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Abstract

In video database systems, one of the most important methods for discriminating the videos is by using the objects and the
perception of spatial and temporal relations that exist between objects in the desired videos. In this paper, we propose a new
spatio-temporal knowledge representation called 3D C-string. The knowledge structure of 3D C-string, extended from the 2D
C+-string, uses the projections of objects to represent spatial and temporal relations between the objects in a video. Moreover,
it can keep track of the motions and size changes of the objects in a video. The string generation and video reconstruction
algorithms for the 3D C-string representation of video objects are also developed. By introducing the concept of the template
objects and nearest former objects, the string generated by the string generation algorithm is unique for a given video and
the video reconstructed from a given 3D C-string is unique too. This approach can provide us an easy and e;cient way to
retrieve, visualize and manipulate video objects in video database systems. Finally, some experiments are performed to show
the performance of the proposed algorithms. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All
rights reserved.
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1. Introduction

In video database systems, one of the most important
methods for discriminating the videos is by using the ob-
jects and the perception of spatial and temporal relations
that exist between objects in the desired videos. Therefore,
how videos are stored in a database becomes an important
design issue of video database systems. The spatio-temporal
knowledge embedded in videos should be preserved in the
knowledge structure and the knowledge structure should be
object-oriented, so that users can easily retrieve, visualize
and manipulate videos in video database systems. In com-
parison with text, image, and audio, video contains richer
information [1,2]. But the richness results in the lack of
generally accepted representation of a video. Oomoto and
Tanaka [3] considered a video as a sequence of video frames
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and represent a video as a collection of attribute=value pairs.
Weiss et al. [4] used algebraic operators to assemble videos.
Smoliar and Zhang [5] modeled the content of videos in two
steps. First of all, videos were classiHed into classes and
these classes formed a tree of topical categories according
to their topics. By taking a horizontal or vertical slice on a
video shot, the movement of a symbol in the video can be
traced.

Chang et al. [6] proposed the concept of 2D string to rep-
resent the spatial relations between the objects in an image
(image objects for short). The basic idea was to project the
image objects onto the x- and y-axis to form two strings
representing the relative positions of the projections in the
x- and y-axis, respectively. The knowledge structure of 2D
string [7] used the projections of image objects to represent
spatial relations between the objects. An image query can
also be speciHed as a 2D string. This approach provided
a natural way to construct iconic indexes for images and
supported spatial reasoning, image queries, visualization,
and image manipulation. There was a lot of follow-up
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research based on the concept of 2D string including 2D
G-string [8], 2D C-string [9–11], 2D C+-string [12], and
2D RS-string [13].

Liu and Chen [14] extended the notion of 2D string to
meet the requirement and characteristics of videos and de-
Hned 3D string to represent the relations between the objects
in a video (video objects for short). The knowledge structure
of 3D string used the projections of video objects to repre-
sent spatial and temporal relations between them. The basic
idea was to project the video objects onto the x-, y-, and
time-axis to form three strings representing the relative po-
sitions of the projections in the x-, y-, and time-axis, respec-
tively. This approach can provide an easy way to retrieve,
visualize and manipulate objects in video database systems.
But according to their deHnition, they only recorded the cen-
tral point and starting frame number for a video object. So
they cannot realize the spatial overlapping relations and pre-
cise temporal relations between the video objects. The infor-
mation about the motions and size changes of video objects
was omitted in their work.

Therefore, we need a more compact and precise knowl-
edge structure to represent spatio-temporal relations between
the video objects and to manipulate the information about
the motions and size changes associated with them. In this
paper, we extend the concepts of 2D C+-string [12] to meet
the requirement and characteristics of a video. We propose
3D C-string to represent the spatio-temporal relations be-
tween the video objects and to overcome the weakness of
3D string. 3D C-string can keep track of the motions and
size changes associated with the video objects and represent
more precise spatio-temporal relations between the video
objects.

In Section 2, we give a brief analysis of previous ap-
proaches of 2D string and 3D string. Then we explain the
reason why we extend the concepts of 2D C+-string to over-
come the weakness of 3D string. In Section 3, we present
3D C-string, a new spatio-temporal knowledge representa-
tion of a video. The string generation algorithm is described
in Section 4. Then we propose a video reconstruction
algorithm based on the 3D C-string representation in Sec-
tion 5. In Section 6, the results on some performance
experiments are presented. Finally, conclusions are made
in Section 7.

2. Analysis of previous 2D and 3D string approaches

Chang et al. [6] proposed the 2D strings to represent
spatial relations of image objects by their projections. An
image objects is enclosed by a minimum bounding rectan-
gle (MBR). The reference point of an image object is the
centroid of its MBR. A symbolic picture is formed by col-
lecting the MBRs of the image objects in the original image.
The symbolic picture can be used to represent the spatial
relations between the image objects and is encoded as a 2D
string.

The advantage of this spatial knowledge representation
is that 2D strings can be used in iconic indexing and spa-
tial reasoning for image database systems. Since a symbolic
picture can also be quickly reconstructed from such a 2D
string for visualization, the 2D string representation with ap-
propriate picture reconstruction algorithm can also be used
for browsing the images in an image database. There are
three spatial relation operators employed in 2D strings. The
symbol “¡” denotes the “left–right or below–above” spatial
relation. The symbol “=” denotes the “at the same spatial
location as” relation and the symbol “:” stands for “in the
same set as” relation.

Later, Jungert and Chang [8,15,16] extended the idea of
2D strings to form 2D G-strings by introducing several new
spatial operators to represent more topological relations be-
tween the image objects. The 2D G-string representation
embeds more information about spatial relations between
the image objects, hence facilitates spatial reasoning about
shapes and relative positions of the image objects.

Following the same concept, Lee and Hsu [9] proposed
the 2D C-string representation based on a special cutting
mechanism. Since the number of subparts generated by this
new cutting mechanism is reduced signiHcantly, the string
representing an image is much shorter while still preserv-
ing the spatial relations between the image objects. The 2D
C-string representation is more economical in terms of stor-
age space and navigation complexity in spatial reasoning. In
2D C-string, there are 13 types of spatial relations between
two one-dimensional (1D) intervals. One of them is “equal”
relation and six of them are symmetric relations of the oth-
ers. Hence, those relations can be represented by seven spa-
tial operators whose notations and conditions are listed in
Table 1, where Begin(A) and End(A) are the begin-bound
and end-bound of the x- (or y-) projection of object A,
respectively.

The 2D C-string representation captures the spatial re-
lations between the image objects; however, it ignores the
information about relative sizes and locations of the image
objects. Hence, the 2D C-string representation results in am-
biguity of spatial relations between the image objects. The
reason of producing the ambiguity is that the metric infor-
mation is ignored in a 2D C-string.

To overcome this problem, Huang and Jean [12] proposed
the knowledge structure 2D C+-string. In 2D C+-string, each

Table 1
The deHnitions of spatial operators in 2D C-string

Notations Conditions

A¡B End(A)¡Begin(B)
A = B Begin(A) = Begin(B); End(A) = End(B)
A |B End(A) = Begin(B)
A%B Begin(A)¡Begin(B);End(A)¿End(B)
A[B Begin(A) = Begin(B); End(A)¿End(B)
A]B Begin(A)¡Begin(B); End(A) = End(B)
A=B Begin(A)¡Begin(B)¡End(A)¡End(B)
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image object has two pairs of begin-bounds and end-bounds.
One of them is for the x-projection of the image object and
the other for the y-projection. From the begin-bounds and
end-bounds of the projections, the sizes of image objects
and the distances between image objects can be calculated.
It only has to calculate three kinds of metric information:
the size of image object A = End(A) − Begin(A), operator
“¡” with the distance between image objects A and B =
Begin(B)−End(A), operator “%” with the distance between
image objects A and B = Begin(B) − Begin(A). Using the
2D C+-string representation, the ambiguity problem in 2D
C-strings is resolved.

In the knowledge structure of 3D string [14], video ob-
jects are projected onto the x-, y-, and time-axis to form
three strings representing the relative positions and relations
of the projections in the x-, y-, and time-axis, respectively.
A video object is represented by its central point and start-
ing frame number. Two operators “|n” and “≡” are intro-
duced in 3D string. The operator “|n” denotes the distance
between two video objects. A |n B denotes that video object
A is adjacent to video object B and the distance between the
central points of video objects A and B is n. “≡” denotes the
appositional relation. A ≡ B denotes that video object A is
appositional to video object B. Since 3D string cannot rep-
resent the information about the motions and size changes
of video objects, it results in a certain ambiguity. Let us
consider the example shown in Fig. 1.

In Fig. 1, videos M and N appear obviously diPerent. But
they have the same 3D string. Their 3D X -string is A ≡ B,
Y -string is B |3 A, time-string is A ≡ B. We can see that
videos M and N have the same 3D X - and Y -strings although
video objects A and B have diPerent sizes, and spatial re-
lations. This is because both video objects A in videos M
and N have the same central point and both video objects B
have the same central point too. Videos M and N have the
same 3D time-string although video objects A and B have
diPerent motion and temporal relations. This is because they
have the same starting frame. This example shows that 3D
string cannot manipulate the information about the motions

 

 

 

 

 

 

   

Fig. 1. Two diPerent videos have the same 3D string.

and size changes of video objects. It cannot represent spatial
and temporal relations between the video objects precisely
either.

Therefore, we need one more compact and precise knowl-
edge structure to represent spatio-temporal relations between
the video objects and to manipulate the information about
the motions and size changes associated with the video ob-
jects.

Based on the above analysis, in this paper we propose a
new spatio-temporal knowledge representation for videos,
called 3D C-string. The 3D C-string is extended from the
concepts of the 2D C+-string, and it can overcome the weak-
ness of 3D string. 3D C-string can keep track of the motions
and size changes associated with video objects and preserve
more precise spatio-temporal relations between the video
objects.

3. 3D C-string representation of symbolic videos

In the knowledge structure of 3D C-string, video ob-
jects are projected onto the x-, y-, and time-axis to form
three strings to represent the spatial (or temporal) relations
between the projections in the x-, y-, and time-axis, respec-
tively. In comparison with 2D C+-string, 3D C-string has
one more dimension: time dimension. So 3D C-string is
diPerent from 2D C+-string that has only spatial relations
between the image objects, it has spatial and temporal re-
lations between the video objects. Hence, it is required to
keep track of the information about the motions and size
changes of the video objects in 3D C-string.

There are 13 relations for one-dimensional intervals in the
knowledge structure of 3D C-string. For the x (or y) dimen-
sion, there are 13 spatial relations between the x- (or y-)
projections of video objects and the corresponding spatial
operators have been listed in 2D C-string [9] as shown in
Table 1. In the time dimension, there are 13 temporal rela-
tions between the time-projections of video objects, too. So
we use the same temporal operators as the spatial operators.
For example, in the x (or y) dimension, A¡B represents
that the x-projection of video object A is before that of video
object B. In the time dimension, A¡B denotes that video
object A disappears before video object B appears.

A video object in the knowledge structure of 3D C-string
is approximated by a minimum bounding rectangle (MBR)
whose sides are parallel to the x- or y-axis. For each video
object, we keep track of the initial location and size of the
video object. That is, we keep track of the location and size
of a video object in its starting frame. After keeping track
of the initial locations and sizes of video objects, we record
the information about the motions and size changes of the
video objects in the knowledge structure of 3D C-string.

To record the time points when the motion and size of
a video object is changed, we introduce one more temporal
operator, “|t”. Operator |t denotes that a video object may
change its state, including the motion and size change of the
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video object. For example, A3 |t A6 denotes that in the Hrst
three frames, video object A remains in the same state of the
motion and size change. However, from the fourth frame to
the ninth frame, the state of the motion and size change of
video object A is changed into another.

Based on the above analyses and discussions, we pro-
pose the knowledge structure of 3D C-string to represent
spatio-temporal relations between the video objects of
interest.

De�nition 1. The knowledge structure of 3D C-string is a
7-tuple (O;A;C;Rg;Rl;Rm ;“( )”) where

(1) O is the set of video objects of interest;
(2) A is the set of attributes to describe the objects in O;
(3) C is the cutting mechanism; which consists of a set of

cutting lines;
(4) Rg = {“¡”; “|”; “|t”} is the set of global relation

operators; where “|t” only uses in the time dimension.
A “|t” operator is generated for each time point when
the state of a video object is changed;

(5) Rl = {“=”; “[”; “]”; “%”} is the set of local relation
operators;

(6) Rm ={“↑”; “↓”} is the set of motion operators to denote
the direction of the motion of a video object; and it only
uses in the u- and v-strings. Operator ↑ denotes that the
video object moves along the positive direction of the
x- (or y-) axis. Operator ↓ denotes that the video object
moves along the negative direction of the x- or (y-) axis;

(7) “( )” is a pair of separators which are used to describe
a set of video objects as a spatial template object or
temporal template object.

According to the research result of Lee and Hsu [9], we
know that all 13 operators except “=” can precisely represent
the relations (no ambiguity) between two objects. To avoid
using the “=” operator, we can use A]B |B to replace A=B
in our cutting mechanism and string generation algorithm
described in Section 4.

Next, we add some metric information to the knowledge
structure of 3D C-string.

1. Video object A with size s of its x-projection is denoted
as As, where s= Endx(A)−Beginx(A), where Beginx(A)
and Endx(A) are the begin-bound and end-bound of the
x-projection of video object A, respectively. Video object
A with size s′ of its y-projection is denoted as As′ , where
s′=Endy(A)−Beginy(A). Similarly, video object A with
size (or length) s′′ of its time-projection is denoted as
As′′ , where As′′ = Endtime(A)− Begintime(A).
For example,

2 7

A

is represented by A5.

2. Operator “¡” with the distance d between the x- (or y-)
projection of video object A and that of video object B is
denoted as A¡d B, where d= Beginx(B)−Endx(A) (or
d=Beginy(B)−Endy(A)). In the knowledge structure of
3D C-string, we only keep track of the initial location of
a video object. Hence, for A¡d B, the starting frame of
video object A may be diPerent from that of video object
B. Similarly, operator “¡” with the distance d′ between
the time-projection of video object A and that of video
object B is denoted as A¡d′ B, where d′=Begintime(B)−
Endtime(A).
For example,

2

A

5

B

is represented by A¡3 B.
3. Operator “%” with the distance d between the x- (or y-)

projection of video object A and that of video object B is
denoted as A%dB, where d= Beginx(B)−Beginx(A) (or
d = Beginy(B) − Beginy(A)). Similarly, operator “%”
with the distance d′ between the time-projection of video
object A and that of video object B is denoted as A%d′B,
where d′ = Begintime(B)− Begintime(A).
For example,

2 A

7 B

is represented by A%5B.
4. Operators “↑v; r” and “↓v; r” have two subscripts (Helds).

v is the velocity of the motion and r is the rate of size
change of the video object. For example, u-string A ↑2;1

denotes that video object A moves along the positive
direction of the x-axis with the velocity = 2 and the rate
of size change = 1. That is, the size of video object A
remains unchanged.

5. Other operators: no metric information.

To see how 3D C-string works, let us consider the fol-
lowing example as shown in Fig. 2. The projections of the
initial locations of video objects A; B, and C are shown in
Fig. 3. The corresponding 3D C-string of the video is shown
in Fig. 2(b).

From frame 1 to 6, video object A moves from bottom
to top along the positive direction of the y-axis with the
velocity of 1 unit=frame, but no motion along the x-axis. So
A2 is followed by operator ↑0;1 in the u-string and followed
by operator ↑1;1 in the v-string.

If we add three more frames to the previous video as
shown in Fig. 4(a), the corresponding 3D C-string of the
video is shown in Fig. 4(b).

From frame 7 to 9, video object A changes its motion
and moves from left to right along the positive direction of
the x-axis with the velocity of 1 unit=frame, but no motion
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Fig. 2. An example video and the corresponding 3D C-string.
(a) A video contains 6 frames; (b) The corresponding 3D C-string.

Fig. 3. Projecting the video objects in Fig. 2 onto the x-, y- and
time-dimensions: (a) Projecting the initial locations of video objects
A, B, and C onto the x–y plane. (b) Projecting the time intervals
of video objects A, B, and C onto the time dimension.

 

 

 

 

         

    

 

      

Fig. 4. The video containing three more frames. (a) Three more
frames are added to the previous video in Fig. 2; (b) The corre-
sponding 3D C-string.

along the y-axis. Video object C is getting larger along the
x-axis with the rate of size change of 1.225 unit=frame, but
no size change along the y-axis in frames 7–9. However,

there is no motion for the central point of video object C.
Because video objects A and C change their states, oper-
ator “|t” appears in the t-string of video objects A and C.
Therefore, the knowledge structure of 3D C-string provides
an easy and e;cient way to represent the spatio-temporal
relations between the video objects.

Now, we can generate the 3D C-string for the example as
shown in Fig. 1. Videos M and N have the same 3D string
but their 3D C-strings appear quite diPerent.

Video M: Video N:

u: (A3 ↑1;1 =B3) u: (B6%2A2)
v: (B2 ¡1 A2) v: (B2 ¡1 A2)
t: (A3[B1) t: (B3[A1).

By using the 3D C-string representation, the ambiguity
problem in 3D string can be resolved. The knowledge struc-
ture of 3D C-string provides us more precise descriptions of
the motions and size changes of the video objects. The tem-
poral relations between the video objects can be represented
in 3D C-string too.

Besides recording the information about the motion of
translation and size change of a video object, 3D C-string can
be used to represent the motion of rotation of a video object.
Let us consider the example shown in Fig. 5(a). In this
example, the video contains a still video object (house) and
a moving video object (car) with the motion of translation
and rotation. Both video objects are approximated by the
MBRs.

The corresponding 3D C-string of the video is shown in
Fig. 5(b). The central point of video object B moves along
the negative direction of the x-axis with the velocity of 92
pixels=frame in frames 1–2. From frame 2 to 3, the central
point of video object B moves along the negative direction
of the x-axis with the velocity of 59 pixels=frame. The width
of video object B is changed from 36 to 38 pixels. So, the
rate of size change is 38=36 ∼= 1:056, where “∼=” is an
approximation operator. From frame 3 to 4, the central point
of video object B moves along the negative direction of the
x-axis with the velocity of 46 pixels=frame. The width of
video object B is changed from 38 to 34 pixels. So, the rate of
size change is 34=38 ∼= 0:895. From frame 4 to 5, the central
point of video object B moves along the negative direction of
the x-axis with the velocity of 30 pixels=frame. The width of
video object B is changed from 34 to 22 pixels. So, the rate of
size change is 22=34 ∼= 0:647. From frame 5 to 6, the central
point of video object B moves along the negative direction
of the x-axis with the velocity of 12 pixels=frame. The width
of video object B is changed from 22 to 18 pixels. So, the
rate of size change is 18=22 ∼= 0:818. Hence, the u-string of
the video is A66 ¡36 B36 ↓92;1↓59;1:056↓46;0:895↓30;0:647↓12;0:818.
Similarly, we can obtain the v-string as shown in Fig. 5(b).

Then, let us consider a video containing a repeated event
in which a video object appears above video object C and
moves along the positive direction of the y-axis as shown
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Fig. 5. The video object with the motion of translation and rotation. (a) The video objects are approximated by the MBRs; (b) The
corresponding 3D C-string.

      

 

 

 

         

    

      

 

 

 

         

    

 

   

   

Fig. 6. A video containing a repeated event and its 3D C-string.
(a) A video containing a repeated event; (b) The corresponding
3D C-string.

in Fig. 6(a). The corresponding 3D C-string of the video is
shown in Fig. 6(b).

From the u- and v-strings of the video shown in Fig. 6(b),
we can see that video objects A and B have the equal relation
and both video objects are followed by the same string of
motion and size change. It means that they are of the same
size and located at the same spatial location. They also have
the same motion and rate of size change. In the t-string,
the time-projections of video objects A and B have the “|”
relation. It means that video object B appears immediately

after video object A disappears. Hence, a video containing a
repeated event can be represented in the knowledge structure
of 3D C-string.

Let us consider another video containing a repeated event
in which the video objects (balls) A and E have cyclic
motions as shown in Fig. 7(a). The corresponding 3D
C-string of the video is shown in Fig. 7(b).

From the u-string of the video, the motion operators fol-
lowing A40 form a repeated pattern of ↑0;1↓1:2;1↑1:2;1. The
motion operators following A40 in the v-string form a re-
peated pattern of ↑0;1↑0:6;1↓0:6;1. In the t-string, there is a
repeated pattern of A20|tA10|tA10. Similarly, the motion op-
erators following E40 in the u-string form a repeated pattern
of ↑1:2;1↓1:2;1↑0;1 while that in the v-string form a repeated
pattern of ↑0:6;1↓0:6;1↑0;1. In the t-string, there is a repeated
pattern of E10|tE10|tE20. Hence, a video containing a cyclic
motion can be easily represented in the knowledge structure
of 3D C-string.

Therefore, it has been shown that in the knowledge
structure of 3D C-string, we can easily manipulate the spatio-
temporal relations between the video objects. The know-
ledge structure of 3D C-string provides us an easy and
e;cient way to represent the spatio-temporal relations
between the video objects in video database systems.

4. String generation algorithm

This section describes a cutting mechanism and string
generation algorithm for the knowledge structure of 3D
C-string. The string generation algorithm, which is extended
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Fig. 7. Another repeated event. (a) The video objects of interest are approximated by the MBRs; (b) The corresponding 3D C-string.

from the concept of the cutting and string generation algo-
rithm proposed by Huang and Jean [12], consists of two
parts: spatial string generation and temporal string genera-
tion. The basic diPerences from Huang and Jean’s are: (1)
in the knowledge structure of 3D C-string, it is required
to process temporal relations (t-string) and the information
about the motions and size changes of video objects; (2) by
introducing the concept of template objects and nearest for-
mer objects (described later), the 3D C-string generated by
the string generation algorithm is unique.

4.1. Spatial string generation

In the spatial string generation algorithm, we introduce
a new type of objects: spatial template object. A spatial tem-
plate object covers the objects enclosed between “(” and “)”
separators and is viewed as a new object. The begin-bound
of the spatial template object is the smallest begin-bound in
all the covered objects. Similarly, the end-bound of the spa-
tial template object is the largest end-bound in all the cov-
ered objects. For example, (A2 ¡3 B5) is a spatial template
object whose begin-bound is 0 and end-bound is equal to
2 + 3 + 5 = 10.

To generate the spatial strings, we Hrst Hnd all the dom-
inating objects, which is deHned by Lee and Hsu [9], by
scanning the x- (or y-) projections of video objects from left
to right along the x- (or y-) axis. The projections of video
objects with the same end-bound are grouped into a list. In
the list, an object with the smallest begin-bound is called

the dominating object. If an object partly overlaps with the
dominating object, a cutting is performed at the location of
the end-bound of the dominating object. The cutting line
is parallel to the x- (or y-) axis. Assume that the projec-
tion of a video object Oi (Bi; Ei; Li) is cut at the location
c, where Bi is the begin-bound, Ei is the end-bound, and Li

is a linked list recording the information about the motions
and size changes of video object Oi in the x- (or y-) dimen-
sion. When the projection of video object Oi is split into
two subobjects, the linked list Li is only given in the leading
subobject. So, the projection of video object Oi is split into
two subobjects Oi (Bi; c; Li) and Oi (c; Ei).

By scanning from left to right along the x- (or y-) axis, we
shall Hnd all dominating objects. For each dominating object,
the objects covered by the dominating object are merged
into a spatial template object. Finally, we can merge together
those spatial template objects and the remaining objects not
covered by any dominating objects. How to merge objects
into a spatial template object is described later in the spatial
template object generation algorithm. This is the main idea
of the spatial string generation algorithm.

The spatial string generation algorithm is described in
detail as follows:

Algorithm: Spatial string generation

Input: O1 (B1; E1; L1), O2 (B2; E2; L2), O3 (B3; E3; L3); : : : ;
On (Bn; En; Ln)

Output: An u-string (or v-string)



2528 A.J.T. Lee et al. / Pattern Recognition 35 (2002) 2521–2537

1. Sort in non-decreasing order all the begin-bound and
end-bound points Bi, Ei; i = 1; 2; : : : ; n.

2. Group the same value points into a same-value list. Form
a same-value-list sequence.

3. Loop from step 4 to step 8 for each same-value list ac-
cording to non-decreasing order.

4. If there is no end-bound in the list, process the next
same-value list.

5. Find the dominating object from the objects in the same
end-bound list so that the begin-bound of the dominating
object is the smallest of them. If an object partly overlaps
with the dominating object, a cutting is performed at the
location of the end-bound of the dominating object. The
cutting line is parallel to the x- (y-) axis.

6. Compute the size of the dominating object. If the linked
list, L, of the dominating object is not null, call the
msc-string generation algorithm and merge the gener-
ated msc-string to the representation of the dominating
object. If there exist objects partly overlapping with the
dominating object, perform the following two phases.

(a) The latter objects partly overlapping with the dom-
inating object are segmented. The size of the Hrst
subobject of a segmented object is equal to the
end-bound of the dominating object subtracted by
the begin-bound of the segmented object.

(b) For each segmented object, if its linked list is not
null, call the msc-string generation algorithm and
merge the generated msc-string to the representation
of the leading subobject of the segmented object.
The remaining subobjects of segmented objects and
objects whose begin-bounds are at the cutting line
are viewed as the new objects with the begin-bound
at the location of the cutting line. Mark them with
an “edge” Rag.

7. Find the list of objects covered by the dominating object
and call the spatial template object generation algorithm
with the found object list as the input parameter.

8. Collect the begin-bound and the end-bound of the new
template object into the same-value lists.

9. Call the spatial template object generation algorithm
with the object list formed by all remaining objects as
the input parameter. Output the representation of the Hnal
object. This is the u- (or v-) string.

Before introducing the spatial template object genera-
tion algorithm, we deHne some terminology used in the
algorithm. A former object of object O is an object with
smaller begin-bound than that of object O, or an object with
equal begin-bound and bigger end-bound than that of object
O. The nearest former object is the former object with the
biggest begin-bound. If the number of such objects is more
than 1, choose one with the smallest end-bound as the near-
est former object. Hence, for each object, its nearest former
object is unique.

Fig. 8. Object E is the object that is not any objects’ former objects.

Given a list of objects, there exists an object, Q, that is
not any objects’ former objects. The begin-bound of object
Q should be the largest among those of the objects in the
list. If the number of objects with the largest begin-bound is
more than 1, object Q should be the object with the smallest
end-bound. If the number of such objects is more than 1, it
means that they have the same begin-bound and end-bound
and they can be merged together by operator “=” into a
template object. The template object is viewed as a new
object. Let Q be the merged template object. Hence, for a
list of objects, there exists unique object, Q, that is not any
objects’ former objects.

Now, let us consider the example as shown in Fig. 8.
Object A is the nearest former object of object B. Object
B is the nearest former object of object C. Object C is
the nearest former object of object D. Object D is the
nearest former object of object E. Object E is the object
that is not any objects’ former objects. The begin-bound
of the x-projections of objects D and E is the largest
among objects A, B, C, D and E. However, the end-bound
of the x-projection of object E is smaller than that of
object D.

Actually, we can use the relationship of the nearest former
object to decide the order of merging objects into a spatial
template object. In the example as shown in Fig. 8, objects
D and E are Hrst merged into a template object O1 since
object E is not any objects’ former objects and D is the
nearest former object of E. Second, objects O1 and C are
merged into a template object O2 since object O1 is not any
objects’ former objects and object C is the nearest former
object of object O1. Similarly, objects O2 and B are merged
into a template object O3 since object O2 is not any objects’
former objects and object B is the nearest former object
of object O2. Finally, objects O3 and A are merged into a
template object O4. The corresponding u-string of object O4

is (A = (B¡ (C|(D[E)))) where the metric information is
omitted. How to merge objects into a spatial template object
is described in detail as follows.

Algorithm: Spatial template object generation

Input: A list of objects
Output: A spatial template object
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1. Repeat steps 2–5 until there is only one object in the list.
2. For the objects having the same begin-bound and

end-bound, they are chained by “=” operator and form
a spatial template object. If there is only one object in
the list, exit the repeat-loop.

3. For each object, Hnd its nearest former objects.
4. Let Q be the object that is not any objects’ former objects

and N be the nearest former object of object Q. Perform
the following phases to Hnd an appropriate operator to
merge object Q with object N .

(a) If object N satisHes the following two conditions: (1)
its begin-bound is the same as that of object Q and
(2) its end-bound is bigger than that of object Q, use
“[” operator to merge objects Q and N . Go to step 5.

(b) If object N satisHes the following two conditions: (1)
its end-bound is the same as that of object Q and (2)
its begin-bound is smaller than that of object Q, use
“]” operator to merge objects Q and N . Go to step 5.

(c) If the end-bound of object N is smaller than the
begin-bound of object Q, use “¡” operator to merge
objects Q and N . The distance associated with the
“¡” operator is equal to the begin-bound of object
Q subtracted by the end-bound of object N . Go to
step 5.

(d) If the end-bound of object N is equal to the
begin-bound of object Q, use “|” operator to merge
objects Q and N . Go to step 5.

(e) If object N has bigger end-bound than that of object
Q, use “%” operator to merge objects Q and N . The
distance associated with this “%” operator is equal
to the begin-bound of object Q subtracted by the
begin-bound of object N .

5. If either object Q or object N is not a spatial template
object, compute the size of the object. If the linked list,
L, of the object is not null, call the msc-string gener-
ation algorithm and merge the generated msc-string to
the representation of the object. Then objects Q and N
are merged into a new spatial template object by “(” and
“)” separators with the appropriate operator found in step
4. The begin-bound of the spatial template object is the
smaller begin-bound of objects Q and N . The end-bound
of the spatial template object is the larger end-bound of
objects Q and N .

Algorithm: msc-string generation

Input: O(B; E; L)
Output: A motion and size change string (msc-string for

short)

1. If L is not null, generate “↑” or “↓” operator to represent
the motion and size change for each node of L depending
on the positive or negative moving direction, velocity
and rate of size change associated with O.

Fig. 9. The initial locations of video objects A, B, C, D, E and F
are projected onto the x and y dimensions.

2. Merge those generated “↑” or “↓” operators into an
msc-string.

Now, let us consider the example as shown in Fig. 9. For
simplicity, we do not consider the motions in the example.
The initial locations of the six video objects in the video can
be represented with their begin-bound and end-bound points
in the x dimension and form an object list as follows:

A(1; 9); B(4; 6); C(4; 6); D(3; 7); E(2; 4); F(6; 8):

Then we demonstrate how we apply the spatial string
generation algorithm to the above object list in order to
obtain an u-string.

First, a cutting is performed at the location of the
end-bound of the dominating object E in step 5 of the spa-
tial string generation algorithm. Object D is segmented
into two subobjects. In step 7, we Hnd the list of objects
covered by the dominating object E and call the spatial
template object generation algorithm with the found ob-
ject list as the input parameter. In this case, the object list
contains object E and the Hrst subobject of D. The spa-
tial template object generation algorithm then outputs a
template object. Its representation is (E2]D1).

Second, a cutting is performed at the location of the
end-bound of the dominating object D in step 5 of the spa-
tial string generation algorithm. Object F is segmented into
two subobjects. In step 7, we Hnd the list of objects covered
by the dominating object D (the second subobject of D) and
call the spatial template object generation algorithm with
the found object list as the input parameter. In this case, the
object list contains objects B and C, the second subobject of
D and the Hrst subobject of F . In the Hrst repeat-loop of the
spatial template object generation algorithm, steps 2–3 and
step 4(d) are executed. It generates a spatial template object
with the representation of ((B2 = C2)|F1). This is because
subobject F is the only object that is not any objects’ for-
mer objects in the list and spatial template object (B2 =C2)
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is F’s nearest former object. In the second repeat-loop of
the spatial template object generation algorithm, step 2 is
executed. It generates the spatial template object with the
representation of (D3 = ((B2 = C2)|F1)). This is because
the size of the second subobject of D is equal to that of the
spatial template object generated by the Hrst repeat-loop.
Then output this spatial template object.

Third, at this point, because no further cuttings are needed,
step 9 of the spatial string generation algorithm is executed.
In this case, we call the spatial template object generation
algorithm with an object list formed by all remaining objects
as the input parameter.

The second subobject of F is the only object that is not
any objects’ former objects. So it is merged with its nearest
former object as a new spatial template object in the Hrst
repeat-loop. The representation of the spatial template ob-
ject is ((D3 =((B2 =C2)|F1))|F1). In the second repeat-loop,
two spatial template objects (E2]D1) and ((D3 = ((B2 =
C2)|F1))|F1) are merged together as a new spatial template
object in step 4(d). Its representation is ((E2]D1)|((D3 =
((B2 = C2)|F1))|F1)). In the fourth repeat-loop, two ob-
jects A8 and ((E2]D1)|((D3 = ((B2 = C2)|F1))|F1)) are
merged together as a new spatial template object in step
4(e). Its representation is (A8%1((E2]D1)|((D3 = ((B2 =
C2)|F1))|F1))).

Finally, all objects are merged together as a spatial tem-
plate object. So, the corresponding u-string of the video as
shown in Fig. 9 can be represented as (A8%1((E2]D1)|((D3=
((B2 = C2)|F1))|F1))).

Lemma 1. For an input list containing n objects; the
representation; u- (or v-) string; of the spatial template
object generated by the spatial template object generation
algorithm is unique.

Proof. We prove the lemma by mathematical induction on
the number of objects in the input list.

Basis step: The lemma is trivially true for n = 1. The
representation, u- (or v-) string, of the object is the object
symbol associated with its size and the information of its
motions and size changes if the object changes its states in
the video.

Induction hypothesis: The lemma is true for all videos
containing j objects and j6 k. That is, the representation,
u- (or v-) string, of the template object generated by the
spatial template object generation algorithm is unique for
the input list containing j objects, j6 k.

Induction step: Consider the input list containing k + 1
objects, and there exists a unique object O that is not any
objects’ former objects. For object O, there exists a unique
object N that is the nearest former object of object O. The
way of merging object O and object N is performed by one
of the following steps.

(a) If object N satisHes the following two conditions: (1)
its begin-bound is the same as that of object O and (2)

its end-bound is bigger than that of object O, use “[”
operator to merge objects O and N .

(b) If object N satisHes the following two conditions: (1)
its end-bound is the same as that of object O and (2)
its begin-bound is smaller than that of object O, use “]”
operator to merge objects O and N .

(c) If the end-bound of object N is smaller than the
begin-bound of object O, use “¡” operator to merge
objects O and N . The distance associated with the
“¡” operator is equal to the begin-bound of object O
subtracted by the end-bound of object N .

(d) If the end-bound of object N is equal to the begin-bound
of object O, use “|” operator to merge objects O and N .

(e) If object N has bigger end-bound than that of object
O, use “%” operator to merge objects O and N . The
distance associated with this “%” operator is equal to the
begin-bound of object O subtracted by the begin-bound
of object N .

For either one of objects O and N , if its linked list is not
null, call the msc-string generation algorithm and merge
the generated msc-string to the representation of the object.
Then objects O and N are merge into a spatial template ob-
ject by “(” and “)” separators. The way of merging objects
O and N is performed by one of the above steps. So the
representation of the spatial template object is unique. Be-
cause objects O and N are merged into one spatial template
object, there are k objects to be processed. The string gen-
erated to represent the remaining k objects is unique by the
induction hypothesis. So we can prove that for an input list
containing n objects, the representation, u- (or v-) string, of
the spatial template object generated by the spatial template
object generation algorithm is unique.

Lemma 2. For an input list containing n objects; the
spatial string generation algorithm generates a unique
u- (or v-) string.

Proof. For each dominating object; in step 5; if an object
partly overlaps with the dominating object; a cutting is per-
formed at the location of the end-bound of the dominating
object. The cutting line is parallel to the x- (y-) axis. In step
7; we Hnd all the objects covered by the dominating object
and call the spatial template object generation algorithm
with the found object list as the input parameter. By Lemma
1; we know that the representation; u- (or v-) string; of the
spatial template object generated by the spatial template
object generation algorithm is unique.

By scanning from left to right along the x- (or y-) axis, we
shall Hnd all dominating objects. For each dominating object,
the objects covered by the dominating object are merged into
a spatial template object. The representation of the spatial
template object is unique. In step 9, we call the spatial
template object generation algorithm with the object list
formed by those spatial template objects and the remaining
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objects not covered by any dominating objects as the input
parameter. By Lemma 1, we know that the representation,
u- (or v-) string, of the spatial template object generated by
the spatial template object generation algorithm is unique,
too. Finally, the spatial string generation algorithm outputs
the representation of the Hnal object. Therefore, the spatial
string generation algorithm generates a unique u- (or v-)
string for an input list containing n objects.

4.2. Temporal string generation

The temporal string generation algorithm is similar to the
spatial string generation algorithm. The major diPerence
between both algorithms is that the temporal string genera-
tion algorithm needs to process the partitioning points and
does not need to process the information of motions and size
changes of objects.

Assume that the time-projection of object Oi (Bi; T 1
i ; T

2
i ;

T 3
i ; : : : ; T

k
i ; Ei), k¿ 1, is partitioned at time points

T 1
i ; T

2
i ; T

3
i ; : : : ; T

k
i , where Bi and Ei are the begin-bound

and end-bound of the time-projection of object Oi. T j
i ,

16 j6 k, k¿ 1 is the jth time point of changing the state
of object Oi. If the time-projection of object Oi is equal
to (Bi; Ei), it means that there are no partitions in the time
interval between Bi and Ei. That is, there are no motions
or size changes during the time interval between Bi and
Ei. Hence, if the time-projection of object Oi is equal to
(Bi; T 1

i ; T
2
i ; T

3
i ; : : : ; T

k
i ; Ei), k¿ 1, it means that the time

interval between Bi and Ei is partitioned into k + 1 parts.
There exists a certain motion or size change in each part.

We shall generate a “|t” operator for each time point when
the state of an object is changed. If a cutting is performed,
we split the object into two subobjects at the cutting point.
For example, if a cutting is performed at point c which is
between Bi and T 1

i , Oi (Bi; T 1
i ) is split into Oi (Bi; c) and Oi

(c; T 1
i ).

Since the temporal string generation algorithm is quite
similar to the spatial string generation algorithm, it is omit-
ted.

Lemma 3. For an input list containing n objects; the
temporal string generation algorithm generates a unique
t-string.

Proof. The proof is similar to that of Lemma 2.

Theorem 1. For an input list containing n objects;
the string generation algorithm generates a unique 3D
C-string.

Proof. By Lemma 2; we know that the u- and v-strings
generated by the spatial string generation algorithm are
unique. By Lemma 3; we know that the t-string generated by
the temporal string generation algorithm is unique; too.
So; the 3D C-string is unique. Therefore; for an input list

        

Fig. 10. Example of cutting and string generation. (a) Cutting
along the x-axis; (b) Cutting along the y-axis; (c) Cutting along
the time-axis.

containing n objects; the string generation algorithm gen-
erates a unique 3D C-string.

Now, let us consider the example as shown in Fig. 10.
The cutting and the u-string generated by the spatial string
generation algorithm are shown in Fig. 10(a) where the
dot line is the cutting line. All initial locations and sizes of
the objects in the video are projected onto the x-axis and
form a frame as shown in Fig. 10(a). Similarly, the cutting
along the y-axis and the corresponding v-string are shown
in Fig. 10(b). The cutting and the t-string generated by the
temporal string generation algorithm are shown in
Fig. 10(c). We can see that the cutting is performed between
frames 4 and 5.

5. Video reconstruction algorithm

This section presents a video reconstruction algorithm
which converts a 3D C-string into a symbolic video for
visualization and browsing of video databases. The video
reconstruction algorithm consists of two parts: spatial
string reconstruction and temporal string reconstruction.
The spatial string reconstruction algorithm processes an
u-string (or v-string) to construct the locations, motions,
and size changes for video objects in a symbolic video.
The temporal string reconstruction algorithm processes
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the corresponding t-string to construct the duration of
motions and size changes of video objects in the time
dimension.

5.1. Spatial string reconstruction

In the spatial string reconstruction algorithm, we intro-
duce the notations of a spatial string object S and a video ob-
ject O in our algorithm. Suppose that a u-string (or v-string)
consists of n elements, each of which may be a spatial string
object, a relation operator, or a motion operator. If element E
is a spatial string object, E.sym represents the string symbol
and E.size represents the size associated with E. The oper-
ators “¡”, “%”, “↑”, and “↓” also have metric information
associated with them. If element E is one of the relation op-
erators “%” or “¡”, E.sym represents the operator symbol
and E.size represents the distance associated with them. If
element E is a motion operator (“↑” or “↓”), it has two Helds,
(v; r), to record the velocity and rate of size change for the
associated spatial string object. For the operators other than
“¡”, “%”, “↑”, and “↓”, the size Helds associated with them
are set to zero. Similarly, a video object O contains four
Helds: O.sym, O.size, O.location, and O.motionList. O.sym,
O.size, and O.location represent the symbol, size, and the lo-
cation of object O in its starting frame, respectively. An ele-
ment in O.motionList consists of two Helds, (v; r), to record
the velocity and rate of size change of object O.

Assume that there are n elements in a given u-string (or
v-string) and m spatial string objects in the n elements. The
spatial string reconstruction algorithm converts the given
u-string (or v-string) into a list of m video objects. After
both lists of video objects are derived from the given
u- and v-strings, we have Hnished the spatial part of the
video reconstruction. The spatial string reconstruction
algorithm is described in detail as follows:

Algorithm: Spatial string reconstruction
Input: A u-string (or v-string) with n elements: string =

(E1; E2; : : : ; En)
Output: A list of video objects: ObjectList=

(O1; O2; : : : ; Om)

=* Initialization *=
1. Loc← 0; ObjectList←nil; Stack←nil; i ← 1; j ← 0;
2. MoreOperators← False;
3. while (more elements in the u- (or v-) string)

=* process the u- or v-strings *=
4. while (MoreOperators)
5. i ← i + 1; =* next operator *=
6. case Ei.sym
7. “%” Loc← Loc + Ei.size;
8. i ← i + 1;
9. MoreOperators← False;
10. “¡” Loc← Loc + PreviousObjectSize +

Ei.size;

11. i ← i + 1;
12. MoreOperators← False;
13. “|” Loc← Loc + PreviousObjectSize;
14. i ← i + 1;
15. MoreOperators← False;
16. “]” If Ei+1.sym �=“(” then TemplateSize←

Ei+1.size;
17. else TemplateSize←

GetTemplateSize (i + 1, string);
18. end-if
19. Loc← Loc+PreviousObjectSize

−TemplateSize;
20. i ← i + 1;
21. MoreOperators← False;
22. “=” or “[”: i ← i + 1;
23. MoreOperators← False;
24. “↑” Append (v; r) to Oj .motionList;
25. MoreOperators← True;
26. “↓” Append (−v; r) to Oj .motionList;
27. MoreOperators← True;
28. “)” Pop an element E from Stack;

=* E is a template object *=
29. Loc← E.beginBound;
30. PreviousObjectSize← E.size;
31. MoreOperators← True;
32. end-case
33. end-while
34. while (Ei.sym = “(”)
35. Create a template object E;
36. E.beginBound← Loc;
37. E.size← GetTemplateSize(i,string);
38. Push the template object E into Stack;
39. i ← i + 1;
40. end-while =* Index to the next string object *=
41. if Ei is the leading subobject of an object then
42. j ← j + 1;
43. Create a new object Oj so that
44. Oj .sym← Ei.sym;
45. Oj .size← Ei.size;
46. Oj .beginBound← Loc;
47. Append object Oj to ObjectList.
48. else Oj .size← Oj .size + Ei.size;

=* Update object’s size *=
49. end-if
50. PreviousObjectSize← Ei.size;
51. MoreOperators← True;
52. end-while
53. Output the ObjectList.

The function GetTemplateSize calculates the size of the
template object at the next level which is the summation
of:

1. The size of the Hrst element after “(”.
2. The size of the element after global operator “¡”.
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3. The size of the element after global operator “|”.
4. The distance associated with the operator “¡”.

Notice that it is not necessary to calculate the sizes of
template objects at third or lower levels.

Now, we can prove that for a given u-string (v-string),
the list of video objects generated by the spatial string re-
construction algorithm is unique.

Lemma 4. For a given u-string (or v-string); the list of
video objects generated by the spatial string reconstruction
algorithm is unique.

Proof. We prove the lemma by mathematical induction on
the number of levels of spatial template objects; p.

Basis step: The lemma is trivially true for p = 0. The
reconstruction of a string with zero level is to construct a
video object for a spatial string object with its associated
size, starting location, and motion list.

Induction hypothesis: The lemma is true for all strings
having p levels of template objects and p6 k, that is, the
spatial string reconstruction algorithm generates a unique
list of video objects for the input string of p levels of spatial
template objects, p6 k.
Induction step: Consider an input string having k + 1

levels of spatial template objects, k¿ 0. Assume that
there are q objects between the Hrst “(” symbol and
the last “)” symbol, q¿ 0. Some of them are string
objects and the others are spatial template objects.
The number of levels of those spatial template ob-
jects should be 6 k. The spatial string reconstruction
algorithm processes those string objects and spatial template
objects from left to right.

Let us number those objects, including string objects and
spatial template objects, from 1 to q. Hence, the algorithm
processes those objects one by one from the Hrst object to
the qth object. If the ith object is a spatial string object, the
algorithm will create a new video object for it and set the
begin-bound, size, motions and size changes for the newly
created video object. If the ith object is a spatial template
object, the number of levels of the spatial template object is
6 k. By the induction hypothesis, the algorithm will gen-
erate a unique list of video objects for the spatial template
object. Depending on the operator following the ith object,
the algorithm can decide the starting location (the variable
“Loc” in the algorithm) of the (i + 1)th object. There are
Hve cases.

(a) If the following operator is the “%” symbol, Loc←Loc
+Ei.size. That is, the starting location of (i+1)th object
is equal to the starting location of the ith object plus the
distance associated with the “%” symbol.

(b) If the following operator is the “¡” symbol, Loc←Loc
+ PreviousObjectSize + Ei.size. That is, the starting
location of the (i + 1)th object is equal to the starting
location of the ith object plus the size of the ith object
plus the distance associated with the “¡” symbol.

(c) If the following operator is the “|” symbol, Loc←Loc+
PreviousObjectSize. That is, the starting location of the
(i + 1)th object is equal to the starting location of the
ith object plus the size of the ith object.

(d) If the following operator is the “]” symbol, Loc←Loc +
PreviousObjectSize − TemplateSize. That is, the start-
ing location of the (i+1)th object is equal to the starting
location of the ith object plus the size of the ith object
minus the size of (i + 1)th object.

(e) If the following operator is the “=” or “[” symbols, the
starting location of the (i + 1)th object is the same as
that of the ith object.

Repeat the above procedure from i = 1 to q. So,
the algorithm can generate a unique list of video objects for
each object (either a string object or a spatial template
object). Therefore, we can prove that for a given u-string
(or v-string), the list of video objects generated by the
spatial string reconstruction algorithm is unique.

5.2. Temporal string reconstruction

The temporal string reconstruction algorithm is similar
to the spatial string reconstruction algorithm. The major
diPerence of both algorithm is that the temporal string re-
construction algorithm needs to process “|t” operator but it
does not need to process “↑” and “↓” operators. Hence, the
temporal string reconstruction algorithm is omitted.

Lemma 5. For a given t-string; the list of video objects
generated by the temporal string reconstruction algorithm
is unique.

Proof. The proof is similar to that of Lemma 4.

Theorem 2. For a given 3D C-string; the lists of video
objects generated by the video reconstruction algorithm are
unique.

Proof. From Lemma 4; we know that for the given u- and
v-strings; the lists of video objects generated by the spatial
string reconstruction algorithm are unique. From Lemma
5; we know that for the given t-string; the list of video ob-
jects generated by the temporal string reconstruction algo-
rithm is unique too. Therefore; for a given 3D C-string; the
lists of video objects generated by the video reconstruction
algorithm are unique.

After Hnishing the spatial and temporal parts of video
reconstruction algorithm, we can draw a symbolic video very
easily based on the starting location, size, starting frame
number, duration, information about the motions and rates
of size changes, and the duration of states of each video
object.
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Fig. 11. The execution time vs. the number of videos: (a) string generation and (b) video reconstruction.

Fig. 12. The execution time vs. the number of frames in a video: (a) string generation and (b) video reconstruction.

6. Performance analysis

To show the performance of our string generation and
video reconstruction algorithms, we perform two sets of
experiments. The Hrst set of experiments is made on the
synthesized videos. There are three cost factors dominating
the performance of the string generation and video recon-
struction algorithms: the number of videos, the number of
video objects, the number of frames in a video. We freely
set the values of the three cost factors in the synthesized
videos. The second set of experiments is made on 200 real
videos. Each video is clipping of about 1 min. The video
objects in each video are speciHed by using the video index
tool. All the algorithms are implemented on an IBM com-
patible personal computer of Pentium III-800 with Windows
2000.

6.1. Synthesized videos

In this subsection, we show the performance of our string
generation and video reconstruction algorithms. The exe-
cution cost of every experiment is measured by the elapsed
time of video processing. We generate the video indices for
5000 videos. For each video, we assign 25 objects and 5000
frames to it. Based on these synthesized videos, we per-
form four experiments. The experimental results are shown
as follows.

Fig. 11 illustrates the execution time versus the number
of videos for the string generation and video reconstruction
algorithms. Each video in these two experiments contains
4000 frames. The execution time grows as the number of
videos increases.

Table 2
The average number of video objects for each type of videos

Type Campus Cartoon Tra;c TV news

Average number 18 28 64 31
of video objects

Fig. 12 illustrates the execution time versus the number of
frames in a video for the string generation and video recon-
struction algorithms. In these two experiments, we run 200
videos for each case. The execution time is averaged over
the execution time for each video. The execution time grows
nearly linear as the number of frames in a video increases.

6.2. Real videos

In this subsection, we show the performance of our string
generation and video reconstruction algorithms with real
videos. Since the performance of both algorithms depends
on the number of video objects in a real video, the average
number of video objects contained in a real video is 37.
In our example video database, there are video objects of
cars, people, and buildings. The example video database
contains four types of videos: 60 videos of tra;c, 60 videos
of campus activities, 40 videos of cartoons and 40 videos
of TV news. There are 200 videos in total. All videos are
around 1 min long. In general, we specify 1–10 video objects
from each frame. Typically, a video of 1 min long contains
1800 frames. To represent the movements of video objects,
at least a frame should be indexed for every 10 frames. The
average number of video objects for each type of videos is
shown in Table 2.
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Fig. 13. The execution time vs. the number of videos: (a) string generation and (b) video reconstruction.

Fig. 14. The execution time vs. the number of frames: (a) string generation and (b) video reconstruction.

Fig. 13 illustrates the execution time versus the number
of videos for the string generation and video reconstruc-
tion algorithms for each type of videos. The execution time
grows linear as the number of videos increases. The execu-
tion time of processing tra;c videos is biggest among them
since such a type of videos contains the most number of
video objects. The execution time of the other three types
of videos is quite close. Although the videos of campus ac-
tivities contain the least number of video objects, the mo-
tion and size change operators in such a type of videos are
longest. Hence, it takes time to generate a 3D C-string and
to reconstruct a video.

Fig. 14 illustrates the execution time versus the number
of frames for the string generation and video reconstruc-
tion algorithms for each type of videos. The execution time
grows as the number of frames increases. In both Hgures,
we use 40 videos for each type of videos.

It is shown that the diPerent types of videos have diPerent
results for the cost of generating and reconstructing a video
in the real video database. For the videos of tra;c, they
contain the most number of video objects. So, the execution
time of this type is largest among them. Since the average
number of video objects of cartoons is close to that of TV
news, the execution time of both types is quite close too. The
average number of video objects of campus activities is the
smallest among them. However, a video object in this type
of video changes its states quite often including motions or
rates of size changes. Hence, the 3D C-strings generated by
this type of videos contain a lot of motion operators. The
execution time of the video of campus activities is higher
than expected.

7. Concluding remarks

In this paper, we propose a new spatio-temporal knowl-
edge representation called 3D C-string for video database
systems. Since 3D string is not powerful enough to describe
the spatial knowledge of non-zero sized objects and tempo-
ral relations between the objects in a video, it is not suitable
for processing videos with overlapping objects and tempo-
ral events. It cannot represent the spatio-temporal knowl-
edge between the objects precisely. 3D C-string extends the
concepts of 2D C+-string to overcome the weakness of 3D
string. We propose the string generation algorithm to gener-
ate a 3D C-string for a given video and the video reconstruc-
tion algorithm to reconstruct a symbolic video from a given
3D C-string. By introducing the concept of the template ob-
jects and nearest former objects, the string generated by the
string generation algorithm is unique for a given video and
the video reconstructed from a given 3D C-string is unique
too. The 3D C-string representation captures not only the
spatial relations but temporal relations between the objects
in a video. Our new representation method can be easily ap-
plied to an intelligent video database system to reason about
spatio-temporal relations between the objects in a video.

8. Summary

In video database systems, one of the most important
methods for discriminating the videos is by using the objects
and the perception of spatial and temporal relationships that
exist among objects in the desired videos. Therefore, how
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videos are stored in a database becomes an important design
issue of video database systems. The spatio-temporal knowl-
edge embedded in videos should be preserved in the data
structure and the data structure should be object-oriented,
so that users can easily retrieve, visualize and manipulate
objects in the video database systems. In comparison with
text, image, and audio, video contains richer information.
But the richness results in the lack of generally accepted
representation of a video.

The knowledge structure called 2D C+-string to repre-
sent symbolic images was proposed by P.W. Huang et al.
It allows us to represent spatial knowledge in images. The
knowledge structure called 3D string to represent the spatial
and temporal relationships among symbolic video objects
was proposed by Liu and Chen. In 3D string representation,
an object is represented by its central point and the start-
ing frame number of the object. So they cannot realize the
spatial overlapping relations and precise temporal relations.
The information about the motions and sizes of objects is
omitted in this work.

Therefore, we need one more compact and precise knowl-
edge structure to represent spatio-temporal relationships
among objects and to keep track of the motions and size
changes associated with the objects in a video.

In this paper, we propose a new spatio-temporal knowl-
edge representation called 3D C-string. The knowledge
structure of 3D C-string, extended from the 2D C+-string,
uses the projections of objects to represent spatial and tem-
poral relations between the objects in a video. Moreover,
it can keep track of the motions and size changes of the
objects in a video. The string generation and video recon-
struction algorithms for the 3D C-string representation of
video objects are also developed. By introducing the con-
cept of the template objects and nearest former objects,
the string generated by the string generation algorithm is
unique for a given video and the video reconstructed from a
given 3D C-string is unique too. This approach can provide
us an easy and e;cient way to retrieve, visualize and ma-
nipulate video objects in video database systems. Finally,
some experiments are performed to show the e;ciency of
the proposed algorithms.
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