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Abstract

Compressive Sensing (CS) combines sampling and compnessica single sub-
Nyquist linear measurement process for sparse and conigeesgnals. In this
paper, we extend the theory of CS to include signals that aneisely repre-
sented in terms of graphical model In particular, we use Markov Random Fields
(MRFs) to represent sparse signals whose nonzero coeffi@es clustered. Our
new model-based recovery algorithm, dubhedtice Matching Pursui{LaMP),
stably recovers MRF-modeled signals using many fewer nteasents and com-
putations than the current state-of-the-art algorithms.

1 Introduction

The Shannon/Nyquist sampling theorem tells us that in oragreserve information when uni-
formly sampling a signal we must sample at least two timegefabtan its bandwidth. In many
important and emerging applications, the resulting Nytqaite can be so high that we end up with
too many samples and must compress in order to store or titatim. In other applications, in-
cluding imaging systems and high-speed analog-to-dig@averters, increasing the sampling rate
or density beyond the current state-of-the-art is very agpe. A transform compression system
reduces the effective dimensionality of Airdimensional signal by re-representing it in terms of a
sparse expansion in some basis (for example, the discreitgednansform for JPEG). By sparse we
mean that only’ < N of the basis coefficients are nonzero.

The new theory o€Eompressive sensi{@S) combines sampling and compression into a single sub-
Nyquist linear measurement process for sparse signalk [b,€S, we measure not periodic signal
samples but rather inner products with < N known measurement vectors; random measurement
vectors play a starring role. We then recover the signal laycéeng for the sparsest signal that
agrees with the measurements. Research in CS to date hagdoon reducing both the number
of measurementd/ (as a function ofV and K') and on reducing the computational complexity of
the recovery algorithm. Today'’s state-of-the-art CS systean recovek -sparse and more general
compressible signals usiny = O(K log(N/K)) measurements using polynomial-time linear
programming or greedy algorithms.

While such sub-Nyquist measurement rates are impressivesamtention in this paper is that for
CS to truly live up its name it must more fully leverage cortsdpom state-of-the-art compression
algorithms. In virtually all such algorithms, the key indrent is asignal modethat goes beyond
simple sparsity by providing a model for the basiefficient structureFor instance, JPEG does not
only use the fact that most of the DCT of a natural image ardlsRather, it also exploits the fact
that the values and locations of the large coefficients hgaaticular structure that is characteristic
of natural images. Coding this structure using an apprtgnedel enables JPEG and other similar
algorithms to compress images close to the maximum amouwstige, and significantly better than
a naive coder that just assigns bits to each large coefficidapendently.



In this paper, we extend the theory of CS to include signalsdhe concisely represented in terms
of agraphical mode[3]. We use Markov Random Fields (MRFs) to represent spagsals whose
nonzero coefficients also cluster together. Our new modséth recovery algorithm, dubbkdittice
Matching Pursuit (LaMP)performs rapid and numerically stable recovery of MRF-gied signals
using far fewer measurements than standard algorithms.

The organization of the paper is as follows. In Sections 23wk briefly review the CS and MRF
theories. We develop LaMP in Section 4 and present expetahesults in Section 5 using both
simulated and real world data. We conclude by offering ouspective on the future directions of
model-based CS research in Section 6.

2 Compressive sensing: From sparsity tetructured sparsity

Sparse signal recovery. Any signalz € R can be represented in terms §fcoefficients{o; }

in a basis{v,}¥ ;; stacking they), as columns into the matri¥ y, n, we can write succinctly
thatex = wO. We say thate has a sparse representation if oly< N entries off are nonzero,
and we denote b{ ; the set of(N) possible supports for sudki-sparse signals. We say thais
compressibléf the sorted magnitudes of the entrieséflecay rapidly enough that it can be well
approximated a& -sparse.

In Compressive Sensing (CS), the signal is not acquired asorégx or o directly. Rather, we
measure thé/ < N linear projectionyy = ®x = ®W¥6O using theM x N matrix ®. In the
sequel, without loss of generality, we focus on two-dimenal image data and assume tidat= 1
(the N x N identity matrix) so thatc = 6. The most commonly used criterion for evaluating the
quality of a CS measurement matrix is the restricted isoyawperty (RIP). A matrix® satisfies
the K-RIP if there exists a constafif > 0 such that for allX'-sparse vectors,

(1 =0r)llzll2 < [[®x[l2 < (1 + )|z 1)

The recovery of the set of significant coefficiefifds achieved usingptimization we search for
the sparsedi that agrees with the measurementd/Nhile in principle recovery is possible using a
matrix that has the K-RIP with 65 < 1, such an optimization is combinatorially complex (NP-
complete) and numerically unstable. If we instead use aixthat has thé K-RIP withds . < 1/2,
then numerically stable recovery is possible in polynoriimé using either a linear program [1, 2]
or a greedy algorithm [4]. Intriguingly, a random GaussiarBernoulli matrix works with high
probability, leading to a randomized acquisition protdostead of uniform sampling.

Structured sparsity. While many natural and manmade signals and images can betaebo the
first-order as sparse or compressible, their sparse siggettof nonzero coefficients) often have an
underlying order. This order plays a central role in thedfarm compression literature, but it has
barely been explored in the CS context [5, 6]. The theme sffihper is that by exploiting a priori
information on coefficient structuiia additionto signal sparsity, we can make CS better, stronger,
and faster.

Figure 1 illustrates a real-world example of structuredspaupport in a computer vision applica-
tion. Figure 1(b) is dackground subtracted imag@mputed from a video sequence of a parking
lot with two moving people (one image frame is shown in Figlifa)). The moving people form
the foreground (white in (b)), while the rest of the scenerf®ithe background (black in (b)). The
background subtraction was computed from CS measuremegitfits video sequence. Background
subtracted images play a fundamental role in making infexerabout objects and activities in a
scene and, by nature, they have structured spatial spawsitgysponding to the foreground innova-
tions. In other words, compared to the scale of the scendpthground innovations are usually not
only sparsebut alsoclusteredn a distinct way, e.g., corresponding to the silhouettdsushans and
vehicles. Nevertheless, this clustering property is nptated by current CS recovery algorithms.

Probabilistic RIP. The RIP treats all possibl& -sparse supports equally. However, if we incor-
porate a probabilistic model on our signal supports andidensnly the signal supports with the
highest likelihoods, then we can potentially do much betteterms of the required number of
measurements required for stable recovery.

We say that® satisfies thd K, ¢)-probabilistic RIP (PRIP) if there exists a constapt > 0 such
that for a K-sparse signak generated by a specified probabilistic signal model, (13iselith
probability at leasi — e over the signal probability space. We propose a preliminasult on the
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Figure 1: A camera surveillance image (b) with the background sut#caitnage (b) recovered using com-
pressive measurements of the scene. The background gabtiamge has resolutioN = 240 x 320 and
sparsityK = 390. (c) A randomK = 390 sparse image itN = 240 x 320 dimensions. The probability of
image (b) under the Ising model is approximatky>® times greater than the probability of image (c).

number of random measurements needed under this newamnitehis is a direct consequence of
Theorem 5.2 of [8]. (See also [9] for related results.)

Lemma 1. Suppose thal/, N, andd € [0,1] are given and that the signat is generated by

a known probabilistic model. Leétx . C Qi denote the smallest set of supports for which the
probability that a K -sparse signaic has supfx) ¢ Qg . is less thare, and denoteD = Qg .|.

If @ is a matrix with normalized i.i.d. Gaussian or BernoullifRamacher {1) random entries,
then® has the( K, ¢)-PRIP with probability at least — e=2M if M > ¢;(K + log(D)), where
c1,co > 0 depend only on the PRIP constaiat.

To illustrate the significance of the above lemma, consilderfbllowing probabilistic model for
an N-dimensional K -sparse signal. We assume that the locations of the nors-feltow a ho-
mogeneous Poisson process with rate= —log(e/K)N~%, wherea < 1. Thus, a particular
non-zero coefficient occurs within a distancedf of its predecessor with probability— e/ K. We
determine the size of the likelit-sparse support sé€lx under this particular signal model using
a simple counting argument. The location of the first norezarefficients is among the firgf®
indices with probabilityl — ¢/K . After fixing the location of the first coefficient, the loaai of
the second coefficient is among the nékt indices immediately following the first location with
probabilityl —e/ K. Proceeding this way, after the locations of the fjrst1 coefficients, have been
fixed, we have that thg'® non-zero coefficient is amon® candidate locations with probability
1 —¢/K. In this way, we obtain a set of suppofts . of size N*¥ that will occur with probability

(1 —¢/K)X > 1 — e Thus for the(K, ¢)-PRIP to hold for a random matrix, the matrix must have
M = c¢K(1 + alog N) rows, as compared to thd{ log(N/K) rows required for the standard
K-RIP to hold. Whenu is on the order oflog V) !, the number of measurements required and the
complexity of the solution method groassentially linearly ik, which is a considerable improve-
ment over the best possibld = O(K log(N/K)) measurements required without such a priori
information.

3 Graphical models for compressive sensing

Clustering of the nonzero coefficients in a sparse signaiesgmtation can be realistically captured
by a probabilisticgraphical modelsuch as a Markov random field (MRF); in this paper we will
focus for concreteness on the classical Ising model [10].

Support model. We begin with an Ising model for the signal support. Suppos@ave ak -sparse
signalz € R whose support is represented oy {—1, 1} such thats; = —1 whenz; = 0 and
s; = 1 whenz; # 0. The probability density function (PDF) of the signal sugpman be modeled
using a graplG, = (Vs, Es), whereV, = {1,..., N} denotes a set aV vertices — one for each
of the support indices — ankl, denotes the set of edges connecting support indices thapatial
neighbors (see Figure 2(a)). The contribution of the irdéoa between two elements;, s,} in
the support ofe is controlled by the coefficient;; > 0. The contribution of each elemesy is
controlled by a coefficienk,, resulting in the following PDF for the sparse suppart

p(s; A) = exp Z Aijsisj + Z Aisi — Zs(A) ¢, (2)

(i,§)EEs i€V,

whereZg(A) is a strictly convex partition function with respectXahat normalizes the distribution
so that it integrates to one. The parameter veatquantifies our prior knowledge regarding the
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Figure 2: Example graphical models: (a) Ising model for the suppbitMarkov random field model for the
resulting coefficients, (c) Markov random field with CS meeasoents.

signal suppors and consists of the edge interaction parametgrand the vertex bias parameters
;. These parameters can be learned from data dshnginimization techniques [11].

The Ising model enforces coefficient clustering. For exan@bmpare the clustered sparsity of the
real background subtracted image in Figure 1(b) with thpat®sed “independent” sparsity of the
random image in Figure 1(c). While both images (b) and (cegreally sparse, under a trained Ising
model (\;; = 0.45 and); = 0), the image (b) is approximatelyp®>° times more likely than the
image (c).

Signal model. Without loss of generality, we focus on 2D images that aresgpa the space
domain, as in Figure 1(b). Leveraging the Ising support rméaden above, we apply the MRF
graphical model in Figure 2(b) for the pixel coefficient vdu Under this model, the support is
controlled by an Ising model, and the signal values are iaddpnt given the support. We now
develop a joint PDF for the image pixel valuesthe support labels, and the CS measurements

We begin with the support PDE{(s) from (2) and assume that we are equipped with a sparsity-
promoting PDFp(x|s) for « givens. The most commonly used PDF is the Laplacian density (which
is related to theé/;-norm of x); however, other reference priors, such as generalizedstms that
are related to thé,-norm ofz, p < 1, can be more effective [12]. We assume that the measurements
y are corrupted by i.i.d. Gaussian noise, iy|z) = N (y|<I>:B, UQI), wheres? is the unknown
noise variance.

From Figure 2(c), it is easy to show that, given the signadhe signal suppoit and the compressive
measurementg are independent using the-separation property of graphs [13]. Hence, the joint
distribution of the vertices in the graph in Figure 2(b) canritten as

p(z) = p(s,z,y) = p(s, z)p(yls, ) = p(s)p(x|s)p(ylz), @)
wherez = [sT, 2T, yT]T. Then, (3) can be explicitly written as
1
p(z) cexpq Y Agsis;+ Y [Aisi + log(p(wi]si))] — 552 1Y — Pa||; o 4
(4,j)EEs 1€Vs

4 Lattice matching pursuit

Using the coefficient graphical model from Section 3, we aw aquipped to develop a new model-
based CS signal recovery algorithm. Lattice Matching Fu(saMP) is a greedy algorithm for
signals on 2D lattices (images) in which the likelihood o #ignal support is iteratively evaluated
and optimized under an Ising model. By enforcing a graphicatlel, {) partial knowledge of
the sparse signal support greatly decreases the ambigudtthas size of the search space for the
remaining unknown part, accelerating the speed of the igoyand (i) signal supports of the same
size but different structures result in different likeldds (recall Figure 1(b) and (c)), decreasing the
required number of CS measurements and increasing the oafrstability.

Algorithm. The LaMP pseudocode is given in Algorithm 1. Similar to otgexedy recovery al-
gorithms such as matching pursuit and CoSaMP [4], eachtiberaf LaMP starts by estimating a
data residuar{*} given the current estimate of the signal*—1} (Step 1). After calculating the
residual, LaMP calculates a temporary signal estimatep(3elenoted byct{k}. This signal esti-
mate is the sum of the previous estimaté~'} and®'r{*}, accounting for the current residual.
Using this temporary signal estimate as a starting pointJRdhen maximizes the likelihood (4)
over the support via optimization (Step 3). This can be effity solved usingyraph cutswith



Algorithm 1: LaMP — Lattice Matching Pursuit
Input: y, ®, {9 = 0, s{0 = —1, andK (desired sparsity).
Output: A K-sparse approximatian of the acquired signal.
Algorithm:
repeat {Matching Pursuit Iteratior}s
Step 1. Calculate data residual:
,,,{k} — y — @m{kil},
Step 2. Propose a temporary target signal estimate:
:cfk} = &'plk} 4 plk-1}:
Step 3. Determine MAP estimate of the support using graph cut
stht = mMaxXge( 1, 41}¥ Z(i,j)eEs AijSisi+ D icvy. |:/\i5i + log(p([mgk}MSi)) ;
Step 4. Estimate target signal:
t=0; t[s?? =1]=&: s* =1)y; = = Prune{t; K};
Step 5. lterate:
k=k+1,
until Maximum iterationsr ||r{¥}|| < threshold;
Return a = (¥},

1 —logeq 1
S _17- \ o = logp(alsi=-1) []] = BT } | Ui
€2 , IOg €9 ~ %
«— L — €3 — T log €3 0
plails: = +1) = log p(zils: = +1) \ { = lplulazsl ) { U (237
€1 log €1 1
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Figure 3:Geometrical approximations @fz;|s; = —1) andlog p(x;|s; = +1).

O(N) complexity [14]. In particular, for planar Ising modelsetglobal minimum of the problem
can be obtained. Once a likely signal suppert! is obtained in Step 3, LaMP obtains an up-
dated signal estimatet*} using least squares with the selected columns of the maasutenatrix
®[:, st = 1] and pruning back to the Iargegt signal coefficients (Step 4). Hence, the parameter

K controls the sparsity of the approximation. In Step 4, a wgafe gradient method is used for
efficiently performing the product by a pseudoinverse. éfdaphical model includes dependencies
between the signal values, we then replace the pseudoinverse product by a belief pedjuam
algorithm to efficiently solve for the signal valug$*} within Step 4.

Signal log-likelihood log p(x|s). The correct signal PDF to use given the suppgtt|s) is
problem-dependent. Here, we provide one approximationniaics the/, minimization for CS
recovery for the signal graphical model in Figure 2(c); weoalse this in our experiments in Sec-
tion 5. The states; = 1 represents a nonzero coefficient; thus, all nonzero valties should
have equal probability, and the valug = 0 should have zero probability. Similarly, the state
s; = —1 represents a zero-valued coefficient; thus, the mass ofatsapility function is concen-
trated at zero. Hence, we use the approximations:foe [—L, L], a restricted dynamic range:
p(xils; = —=1) = 6(z;) andp(z;i|s; = 1) = (1 — 6(x;))/2L. However, the optimization over
the joint PDF in (4) requires a “smoothing” of these PDFs oo teasons:i} to obtain robustness
against noise and numerical issues; aindt¢ extend the usage of the algorithm from sparse to
compressible signals.

We approximatéog p(z;|s; = +1) using the parametric form illustrated in Figure 3. Here, the
constant is a slack parameter to separate large and small signal@eats, and , ez, ande; are
chosen according te and L to normalize each PDF. We also denate- ¢3L, with ¢ ~ 1. Using
the normalization constraints, it is possible to show tisah& dynamic range increases,

1 1 1
_ 982 . and lim - 2% g
L—oo  loge; TQ L—oo  logey




Hence, we approximate the likelihoods using the utilitydtionsUs, (z; 7) that follow this form.
The optimization problem used by Step 3 of LaMP to determtireesupport is then approximately
equivalent to the following problem

N N k+1
sth+1} — se{I—nla.,Lfl}N Z Nijsis; + Z [)\isi + Usi([m;{ }]1-;7') , (5)
(i,7)EE, i€V

A
Toger " ~
be changed to enforce the positivity during estimation. @heice of);; is related to the desired
sparseness on the lattice structure.

where) = If the signal values are known to be positive, then the dégims of U,, can

To enforce a desired sparsif\j on the lattice structure, we apply statistical mechanisslte on

the 2D Ising model and choosg; = 0.5 arcsin((1 — m8)~1), wherem is called the average
magnetization. In our recovery problem, the average mazaign and the desired signal sparsity

has a simple relationshipn = [(+1) x K+ (=1) x (N — IN{)} /N. We set\; = 0 unless there
is prior information on the signal support. The threshold chosen at each iteration adaptively by
sorting the magnitudes of the temporary target signal esérooefficients and determining th&

threshold; this gives preference to the largekt coefficients that attain states = 1, unless the
cost incurred by enforcing the lattice structure is toodarhe pruning operation in Step 4 of LaMP

then enforces the desired sparﬁy

5 Experiments

We now use several numerical simulations to demonstratédhapatially clustered sparse signals,

which have high likelihood under our MRF model, LaMP reqsifar fewer measurements and

fewer computations for robust signal recovery than stéténe@-art greedy and optimization tech-
H 1

niques:

Experiment 1: Shepp-Logan phantom. Figure 4 (top left) shows the classicAl = 100 x

100 Shepp-Logan phantom image. Its sparsity in the space doisdin= 1740. We obtained
compressive measurements of this image, which were thereisgd in additive white Gaussian
noise to an SNR of 10dB. The top row of Figure 4 illustratesitiiative image estimates obtained
using LaMP from justM = 2K = 3480 random Gaussian measurements of the noisy target.
Within 3 iterations, the support of the image is accurateligdnined; convergence occurs at the 5th
iteration.

Figure 4 (bottom) compares LaMP to CoSaMP [4], a state-efdtt greedy recovery algorithm, and
fixed-point continuation (FPC) [17], a state-of-the4arhorm minimization recovery algorithm us-
ing the same set of measurements. Despite the presencénafdime (10dB SNR), LaMP perfectly
recovers the signal support from only a small number of measents. It also outperforms both
CoSaMP and FPC in terms of speed.

Experiment 2: Numerical stability. We demonstrate LaMP’s stability in the face of substantial
measurement noise. We tested both LaMP and FPC with a nurhiverasurements that gave close
to perfect recovery of the Shepp-Logan phantom in the poesefa small amount of noise; for
LaMP, settingM = 1.7K suffices, while FPC require = 4K . We then studied the degradation
of the recovery quality as a function of the noise level fothbalgorithms. For reference, a value
of & = 20 corresponds to a measurement-to-noise ratio of just 6dB.r€&kults in Figure 5(a)
demonstrate that LaMP is stable for a wide range of measurenoése levels. Indeed, the rate of
increase of the LaMP recovery error as a function of the nasiancer (a measure of the stability
to noise) is comparable to that of FPC, while using far feweasurements.

Experiment 3: Performance on real background subtracted inages. We test the recovery

algorithms over a set of background subtraction images. iflages were obtained from a test
video sequence, one image frame of which is shown in Figuog thoosing at random two frames
from the video and subtracting them in a pixel-wise fashiime large-valued pixels in the resulting
images are spatially clustered and thus are well-model¢ldeWMRF enforced by LaMP. We created
100 different test images; for each image, we define the #pdisas the number of coefficients

1\We use thésCOptimizatiorpackage [14—16] to solve the support recovery problem ip $ia Algorithm
1 in our implementation of LaMP.
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Figure 4: Top: LaMP recovery of the Shepp-Logan phanta £ 100 x 100, K = 1740, SNR = 10dB)
from M = 2K = 3480 noisy measurements. Bottom: Recoveries from LaMP, CoSaktiPFPC, including
running times on the same computer.
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Figure 5: Performance of LaMP. (a) Maximum recovery error over 1008ederations as a function of the
input noise variance. LaMP has the same robustness to neigedPC algorithm. (b) Performance over
background subtraction dataset of 100 images. LaMP achtbegbest performance &l ~ 2.5K, while both
FPC and CoSaMP requitd > 5K to achieve the same performance.

that contain 97% of the image energy. We then performed mgaf the image using the LaMP,
CoSaMP, and FPC algorithms under varying number of measmesd/, from 0.5K to 5K. An
example recovery is shown in Figure 6.

For each test and algorithm, we measured the magnitude ektivaation error normalized by the
magnitude of the original image. Figure 5(b) shows the meahstandard deviations for the nor-
malized error magnitudes of the three algorithms. LaMPapyical model reduces the number of
measurements necessary for acceptable recovery quality te 2.5K, while the standard algo-
rithms requireM > 5K measurements to achieve the same quality.

6 Conclusions

We have presented an initial study of model-based CS sigealery using an MRF model to cap-
ture the structure of the signal’'s sparse coefficients. Asatestrated in our numerical simulations,
for signals conforming to our model, the resulting LaMP aiton requires significantly fewer CS
measurements, has lower computational complexity, ancefaiwalent numerical stability to the
current state-of-the-art algorithms. We view this as atiahstep toward harnessing the power of
modern compression and data modeling methods for CS reaaotish.

Much work needs to be done, however. We are working to prigcigeantify the reduction in the
required number of measurements (our numerical expergseigigest that/ = O(K) is sufficient

for stable recovery) and computations. We also assert thagpilistic signal models hold the key
to formulating inference problems in the compressive memmant domain since in many signal
processing applications, signals are acquired merehh®ptirpose of making an inference such as
a detection or classification decision.



Target LaMP CoSaMP FPC

Figure 6:Example recoveries for background subtraction imagesgudi = 3K for each image.
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