
 
 

  
Abstract — We present a new method to perform reliable 

matching between different images. This method exploits a 
projective invariant property between concentric circles and 
the corresponding projected ellipses to find complete region 
correspondences centered on interest points. The method 
matches interest points allowing for a full perspective 
transformation and exploiting all the available luminance 
information in the regions. Experiments have been conducted 
on many different data sets to compare our approach to SIFT 
local descriptors. The results show the new method offers 
increased robustness to partial visibility, object rotation in 
depth, and viewpoint angle change. 
 

Index Terms — Image Matching, Interest Point, Local 
Descriptors. 
 

I. INTRODUCTION 

mage matching is an essential aspect of many approaches 
to problems in computer vision, including object 

recognition [4, 6, 12], stereo matching [16, 20], motion 
tracking [3, 7], and segmentation [8]. A prominent 
approach to image matching has consisted of identifying 
“interest points” in the images, finding photometric 
descriptors of the regions surrounding these points and then 
matching these descriptors across images [9, 10, 11, 12, 13, 
16]. The development of these methods has focused on 
finding interest points and local image descriptors that are 
invariant to changes in image formation, in particular, 
invariant to affine transformations of the image regions. 

In this paper, we explore an alternative method for 
matching interest points that does not rely on local 
photometric descriptors but, instead, involves building a 
direct correspondence of regions centered on the interest 
points. It is widely held that photometric descriptors should 
be more robust to matching under imaging variation than 
direct image matching. This paper describes an approach to 
matching regions centered on interest points that allows for 
affine, or even projective, transformations between the 
images. We find that the region matching approach, even 
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when limited to affine transformations, performs better than 
matching based on the popular SIFT descriptors [12]. The 
extension to perspective transformations produces a small 
gain in accuracy. 

Concretely, we assume that a set of “interest points” has 
been identified in each image and that these image points 
are likely to correspond to different views of the same 
points in the scene. The problem is then to decide which 
pairs of interest points in fact correspond to the same scene 
point. This decision will be based on the similarity of the 
image regions around candidate pairs of interest points. 

 
 
 
 
 
 
 
 
 
 
This situation is illustrated in Figure 1, which shows 

one image point p1 in an initial (reference) image I1 and 
another image point p2 in a second (transformed) image I2. 
We want to compute a cost of the match of p1 to p2 based 
on the similarity of the colors in the image patches around 
them. We will assume that p1 and p2 correspond to point P 
in the scene, which is on a 3D planar surface in the scene. 
We want to compute a cost that is insensitive to the 
viewpoint change between the images. Ideally, we want the 
cost to be defined as follows:  
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where T is any perspective transformation. In our approach, 
we will define the region G1 to be a set of concentric circles 
around p1 and attempt to find a set of nested ellipses around 
p2 that minimize the image differences and that satisfy the 
conditions required for a projective transformation. This set 
of nested ellipses defines G2. 

A. Previous Work 
      Interest points, local features for which the signal 
changes two-dimensionally, have been shown to be more 
robust to changing viewpoint, lighting and partial visibility 
than other local feature types. Local photometric 
descriptors computed at interest points have proved to be 
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Figure 1. Characterizing regions for image matching. 
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very successful in applications such as matching and 
recognition [9, 12, 13]. Schmid and Mohr [9] proposed one 
of the first matching methods based on interest points 
extracted by the Harris detector [10].  Dufournaud et al. 
[11] match images by computing interest points and 
descriptors at different scales but the complexity is 
prohibitive. To cut down the complexity, Mikolajczyk and 
Schmid [13] apply scale selection [14] to select 
characteristic points. Lowe [12] identifies stable points in 
scale-space based on local extrema of difference-of-
Gaussian filters. Those approaches compute a cost of the 
match of p1 to p2 as shown in Fig 1 based on the similarity 
of the local descriptors sampled from small image patches 
around them. However, those approaches do not handle the 
case that the transformed image is taken from a 
substantially different 3D viewpoint because they are not 
fully invariant to affine and perspective transformations 
[15].  

There has been much recent work on extending local 
features to be invariant to affine transformations, because a 
perspective transformation of a smooth surface can be 
locally approximated by an affine transformation. The idea 
is to compute local descriptors from constructed “affine 
invariant image regions” which define the regions G1 and 
G2 around interest points for matching as shown in Fig. 1. 
For example, Mikolajczyk and Schmid [15] detect affine 
invariant points with associated affine invariant regions. 
Tuytelaars and Van Gool [16] have developed affine 
invariant regions associated with interest points based on 
image intensity. The repeatability of point detection is high 
in these methods even when the transformed image is taken 
across a substantial range of viewpoints. But the 
performance of local descriptors computed from the 
invariant image region depends on the accuracy of region 
detection, which decreases for significant geometric 
transformations. 

Brown and Lowe [4] developed one method that is 
invariant to perspective transformations, not locally 
approximating with an affine transformation. They use 
groups of interest points to form perspective invariant 
regions but without central interest points. Local 
descriptors are formed by re-sampling the image relative to 
canonical frames defined by the groups of interest points.  
But this method is quite sensitive to inaccuracy in point 
detection.  

Image matching based on affine invariant interest point 
detectors and local photometric descriptors has been shown 
to work well in the presence of changes in viewpoint, 
partial visibility and extraneous features.   However, not 
surprisingly, the accuracy of matching decreases with 
substantial changes in viewpoint and also when the regions 
around the interest points lack distinctive textures.  Two 
possible contributing factors for this are (1) the fact that an 
affine approximation to the actual perspective 
transformation is used and (2) the sparsity of the local 
descriptors used in describing the regions. In this paper, we 
explore an approach to matching interest points that allows 
for a full perspective transformation and that exploits all the 

available luminance information in the regions. 

B. Our Approach 
      Our approach aims to find an explicit correspondence 
for all the pixels in the regions around a pair of interest 
points, see Fig. 2. We match a sequence of concentric 
circles in one image to a sequence of embedded ellipses in 
the other image. The basis for matching is a projective 
property that is invariant between concentric circles and the 
corresponding ellipses under any perspective 
transformation. The radius of the matched circles is 
increased until a sudden change in the intensity difference 
is detected, which usually signals occlusion. We address the 
problem of changes in illumination by normalizing intensity 
in the R, G, and B channels [5]. 
 
 
 
 
 
 
 
 
 
 
 
 

First we convert the images centered on each candidate 
pair of interest points from Cartesian coordinates (X, Y) 
into polar coordinate (r, θ). The problem of matching 
concentric circles in the reference image and the 
corresponding projected ellipses in the transformed image 
becomes that of finding the path in the polar sampled 
transformed image, constrained by the projective 
transformation equation derived in Section 2, which has the 
smallest color difference cost from the line in the polar 
sampled reference image as shown in Fig 3. 

We proposed an iterative dynamic programming 
algorithm to find the path constrained by the projective 
transformation equation.  It matches the regions based on 
repeatedly solving three-dimensional dynamic 
programming problems and estimating the parameters of 
the projective transformation equation. It can also detect 
the sudden change in intensity difference during the process 
of matching, for occlusion detection. The best N matched 
points with lowest average cost are returned. The details of 
our matching procedure are given in Section 3. 
 

     
 

 
Figure 3: The reference image I1, the transformed image I2, and the polar 
sampled images T1 and T2 generated from them respectively. Pixels in T1 
and T2 are indexed by radius r and angle θ. The circle in I1 and the 
corresponding projected ellipse in I2 become the line in T1 and the path in 
T2 respectively. 
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Figure 2. Overview of our method. 
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Experiments have been conducted to compare this 
approach (and an affine version) to matching using the 
SIFT local descriptors [12], which perform best among 
existing local descriptors [2]. To make the comparison fair, 
all three methods use the same input set of “interest points” 
obtained by one recent affine invariant detector proposed 
by Mikolajczyk and Schmid [15]. This method estimates 
the second moment matrix that can be used to normalize a 
region in an affine invariant way around an interest point. 
SIFT descriptors are computed from these affine-invariant 
regions around interest points and compared using 
Euclidean distance. The results show our approach is better 
at handling partial visibility and greater object rotation in 
depth (Section 4). 

 

II. ELLIPSES AND CONCENTRIC CIRCLES 

      Concentric circles and the corresponding projected 
ellipses have been actively used for pose estimation as well 
as for camera calibration [17, 18]. Although ellipse-based 
techniques have some intrinsic properties that have been 
exploited in vision applications such as factory automation 
and automatic assembly, they have been used relatively 
little in general image matching.  

Kim et al. [19] found an important projective invariant 
property of projected circle centers between reference 
image I1 and transformed image I2. Note that, under a 
general projective transformation, the projections of 
concentric circles will be ellipses with different centers.  
One can show that the projected concentric circle center is 
on the line defined by the centers of the nested ellipses 
resulting from the projection, see Fig. 4.  The centers of 
resulting ellipses all map to the projected concentric circle 
center only under pure affine transformations.  
 
 
 
 
 
 
 
 
Figure 4: The projected concentric circle center (P2) is on the line that is 
defined by the two ellipse centers. The ellipse with the red point center P3 
is the result of the projection of circle C1. The ellipse with the blue point 
center P4 is the result of the projection of circle C2.  
 

This property is consistent with the difference between 
the degrees of freedom in affine and projective 
transformation. An affine transformation has six degrees of 
freedom; projective transformations have eight degrees of 
freedom. The additional two degrees of freedom can be 
written as a two-component co-vector v, which in addition 
to the 2 by 2 affine matrix A and the offset two-component 
vector t can be used to define a projective transformation 
[1]. x1 and x2 are image coordinates of matched points on 
the circle in I1 and the projected ellipse in I2 respectively. It 
can easily be shown that v determines the translation of the 

projected ellipse center in I2. If v is a zero vector, this form 
represents an affine transformation and the transformed 
circles are co-incident. 
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We can use this projective transformation equation to 
constrain the matched regions between two images. Since a 
circle in reference image I1 should be an ellipse in 
transformed image I2 under any projective transformation, 
we define that the origins of the polar coordinates in I1 and 
I2 are P1 and P2 respectively, thus the two translation 
degrees of freedom (represented by vector t) can be  
fixed. The point x1 on the circle with radius R and angle θ1 

in I1 has the form (Rcosθ1, Rsinθ1) and each point in the 
polar coordinate system of I2 has the form (rcosθ2, rsinθ2). 
So the final equation to constrain the projection of 
concentric circles in I2 becomes. 

)2(,

]sinRcosR[1
]sinRcosR[

]sinrcosr[

222
11

11
22

ℜ∈ℜ∈

⋅⋅⋅+
⋅⋅⋅=⋅⋅

× vA

v
A

T

T
T

θθ
θθθθ

 

There are ten parameters in this equation (2). But if P1 
and P2 are obtained by an affine invariant point detector, 
the detector already estimated the second moment matrices 
A1 and A2.  So, we can normalize elliptical regions E1 and 
E2 in an affine invariant way around center points P1 and P2 
respectively. Then we can set the affine matrix A= A2A1

-1 
which projects elliptical region E1 onto E2 as shown in 
Figure 5. Since A1 and A2 are estimated from small affine-
invariant regions, which are not influenced much by the 
non-affine vector v ( Tv ]sinRcosR[ 11 θθ ⋅⋅⋅ is nearly zero 
when R is very small), this is likely to be a good guess for 
A. So in our implementation, we just estimate the two non-
affine parameters in v based on A and a set of known (R, r, 
θ1, θ2), that is, the set of points (r, θ2) on an ellipse in the 
transformed image corresponding to the set of points on a 
circle of radius R and associated angle θ1 in the original 
image. 
 
 
 
 
 
 
 
 
 
 
Figure 5: Both points p1 and p2 correspond to P, the center of 3D circle 
C0. A1 and A2 are the second moment matrices to normalize elliptical 
regions E1 and E2 to C0 in an affine invariant way around center points P1 
and P2. The affine transformation matrix A from E1 to E2 will be the 
product of A2

-1 and A1. 
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III. MATCHING AND RECOGNITION METHOD 

     For any two images we want to match, we use the same 
local invariant interest point detector [15] proposed by 
Mikolajczyk and Schmid to obtain the set of points in both 
images. Then for each pair of interest points that we want to 
match, we generate polar-sampled (m angles) templates T1 
and T2 originated from the interest points in the reference 
image I1 and transformed image I2 respectively as shown in 
Fig. 6.  
 
 

            
 
 
Figure 6: The reference image I1, the transformed image I2, and the polar 
sampled templates T1 and T2 generated from them respectively. The 
narrow horizontal line in T1 and the corresponding circle in I1 are marked. 
The resulting path generated by dynamic programming method in T2 and 
the corresponding projected ellipse in I2  are marked. There are n1 rows 
and n2 rows in T1 and T2 respectively. 
 

Note that as the figure below makes clear, 
corresponding columns in the template cannot be compared 
directly. There is an unknown stretching along the θ axis as 
well as an unknown rotation.   
 

     
 

      
 
 
Figure 7: Two corresponded rays in reference image I1 and transformed 
image I2 are marked respectively. The warping situation exists in the polar 
sampled templates T1 and T2 generated from I1 and I2. Polar sampled 
templates T1 and T3 generated from I1 and I3 can’t be compared directly 
due to an unknown image rotation. 
 

To address these issues, for each pair of matched 
interest points, we run a dynamic programming algorithm 
to match polar sampled templates T1 and T2 generated from 
reference image I1 and transformed image I2 respectively. 
We take one narrow horizontal line at row k in T1 

(corresponding to a circle of radius R in I1) and find the 
corresponding path in T2 (corresponding to an ellipse in I2) 
by the three-dimensional warping algorithm formulated 
below.  Note that the position row ρ of a path can move up 
or down at each step and that strip column C1 on T1 could 
warp to more than one strip columns on T2, and vice versa. 
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This is started with one particular column on T1 and 

different starting columns on T2 so as to handle image 
rotation. The one with lowest cost(m,m) is the starting 
column of T2 we want. Ideally, we would want to constrain 
the dynamic programming process to produce only valid 
ellipses but we do not have an efficient algorithm for this. 
Instead, after the path is found in the polar sampled 
template T2, we obtain a set of (r, θ2) from the matched 
pixels along the path, as shown in Fig. 6, and can estimate 
the non-affine parameters v by minimizing the error 
function derived from the constraint equation (2) and the 
measured (R, r, θ1, θ2, A). 

Since the transformation parameters of adjacent 
projected ellipses are identical, we take another horizontal 
line at row K where K > k in T1 and predict the mapped 
path (r, θ2 : the row r along each column θ2) on T2 with the 
estimated projective transformation constraint equation (2) 
since parameters of v and the warping result on T1 and T2 
are known. Then we can apply the dynamic warping 
algorithm again, with this circle of larger radius. But 

),,( 21 ρCCd  is now based both on the color difference and 
on the error between the matched column position and the 
predicted column position as follows:  
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where Predict(C2) is the predicted path row r along column 
C2 on T2. This process is repeated iteratively with K, the 
input horizontal line in T1, increasing. The two parameters 
of vector v in the constraint equation (2) are refined during 
this iterative process. Thus the matched region is grown by 
iteratively increasing the radius of the original circle. 

If (I1 (θ1, R)-I2 (θ2, r)) of any angle θ1 along the 
trajectory is bigger than some pre-specified threshold, we 
mark the position with this particular angle θ2 along the 
trajectory of the ellipse as being occluded as shown in Fig. 
8. We keep track of what fraction of the rays radiating from 
the interest point is marked occluded and stop the iterative 
process if this fraction exceeds 1/3. This process does a 
good job of stopping the growing of the matched regions in 
the presence of partial occlusion.  

The top N candidate pairs of matched interest points 
with the lowest average cost will be preserved. They are the 
pairs of matched points p1 and p2 that we will return. The 
matched regions around p1 and p2 in the reference image I1 
and the transformed image I2 respectively after the process 
is the final result of image matching in our method.  
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This method handles perspective transformations, 
exploiting the projective invariant property between 
concentric circles and the corresponding projected ellipses 
to find complete region correspondences. It matches images 
well even in the presence of large rotations in depth. The 
iterative process can match larger image regions around the 
interest points and is good at dealing with occlusion. 
 

  
 

Figure 8: The concentric circular region in the reference image I1 and the 
elliptical region in the transformed image I2 that is the result of the 
projection of the concentric circles. The lighter colored points indicate 
possible occlusion positions we detected along the trajectory of the 
projected ellipse.   

 

IV. EXPERIMENT RESULTS 

      In this section we report the results of experiments with 
the matching method described in Section 3. The results of 
this method are compared with those from the SIFT local 
descriptors [12]1. We also compare the results with a 
variant of our method that limits itself to affine 
transformations, which we will refer to as affine invariant 
concentric circles. 

To make the comparison fair, all three methods use the 
same input set of “interest points” obtained by the affine 
invariant points method of Mikolajczyk and Schmid [15].  
This detector estimates the second moment matrix, which 
can be used to normalize regions in an affine invariant way 
around interest points. SIFT descriptors are computed from 
these affine-invariant regions and compared with the 
Euclidean distance for matching. We have chosen to base 
our comparison on SIFT descriptors since they performed 
best among existing local photometric descriptors in 
Mikolajczyk and Schmid’s evaluation [2]. 

The affine approximation version of our method is used 
to assess the impact of the various components of our 
method. It doesn’t need to estimate the non-affine co-vector 
v; it just uses the affine matrix A derived from the affine 
invariant detector as shown in Fig. 5. So the region 
matching process around points becomes a simple iterative 
one-dimensional dynamic warping algorithm to handle the 
image stretching issue as shown in Fig. 7. Comparing the 
results of the two versions we can assess the benefit from 
projective rather than affine invariant concentric circles. It 
also helps us discriminate the impact of detailed pixel 
matching versus using the SIFT local descriptors since it 
uses the same affine transformation obtained by 
Mikolajczyk and Schmid’s method. 

 
1 The code for the point detector and local SIFT descriptors were 

obtained from www.inrialpes.fr/lear/people/Dorko/downloads.html. 

First, we conducted experiments on five different data 
sets of images to address several issues that can affect the 
performance of image matching methods, including 
significant geometric transformation, texture and occlusion. 
Each data set contains 10 image pairs collected from the 
Internet. All three methods return the best N matches for 
each image pair (N is usually 5 or 10, depending on the size 
of the image). We report the accuracy rate (percentage of 
correct matches among the best N matches) to evaluate the 
performance of each method. The performance of each 
method on the data sets is displayed in Table 1. Our initial 
implementation takes about 10.7 seconds to process a pair 
of 800*640 images on a standard 2.52 GHz Pentium PC. 

 

A. Data 
Set Type 

Projective 
Invariant 

Concentric 
Circles 

Affine 
Invariant 

Concentric 
Circles 

SIFT 
 

Small 
rotation  

0.94/50 0.92/50 0.90/50 

Large 
rotation 

0.58/50 0.50/50 0.36/50 

Distinctive 
texture 

0.91/100 0.91/100 0.81/100 

Similar  
texture 

0.72/100 0.70/100 0.68/100 

Occlusion 0.82/50 0.80/50 0.72/50 

Table 1: Accuracy rate/total number of returned matches of the three 
methods on the five data sets. 

All methods work well on the dataset where the object 
in the image is rotated about 30 degrees in depth, Fig. 
9(a)(b). To evaluate the performance for significant 
geometric transformations, we used images where objects 
are rotated from 40 to 60 degrees in depth, Fig 9(c)(d). 
Note that all the methods work less well for these 
challenging matching tasks, when the rigid transformation 
is large.  

 

            

           
         (a)                     (b)                    (c)                 (d)                         
 
Fig. 9. (a) All five matches returned by our method are correct. (b) All 
five matches returned by SIFT descriptors are correct. (c) All five matches 
returned by our method are correct. (e) Only three of five matches 
returned by SIFT descriptors are correct. 
 

In images with distinctive texture patterns, SIFT local 
descriptors occasionally accept some incorrect matches due 
to occlusion or to large change in viewpoint. Matching with 
projective or affine invariant concentric circles is more 
robust, as illustrated in Fig. 10(a)(b).  Presumably, this is 
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because we incorporate more photometric information 
around matched points to verify the matches. For images 
with less-distinctive texture, the SIFT descriptors have a 
high error rate, presumably because the descriptors are not 
sufficiently distinctive [15]. The results of our methods are 
a bit better but it is still susceptible to errors in detection of 
interest points. If the repeatability of point detection is high 
both the methods will be nearly perfect, Fig. 10(c)(d). But 
if not, Fig 11, none of the methods can get good results. 
This remains a fundamental limitation of interest point 
matching. 

 

   
               (a)                           (b) 

      

     
               (c)                                  (d)                 
 
Fig. 10. (a) All five matches returned by our method are correct. (b) Two 
of five matches returned by SIFT descriptors are the matches that the 
correct answer does not exist. (c) All five matches returned by our method 
are correct. (d) All five matches returned by SIFT descriptors are correct.  
 

   

   
               (a)                                   (b)                             
 
Fig. 11. (a) Only the first three of five matches returned by our method 
matches are correct. (b) Three of five matches returned by SIFT 
descriptors are wrong.  
 

     

     
               (a)                                   (b)                             
 
Fig. 12. (a) All five matches returned by our method are correct. (b) One 
of four matches returned by SIFT descriptors is wrong due to occlusion.  
 

Occlusion is an important issue in image matching 
tasks. To assess the impact on our method, we used some 
pairs of images where the object in the reference image is 
partially covered by other objects in the transformed image. 
The results of our methods in these cases are better than 
when using SIFT descriptors, as illustrated in Fig. 12. SIFT 
descriptors generate mismatches if the texture around an 
incorrectly matched point in the transformed image is 
similar to that of the correct match, which is occluded. It 
rarely happens in our methods because the matched region 
is extended to verify the match and we detect the sudden 
change in intensity difference due to the occlusion.     

Although our methods perform better than SIFT 
descriptors in all of these data sets, the gain from matching 
with projective invariant concentric circles versus affine 
ones is slight. One reason is that the correct matching 
points are often not included in the input set of interest 
points.  When the viewpoint change is large or the textures 
not distinctive, the repeatability rate of point detection is 
not high. This is not surprising since the detector obtains 
interest points in an affine-invariant way, not projective 
invariant, so many initial points do not converge during the 
affine normalization process. 

We also compared the three methods on the data sets in 
Mikolajczyk and Schmid’s evaluation of local descriptors 
[2]. These data sets involve highly textured images where 
point detection repeatability is high.  There are four data 
sets to address image rotation, scale changes, affine 
transformation and illumination changes. Each data set 
contains 3 image pairs. We evaluate performance of each 
method by computing accuracy rate; note that N varies 
from 10 to 60. The performances of the three methods are 
similar except on the affine transformation data set where 
the viewpoint of the camera is changed by substantial 
amounts as shown in Fig. 13. Once again matching with 
projective invariant concentric circles performs best in this 
particular data set. Affine invariant concentric circles come 
a close second and performs better than SIFT descriptors. 



 
 

         
Fig. 13. The performance measure (accuracy rate versus top N returned 
matches) of three methods on the data set involving viewpoint changes.  

 

         

   
 
Fig. 14. The performance measure (accuracy rate versus viewpoint angle) 
of three methods over one image sequence with known viewpoint angle.  

 
To demonstrate the influence of the viewpoint changes 

between matching with a projective transformation and an 
affine transformation, we experiment with several image 
sequences with known viewpoint angle. The accuracy rate 
is the percentage of correct matches among the top 60 
returned matches. We found when the viewpoint angle is 
less than 40 degrees, all three methods work well, 
sometimes SIFT descriptors are slightly better. After 40 
degrees, the performance of all the methods drops 
substantially, but projective invariant concentric circles 
outperforms the other two methods. One representative 
example is shown in Fig. 14. 

V. CONCLUSIONS 

     In this paper we present a new method to perform 
reliable matching between different images. Our method 
constructs detailed pixel level matches between regions 
rather than relying on local photometric descriptors. We 
also showed how to exploit an intrinsic property of 

projected concentric circles via a constraint projective 
transformation equation. This enables the method to deal 
with perspective transformations, not only affine 
transformations. It is more robust than previous methods to 
a variety of textures and to occlusion because it 
incorporates more luminance information around the 
interest points and because it finds a more detailed region 
correspondence. Experiments have been conducted on 
many different data sets to compare our approach to SIFT 
descriptors on affine invariant regions around interest 
points [15]. The results showed the new method offers 
increased robustness to partial visibility, greater object 
rotation in depth, and more viewpoint angle change. 

Future work will look at methods for finding legal 
ellipses that minimize the intensity difference cost directly 
rather than through the two-step process (dynamic 
programming followed by fitting) that we use now. We also 
plan to work on methods that can detect interest points in a 
projective invariant way. 
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