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Abstract

Compressive Sensing (CS) combines sampling and compression into a single sub-
Nyquist linear measurement process for sparse and compressible signals. In this
paper, we extend the theory of CS to include signals that are concisely repre-
sented in terms of agraphical model. In particular, we use Markov Random Fields
(MRFs) to represent sparse signals whose nonzero coefficients are clustered. Our
new model-based recovery algorithm, dubbedLattice Matching Pursuit(LaMP),
stably recovers MRF-modeled signals using many fewer measurements and com-
putations than the current state-of-the-art algorithms.

1 Introduction
The Shannon/Nyquist sampling theorem tells us that in orderto preserve information when uni-
formly sampling a signal we must sample at least two times faster than its bandwidth. In many
important and emerging applications, the resulting Nyquist rate can be so high that we end up with
too many samples and must compress in order to store or transmit them. In other applications, in-
cluding imaging systems and high-speed analog-to-digitalconverters, increasing the sampling rate
or density beyond the current state-of-the-art is very expensive. A transform compression system
reduces the effective dimensionality of anN -dimensional signal by re-representing it in terms of a
sparse expansion in some basis (for example, the discrete cosine transform for JPEG). By sparse we
mean that onlyK ≪ N of the basis coefficients are nonzero.

The new theory ofcompressive sensing(CS) combines sampling and compression into a single sub-
Nyquist linear measurement process for sparse signals [1,2]. In CS, we measure not periodic signal
samples but rather inner products withM < N known measurement vectors; random measurement
vectors play a starring role. We then recover the signal by searching for the sparsest signal that
agrees with the measurements. Research in CS to date has focused on reducing both the number
of measurementsM (as a function ofN andK) and on reducing the computational complexity of
the recovery algorithm. Today’s state-of-the-art CS systems can recoverK-sparse and more general
compressible signals usingM = O(K log(N/K)) measurements using polynomial-time linear
programming or greedy algorithms.

While such sub-Nyquist measurement rates are impressive, our contention in this paper is that for
CS to truly live up its name it must more fully leverage concepts from state-of-the-art compression
algorithms. In virtually all such algorithms, the key ingredient is asignal modelthat goes beyond
simple sparsity by providing a model for the basiscoefficient structure. For instance, JPEG does not
only use the fact that most of the DCT of a natural image are small. Rather, it also exploits the fact
that the values and locations of the large coefficients have aparticular structure that is characteristic
of natural images. Coding this structure using an appropriate model enables JPEG and other similar
algorithms to compress images close to the maximum amount possible, and significantly better than
a naive coder that just assigns bits to each large coefficientindependently.
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In this paper, we extend the theory of CS to include signals that are concisely represented in terms
of agraphical model[3]. We use Markov Random Fields (MRFs) to represent sparse signals whose
nonzero coefficients also cluster together. Our new model-based recovery algorithm, dubbedLattice
Matching Pursuit (LaMP), performs rapid and numerically stable recovery of MRF-modeled signals
using far fewer measurements than standard algorithms.

The organization of the paper is as follows. In Sections 2 and3, we briefly review the CS and MRF
theories. We develop LaMP in Section 4 and present experimental results in Section 5 using both
simulated and real world data. We conclude by offering our perspective on the future directions of
model-based CS research in Section 6.

2 Compressive sensing: From sparsity tostructured sparsity
Sparse signal recovery. Any signalx ∈ R

N can be represented in terms ofN coefficients{αi}
in a basis{ψi}

N
i=1; stacking theψi as columns into the matrixΨN×N , we can write succinctly

thatx = Ψθ. We say thatx has a sparse representation if onlyK ≪ N entries ofθ are nonzero,
and we denote byΩK the set of

(
N

K

)
possible supports for suchK-sparse signals. We say thatx is

compressibleif the sorted magnitudes of the entries ofθ decay rapidly enough that it can be well
approximated asK-sparse.

In Compressive Sensing (CS), the signal is not acquired by measuringx orα directly. Rather, we
measure theM < N linear projectionsy = Φx = ΦΨθ using theM × N matrix Φ. In the
sequel, without loss of generality, we focus on two-dimensional image data and assume thatΨ = I
(theN × N identity matrix) so thatx = θ. The most commonly used criterion for evaluating the
quality of a CS measurement matrix is the restricted isometry property (RIP). A matrixΦ satisfies
theK-RIP if there exists a constantδK > 0 such that for allK-sparse vectorsx,

(1 − δK)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δK)‖x‖2. (1)

The recovery of the set of significant coefficientsθi is achieved usingoptimization: we search for
the sparsestθ that agrees with the measurementsy. While in principle recovery is possible using a
matrix that has the2K-RIP with δ2K < 1, such an optimization is combinatorially complex (NP-
complete) and numerically unstable. If we instead use a matrix that has the3K-RIP withδ3K < 1/2,
then numerically stable recovery is possible in polynomialtime using either a linear program [1, 2]
or a greedy algorithm [4]. Intriguingly, a random Gaussian or Bernoulli matrix works with high
probability, leading to a randomized acquisition protocolinstead of uniform sampling.

Structured sparsity. While many natural and manmade signals and images can be described to the
first-order as sparse or compressible, their sparse supports (set of nonzero coefficients) often have an
underlying order. This order plays a central role in the transform compression literature, but it has
barely been explored in the CS context [5, 6]. The theme of this paper is that by exploiting a priori
information on coefficient structurein addition to signal sparsity, we can make CS better, stronger,
and faster.

Figure 1 illustrates a real-world example of structured sparse support in a computer vision applica-
tion. Figure 1(b) is abackground subtracted imagecomputed from a video sequence of a parking
lot with two moving people (one image frame is shown in Figure1(a)). The moving people form
the foreground (white in (b)), while the rest of the scene forms the background (black in (b)). The
background subtraction was computed from CS measurements of the video sequence. Background
subtracted images play a fundamental role in making inferences about objects and activities in a
scene and, by nature, they have structured spatial sparsitycorresponding to the foreground innova-
tions. In other words, compared to the scale of the scene, theforeground innovations are usually not
only sparsebut alsoclusteredin a distinct way, e.g., corresponding to the silhouettes ofhumans and
vehicles. Nevertheless, this clustering property is not exploited by current CS recovery algorithms.

Probabilistic RIP. The RIP treats all possibleK-sparse supports equally. However, if we incor-
porate a probabilistic model on our signal supports and consider only the signal supports with the
highest likelihoods, then we can potentially do much betterin terms of the required number of
measurements required for stable recovery.

We say thatΦ satisfies the(K, ǫ)-probabilistic RIP (PRIP) if there exists a constantδK > 0 such
that for aK-sparse signalx generated by a specified probabilistic signal model, (1) holds with
probability at least1 − ǫ over the signal probability space. We propose a preliminaryresult on the
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(a) (b) (c)
Figure 1: A camera surveillance image (b) with the background subtracted image (b) recovered using com-
pressive measurements of the scene. The background subtracted image has resolutionN = 240 × 320 and
sparsityK = 390. (c) A randomK = 390 sparse image inN = 240 × 320 dimensions. The probability of
image (b) under the Ising model is approximately10856 times greater than the probability of image (c).

number of random measurements needed under this new criterion; this is a direct consequence of
Theorem 5.2 of [8]. (See also [9] for related results.)

Lemma 1. Suppose thatM , N , and δ ∈ [0, 1] are given and that the signalx is generated by
a known probabilistic model. LetΩK,ǫ ⊆ ΩK denote the smallest set of supports for which the
probability that aK-sparse signalx has supp(x) /∈ ΩK,ǫ is less thanǫ, and denoteD = |ΩK,ǫ|.
If Φ is a matrix with normalized i.i.d. Gaussian or Bernoulli/Rademacher (±1) random entries,
thenΦ has the(K, ǫ)-PRIP with probability at least1 − e−c2M if M ≥ c1(K + log(D)), where
c1, c2 > 0 depend only on the PRIP constantδK .

To illustrate the significance of the above lemma, consider the following probabilistic model for
an N -dimensional,K-sparse signal. We assume that the locations of the non-zeros follow a ho-
mogeneous Poisson process with rateλ = − log(ǫ/K)N−α, whereα ≪ 1. Thus, a particular
non-zero coefficient occurs within a distance ofNα of its predecessor with probability1− ǫ/K. We
determine the size of the likelyK-sparse support setΩK under this particular signal model using
a simple counting argument. The location of the first non-zero coefficients is among the firstNα

indices with probability1 − ǫ/K. After fixing the location of the first coefficient, the location of
the second coefficient is among the nextNα indices immediately following the first location with
probability1−ǫ/K. Proceeding this way, after the locations of the firstj−1 coefficients, have been
fixed, we have that thejth non-zero coefficient is amongNα candidate locations with probability
1− ǫ/K. In this way, we obtain a set of supportsΩK,ǫ of sizeNαK that will occur with probability
(1 − ǫ/K)K > 1 − ǫ. Thus for the(K, ǫ)-PRIP to hold for a random matrix, the matrix must have
M = cK(1 + α log N) rows, as compared to thecK log(N/K) rows required for the standard
K-RIP to hold. Whenα is on the order of(log N)−1, the number of measurements required and the
complexity of the solution method growessentially linearly inK, which is a considerable improve-
ment over the best possibleM = O(K log(N/K)) measurements required without such a priori
information.

3 Graphical models for compressive sensing
Clustering of the nonzero coefficients in a sparse signal representation can be realistically captured
by a probabilisticgraphical modelsuch as a Markov random field (MRF); in this paper we will
focus for concreteness on the classical Ising model [10].

Support model. We begin with an Ising model for the signal support. Suppose we have aK-sparse
signalx ∈ R

N whose support is represented bys ∈ {−1, 1}N such thatsi = −1 whenxi = 0 and
si = 1 whenxi 6= 0. The probability density function (PDF) of the signal support can be modeled
using a graphGs = (Vs, Es), whereVs = {1, . . . , N} denotes a set ofN vertices – one for each
of the support indices – andEs denotes the set of edges connecting support indices that arespatial
neighbors (see Figure 2(a)). The contribution of the interaction between two elements{si, sj} in
the support ofx is controlled by the coefficientλij > 0. The contribution of each elementsi is
controlled by a coefficientλi, resulting in the following PDF for the sparse supports:

p(s;λ) = exp





∑

(i,j)∈Es

λijsisj +
∑

i∈Vs

λisi − Zs(λ)




 , (2)

whereZs(λ) is a strictly convex partition function with respect toλ that normalizes the distribution
so that it integrates to one. The parameter vectorλ quantifies our prior knowledge regarding the
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Figure 2:Example graphical models: (a) Ising model for the support, (b) Markov random field model for the
resulting coefficients, (c) Markov random field with CS measurements.

signal supports and consists of the edge interaction parametersλij and the vertex bias parameters
λi. These parameters can be learned from data usingℓ1-minimization techniques [11].

The Ising model enforces coefficient clustering. For example, compare the clustered sparsity of the
real background subtracted image in Figure 1(b) with the dispersed “independent” sparsity of the
random image in Figure 1(c). While both images (b) and (c) areequally sparse, under a trained Ising
model (λij = 0.45 andλi = 0), the image (b) is approximately10856 times more likely than the
image (c).

Signal model. Without loss of generality, we focus on 2D images that are sparse in the space
domain, as in Figure 1(b). Leveraging the Ising support model from above, we apply the MRF
graphical model in Figure 2(b) for the pixel coefficient values. Under this model, the support is
controlled by an Ising model, and the signal values are independent given the support. We now
develop a joint PDF for the image pixel valuesx, the support labelss, and the CS measurementsy.

We begin with the support PDFp(s) from (2) and assume that we are equipped with a sparsity-
promoting PDFp(x|s) forx givens. The most commonly used PDF is the Laplacian density (which
is related to theℓ1-norm ofx); however, other reference priors, such as generalized Gaussians that
are related to theℓp-norm ofx, p < 1, can be more effective [12]. We assume that the measurements
y are corrupted by i.i.d. Gaussian noise, i.e.,p(y|x) = N

(
y|Φx, σ2I

)
, whereσ2 is the unknown

noise variance.

From Figure 2(c), it is easy to show that, given the signalx, the signal supports and the compressive
measurementsy are independent using theD-separation property of graphs [13]. Hence, the joint
distribution of the vertices in the graph in Figure 2(b) can be written as

p(z) = p(s,x,y) = p(s,x)p(y|s,x) = p(s)p(x|s)p(y|x), (3)

wherez = [sT ,xT ,yT ]T . Then, (3) can be explicitly written as

p(z) ∝ exp





∑

(i,j)∈Es

λijsisj +
∑

i∈Vs

[λisi + log(p(xi|si))] −
1

2σ2
||y − Φx||22




 . (4)

4 Lattice matching pursuit
Using the coefficient graphical model from Section 3, we are now equipped to develop a new model-
based CS signal recovery algorithm. Lattice Matching Pursuit (LaMP) is a greedy algorithm for
signals on 2D lattices (images) in which the likelihood of the signal support is iteratively evaluated
and optimized under an Ising model. By enforcing a graphicalmodel, (i) partial knowledge of
the sparse signal support greatly decreases the ambiguity and thus size of the search space for the
remaining unknown part, accelerating the speed of the algorithm; and (ii ) signal supports of the same
size but different structures result in different likelihoods (recall Figure 1(b) and (c)), decreasing the
required number of CS measurements and increasing the numerical stability.

Algorithm. The LaMP pseudocode is given in Algorithm 1. Similar to othergreedy recovery al-
gorithms such as matching pursuit and CoSaMP [4], each iteration of LaMP starts by estimating a
data residualr{k} given the current estimate of the signalx{k−1} (Step 1). After calculating the
residual, LaMP calculates a temporary signal estimate (Step 2) denoted byx{k}

t . This signal esti-
mate is the sum of the previous estimatex{k−1} andΦ

′r{k}, accounting for the current residual.
Using this temporary signal estimate as a starting point, LaMP then maximizes the likelihood (4)
over the support via optimization (Step 3). This can be efficiently solved usinggraph cutswith
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Algorithm 1: LaMP – Lattice Matching Pursuit
Input : y, Φ, x{0} = 0, s{0} = −1, andK̃ (desired sparsity).
Output : A K̃-sparse approximationx of the acquired signal.
Algorithm:
repeat{Matching Pursuit Iterations}

Step 1. Calculate data residual:
r{k} = y − Φx{k−1};

Step 2. Propose a temporary target signal estimate:
x
{k}
t = Φ

′r{k} + x{k−1};
Step 3. Determine MAP estimate of the support using graph cuts:

s{k} = maxs∈{−1,+1}N

∑
(i,j)∈Es

λijsisj +
∑

i∈Vs

[
λisi + log(p([x

{k}
t ]i|si))

]
;

Step 4. Estimate target signal:
t = 0; t[s{k} = 1] = Φ

†[:, s{k} = 1]y; x{k} = Prune{t; K̃};
Step 5. Iterate:

k = k + 1;
until Maximum iterationsor

∥∥r{k}
∥∥ < threshold;

Return x = x{k}.

p(xi|si = −1)

p(xi|si = +1)

L

τ

τ ′

1
ǫ1

ǫ2
ǫ3

ǫ1

− log ǫ1

log ǫ2
log ǫ3

log ǫ1

1

≈ 1
τ

0

−1

⇒ log p(xi|si = −1)

⇒ log p(xi|si = +1)

⇒ log p(xi|si=−1)
− log ǫ1

⇒ log p(xi|si=+1)
log ǫ1

U−1(xi; τ)

U+1(xi; τ)

Figure 3:Geometrical approximations ofp(xi|si = −1) andlog p(xi|si = +1).

O(N) complexity [14]. In particular, for planar Ising models, the global minimum of the problem
can be obtained. Once a likely signal supports{k} is obtained in Step 3, LaMP obtains an up-
dated signal estimatex{k} using least squares with the selected columns of the measurement matrix
Φ[:, s{k} = 1] and pruning back to the largest̃K signal coefficients (Step 4). Hence, the parameter
K̃ controls the sparsity of the approximation. In Step 4, a conjugate gradient method is used for
efficiently performing the product by a pseudoinverse. If the graphical model includes dependencies
between the signal valuesxi, we then replace the pseudoinverse product by a belief propagation
algorithm to efficiently solve for the signal valuesx{k} within Step 4.

Signal log-likelihood log p(x|s). The correct signal PDF to use given the supportp(x|s) is
problem-dependent. Here, we provide one approximation that mimics theℓ0 minimization for CS
recovery for the signal graphical model in Figure 2(c); we also use this in our experiments in Sec-
tion 5. The statesi = 1 represents a nonzero coefficient; thus, all nonzero values of xi should
have equal probability, and the valuexi = 0 should have zero probability. Similarly, the state
si = −1 represents a zero-valued coefficient; thus, the mass of its probability function is concen-
trated at zero. Hence, we use the approximations forxi ∈ [−L, L], a restricted dynamic range:
p(xi|si = −1) = δ(xi) andp(xi|si = 1) = (1 − δ(xi))/2L. However, the optimization over
the joint PDF in (4) requires a “smoothing” of these PDFs for two reasons: (i) to obtain robustness
against noise and numerical issues; and (ii ) to extend the usage of the algorithm from sparse to
compressible signals.

We approximatelog p(xi|si = ±1) using the parametric form illustrated in Figure 3. Here, the
constantτ is a slack parameter to separate large and small signal coefficients, andǫ1, ǫ2, andǫ3 are
chosen according toτ andL to normalize each PDF. We also denotea = ǫ3L, with a ≈ 1. Using
the normalization constraints, it is possible to show that as the dynamic range increases,

lim
L→∞

−
log ǫ2
log ǫ1

→
1

τa
and lim

L→∞
−

log ǫ3
log ǫ1

→ 0.
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Hence, we approximate the likelihoods using the utility functionsUsi
(x; τ) that follow this form.

The optimization problem used by Step 3 of LaMP to determine the support is then approximately
equivalent to the following problem

s{k+1} = max
s∈{−1,+1}N

∑

(i,j)∈Es

λ̃ijsisj +
∑

i∈Vs

[
λ̃isi + Usi

([x
{k+1}
t ]i; τ)

]
, (5)

whereλ̃ = λ
log ǫ1

. If the signal values are known to be positive, then the definitions of Usi
can

be changed to enforce the positivity during estimation. Thechoice ofλ̃ij is related to the desired
sparseness on the lattice structure.

To enforce a desired sparsitỹK on the lattice structure, we apply statistical mechanics results on
the 2D Ising model and choosẽλij = 0.5 arcsin((1 − m8)−

1

4 ), wherem is called the average
magnetization. In our recovery problem, the average magnetization and the desired signal sparsity

has a simple relationship:m =
[
(+1) × K̃ + (−1) × (N − K̃)

]
/N . We set̃λi = 0 unless there

is prior information on the signal support. The thresholdτ is chosen at each iteration adaptively by
sorting the magnitudes of the temporary target signal estimate coefficients and determining the5K̃

threshold; this gives preference to the largest5K̃ coefficients that attain statessi = 1, unless the
cost incurred by enforcing the lattice structure is too large. The pruning operation in Step 4 of LaMP
then enforces the desired sparsityK̃.

5 Experiments
We now use several numerical simulations to demonstrate that for spatially clustered sparse signals,
which have high likelihood under our MRF model, LaMP requires far fewer measurements and
fewer computations for robust signal recovery than state-of-the-art greedy and optimization tech-
niques.1

Experiment 1: Shepp-Logan phantom. Figure 4 (top left) shows the classicalN = 100 ×
100 Shepp-Logan phantom image. Its sparsity in the space domainis K = 1740. We obtained
compressive measurements of this image, which were then immersed in additive white Gaussian
noise to an SNR of 10dB. The top row of Figure 4 illustrates theiterative image estimates obtained
using LaMP from justM = 2K = 3480 random Gaussian measurements of the noisy target.
Within 3 iterations, the support of the image is accurately determined; convergence occurs at the 5th
iteration.

Figure 4 (bottom) compares LaMP to CoSaMP [4], a state-of-the-art greedy recovery algorithm, and
fixed-point continuation (FPC) [17], a state-of-the-artℓ1-norm minimization recovery algorithm us-
ing the same set of measurements. Despite the presence of high noise (10dB SNR), LaMP perfectly
recovers the signal support from only a small number of measurements. It also outperforms both
CoSaMP and FPC in terms of speed.

Experiment 2: Numerical stability. We demonstrate LaMP’s stability in the face of substantial
measurement noise. We tested both LaMP and FPC with a number of measurements that gave close
to perfect recovery of the Shepp-Logan phantom in the presence of a small amount of noise; for
LaMP, settingM = 1.7K suffices, while FPC requiresM = 4K. We then studied the degradation
of the recovery quality as a function of the noise level for both algorithms. For reference, a value
of σ = 20 corresponds to a measurement-to-noise ratio of just 6dB. The results in Figure 5(a)
demonstrate that LaMP is stable for a wide range of measurement noise levels. Indeed, the rate of
increase of the LaMP recovery error as a function of the noisevarianceσ (a measure of the stability
to noise) is comparable to that of FPC, while using far fewer measurements.

Experiment 3: Performance on real background subtracted images. We test the recovery
algorithms over a set of background subtraction images. Theimages were obtained from a test
video sequence, one image frame of which is shown in Figure 1,by choosing at random two frames
from the video and subtracting them in a pixel-wise fashion.The large-valued pixels in the resulting
images are spatially clustered and thus are well-modeled bythe MRF enforced by LaMP. We created
100 different test images; for each image, we define the sparsity K as the number of coefficients

1We use theGCOptimizationpackage [14–16] to solve the support recovery problem in Step 3 in Algorithm
1 in our implementation of LaMP.
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Noise-free target LaMP Iter. #1 LaMP Iter. #2 LaMP Iter. #3 LaMP Iter. #4

LaMP Iter. #5, 0.9s CoSaMP, 6.2s FPC, 6.5s
Figure 4:Top: LaMP recovery of the Shepp-Logan phantom (N = 100 × 100, K = 1740, SNR = 10dB)
from M = 2K = 3480 noisy measurements. Bottom: Recoveries from LaMP, CoSaMP,and FPC, including
running times on the same computer.
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Figure 5:Performance of LaMP. (a) Maximum recovery error over 1000 noise iterations as a function of the
input noise variance. LaMP has the same robustness to noise as the FPC algorithm. (b) Performance over
background subtraction dataset of 100 images. LaMP achieves the best performance atM ≈ 2.5K, while both
FPC and CoSaMP requireM > 5K to achieve the same performance.

that contain 97% of the image energy. We then performed recovery of the image using the LaMP,
CoSaMP, and FPC algorithms under varying number of measurementsM , from 0.5K to 5K. An
example recovery is shown in Figure 6.

For each test and algorithm, we measured the magnitude of theestimation error normalized by the
magnitude of the original image. Figure 5(b) shows the mean and standard deviations for the nor-
malized error magnitudes of the three algorithms. LaMP’s graphical model reduces the number of
measurements necessary for acceptable recovery quality toM ≈ 2.5K, while the standard algo-
rithms requireM ≥ 5K measurements to achieve the same quality.

6 Conclusions
We have presented an initial study of model-based CS signal recovery using an MRF model to cap-
ture the structure of the signal’s sparse coefficients. As demonstrated in our numerical simulations,
for signals conforming to our model, the resulting LaMP algorithm requires significantly fewer CS
measurements, has lower computational complexity, and hasequivalent numerical stability to the
current state-of-the-art algorithms. We view this as an initial step toward harnessing the power of
modern compression and data modeling methods for CS reconstruction.

Much work needs to be done, however. We are working to precisely quantify the reduction in the
required number of measurements (our numerical experiments suggest thatM = O(K) is sufficient
for stable recovery) and computations. We also assert that probabilistic signal models hold the key
to formulating inference problems in the compressive measurement domain since in many signal
processing applications, signals are acquired merely for the purpose of making an inference such as
a detection or classification decision.

7



Target LaMP CoSaMP FPC

Figure 6:Example recoveries for background subtraction images, usingM = 3K for each image.
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