the 2004 ACM conference on Computer supported cooperative work,

pages 192–201, New York, NY, USA, 2004. ACM.

[4] Clare Bayley, Carter Jernigan, Jasper Lin, Jennifer Shu, and Christina Wright.

Locale. http://androidlocale.com, 2008.

[5] Abraham Bernstein, Peter Vorburger, and Patrice Egger. A scenario-based ap-

proach for direct interruptability prediction on wearable devices. International

Journal of Pervasive Computing and Communications, 3(4):426 – 438, 2007.

[6] Daniel Chen, Jamie Hart, and Roel Vertegaal. Towards a physiological model of

user interruptability. In INTERACT (2), pages 439–451, 2007.

[7] Sunny Consolvo, David W. McDonald, Tammy Toscos, Mike Y. Chen,

Jon Froehlich, Beverly Harrison, Predrag Klasnja, Anthony LaMarca, Louis

LeGrand, Ryan Libby, Ian Smith, and James A. Landay. Activity sensing in

109



the wild: a field trial of ubifit garden. In CHI ’08: Proceeding of the twenty-

sixth annual SIGCHI conference on Human factors in computing systems, pages

1797–1806, New York, NY, USA, 2008. ACM.

[8] Randall Davis, Bruce G. Buchanan, and Edward H. Shortliffe. Production rules

as a representation for a knowledge-based consultation program. Artificial Intel-

ligence, 8(1):15–45, 1977.

[9] James Fogarty, Scott E. Hudson, Christopher G. Atkeson, Daniel Avrahami,

Jodi Forlizzi, Sara Kiesler, Johnny C. Lee, and Jie Yang. Predicting human in-

terruptibility with sensors. ACM Transactions on Computer-Human Interaction,

12(1):119–146, 2005.
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