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Abstract— This paper proposes a navigation algorithm that
provides a low-latency solution while estimating the full nonlin-
ear navigation state. Our approach uses Sliding-Window Factor
Graphs, which extend existing incremental smoothing methods
to operate on the subset of measurements and states that exist
inside a sliding time window. We split the estimation into a
fast short-term smoother, a slower but fully global smoother,
and a shared map of 3D landmarks. A novel three-stage
visual feature model is presented that takes advantage of both
smoothers to optimize the 3D landmark map, while minimizing
the computation required for processing tracked features in
the short-term smoother. This three-stage model is formulated
based on the maturity of the estimation of the 3D location of the
underlying landmark in the map. Long-range associations are
used as global measurements from matured landmarks in the
short-term smoother and loop closure constraints in the long-
term smoother. Experimental results demonstrate our approach
provides highly-accurate solutions on large-scale real data sets
using multiple sensors in GPS-denied settings.

I. INTRODUCTION

Existing navigation algorithms for robot systems gener-
ally achieve only one of two competing goals: they either
provide a navigation solution with minimal latency, or they
estimate the optimal solution given all of the measurements.
Traditional filtering methods achieve fast estimation time by
limiting updates to operate on just the most recent states.
Previous states are marginalized out when new states are
added, a procedure that results in information loss. Further,
these methods select linearization points for the new states at
the current time and maintain these linearizations throughout
the estimation. Unless the system is truly linear, linearization
errors will accumulate over time, causing the solution to drift.

In contrast, full simultaneous localization and mapping
(full-SLAM) algorithms find the optimal estimate of the
robot state at all-time steps based on all available measure-
ments. To obtain the optimal solution, a non-linear least-
squares problem is created to incorporate all received mea-
surements. Solutions range from single batch optimizations
to recent incremental update approaches. However, none of
these methods operate in constant time in the presence of
loop closure constraints.

Our approach solves the navigation problem of providing
low-latency navigation updates while calculating the full
optimal trajectory by splitting the estimation into two compo-
nents with a shared map of 3D landmarks. The first compo-
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Fig. 1: The architecture for our navigation approach.

nent is a fast smoother that achieves short-term optimization
with fixed computation cost by estimating the states over a
constant-length sliding window. The second component is a
slower smoother that calculates the optimal solution of the
full non-linear problem, including loop closure constraints.
Our approach (Figure 1) therefore forms a robust framework
to provide a fast highly-accurate navigation solution.

The short-term smoother is implemented using a novel
methodology called Sliding-Window Factor Graphs (SWFG).
Factor graphs [13] are an increasingly popular graph-based
smoothing method for Bayesian inference. They provide a
flexible foundation for plug-and-play sensing. Each measure-
ment function is encoded into a factor, and the framework
performs inference on these factors. SWFG maintain only
the portion of the total factor graph that exists inside of a
sliding time window, similar to standard fixed-lag smoothing
approaches. However, unlike traditional linear smoothers,
SWFG support relinearization and efficient updates by ex-
tending recent incremental smoothing techniques [1].

The long-term smoother uses standard full-SLAM pro-
cessing techniques, incorporating loop closure constraints
to optimize the robot states and 3D mapped landmarks
involved inside the loop. A spatial data association module
performs long-range feature matching between the map and
new feature measurements observed on re-visited scenes to
form these loop closure constraints.

For navigation using image-based sensors, we propose a
new three-stage visual feature model that takes advantage
of the sliding window in the short-term smoother. Observed
scene points are tracked over time and their image locations
are exploited in the short-term smoother over three different



stages, based on the maturity of the estimation of the underly-
ing 3D location of the scene point (landmark) in the map. The
first stage avoids unstable initialization of the 3D location of
the landmark points while still incorporating the landmark
image observation into the optimization. The second stage
estimates both the 3D location of the landmark and the
navigation state. Once the uncertainty of the 3D landmark
state becomes small, the third stage treats the computed 3D
location of the landmark as a fixed quantity when estimating
the navigation state, saving computation time. The short-
term smoother uses this three-stage model to process tracked
features from a temporal association module at consecutive
video frames. It also takes long-range feature associations as
immediate global measurements from the optimized map to
correct drifts in the navigation state estimate. This method
ensures both real-time processing and global accuracy.

The remainder of this paper begins with a discussion of
related work in Section II. Section III introduces our core
SWFG framework, including an efficient long-term smoother
and a short-term smoother for low-latency updates based on
a new incremental inference method. Section IV describes
the three-stage landmark system for image-based sensors
in detail, while Section V focuses on the integration of
other sensors in our navigation system. We demonstrate our
approach provides highly-accurate navigation solutions on
several real large-scale GPS-denied scenarios in Section VI
followed by our conclusions in Section VII.

II. RELATED WORK

Filtering-based approaches [2], using the Kalman filter and
its variants as the estimation workhorse, are capable of inte-
grating multiple sensors to generate the navigation solution
in real-time. They avoid the computation in estimating the
states for all time by marginalizing out previous states and
selecting linearization points for the new states. Since the
linearization points cannot be updated at later times, the
result cannot be optimized when more measurements become
available for improvement. Fix-lag smoothing algorithms al-
leviate this problem by maintaining a sliding time window of
poses for estimation [9], [18] or further relinearization [10],
[11]. However, they cannot integrate loop closure constraints
which involve states that are outside the window.

Many navigation methods, such as the full simultaneous
localization and mapping (full-SLAM) algorithms1, keep
past states and look for the optimal estimate of the robot state
at each time step given all available measurements. This non-
linear least squares problem, which is also known as bundle
adjustment [4] in computer vision, can be solved efficiently
by sparse matrix methods [3]. The increasingly popular
graph-based smoothing methods, such as Factor Graphs [13],
view solving such a problem as finding the maximum a pos-
teriori (MAP) estimate to a Bayesian network. This view sup-
ports recent advances in incremental smoothing techniques,
such as iSAM2 [1], which only recalculate the subsection

1We focus our discussion on full-SLAM methods, which keep past robot
states for optimization. There are other SLAM approaches, such as EKF-
SLAM, which eliminate the past trajectory using filtering-based algorithms.

of the factor graph that is affected by new measurements.
However, despite these reductions in computation, smoothing
solutions are not constant time when closing large loops since
all states inside the loop chain need to be updated. They are
therefore not directly suitable for navigation purposes when
loop closure constraints are available.

A parallel architecture is required to provide both low-
latency updates and a fully optimized map. Klein and Murray
[5] proposed parallel tracking and mapping (PTAM) of a
single camera, where localization and map updates are per-
formed in parallel. While the idea of performing the slower
map updates in parallel is directly applicable to navigation,
PTAM re-localizes the camera with respect to the current
map instead of integrating navigation measurements into a
fused estimate. The same parallelization is also used in more
recent works [7]. However, these works do not support other
sensors and are only demonstrated in small offices.

Mourikis and Roumeliotis [6] combined camera and in-
ertial estimation in a dual-layer estimator: The first Kalman
filter layer provides fast navigation solution, and the second
bundle adjustment layer feeds back updates to the first layer.
However, to limit the accumulation of linearization errors
in the filter, they reduce computation in the second layer
by discarding old states. It therefore cannot process loop
closures if the involved states are removed.

Kaess et al. [14] also proposed a concurrent filtering
and smoothing approach that parallelizes low-latency filter
updates and high-latency smoother updates. This work fo-
cuses on the information sharing between the filter and the
smoother, ensuring the combined system remains consistent
and does not double-count any measurements. Though this
approach does update the current state based on loop closure
constraints, limiting the drift in new state estimates, methods
for handling visual landmark observations are still unclear.

Our approach utilizes a parallel framework but replaces
the filter component in [6], [14] by developing a short-
term sliding-window smoother to achieve better linearization
performance of highly nonlinear measurements, such as
monocular landmark observations. We also develop a new
three-stage model to process visual features based on the
maturity of the estimation of the underlying 3D landmark.
Our framework, based on sliding-window factor graphs,
supports both constant-time navigation updates and full,
nonlinear smoothing of the entire trajectory using a new
incremental inference method. It also provides an adaptable
and flexible foundation for any combination of sensors.

III. SLIDING-WINDOW FACTOR GRAPHS

In this section we introduce a new methodology called
Sliding-Window Factor Graphs (SWFG), which maintains
only the portion of measurement factors that were received
within a sliding time window. SWFG extends the factor
graph based incremental smoothing and mapping algorithm
(iSAM2) [1], originally designed to solve the full smoothing
problem. Based on this methodology, we split the navigation
estimation problem into a short-term smoother, a long-term
smoother, and a shared map of 3D landmarks.



Fig. 2: Factor graph formulation of the SLAM problem, where state variable
nodes are shown as large circles, and factor nodes (measurements) with
small solid circles. This example illustrate a loop closure constraint c,
landmark measurements m, odometry measurements u and a prior p.

A. Factor Graphs

A factor graph [13] represents the navigation estimation
problem as a graphical model. It is a bipartite graph G =
(F ,Θ, E) with two node types: factor nodes fi ∈ F and
state variable nodes θj ∈ Θ. An edge eij ∈ E exists if and
only if factor fi involves state variables θj . The factor graph
G defines the factorization of a function f(Θ) as

f(Θ) =
∏
i

fi(Θi) (1)

where Θi is the set of all state variables θj involved in factor
fi, and independent relationships are encoded by edges eij .

A generative model

zi = hi(Θi) + vi (2)

predicts a sensor measurement zi is using a function hi(Θi)
with added measurement noise vi. The difference between
the measurement function hi(Θi) and the actual measure-
ment z̃i is encoded into a factor. Assuming the underlying
noise process is Gaussian with covariance Σ, the resulting
factor is

fi(Θi) = ||hi(Θi)− z̃i||2Σ (3)

where || · ||2Σ is the Mahalanobis distance. Factors can also
model more general functions, such as robust estimators.

Figure 2 shows a factor graph for a SLAM problem. A
loop closure constraint c, landmark measurements m, and
odometry measurements u are examples of factors.

We apply Gaussian variable elimination to the factor graph
as a basis for efficient inference [1], [3]. To eliminate a
variable θj from the factor graph, we first form the joint
density fjoint (θj , Sj) from all factors adjacent to θj , where
the variable set Sj consists of all involved variables except
for θj . Applying the chain rule, we obtain a conditional
density p (θj | Sj) and a new factor fnew (Sj) that represents
the remaining information on variables Sj provided by the
adjacent factors. After all variables are eliminated, a new
factored joint density is formed:

p (Θ) =
∏
j

p (θj | Sj) . (4)

While the described variable elimination process is valid
for general Bayesian systems, it can only be computed
efficiently for the linear Gaussian case. To find the optimal

solution for graphs of nonlinear factors, iterative solving
methods are employed that successively linearize the system
around different operating points until convergence.

B. Incremental Smoothing

The factor graph approach has led to the recent develop-
ment of an incremental solution to the full SLAM problem,
iSAM2 [1]. The iSAM2 algorithm converts the factored
joint density p (Θ) into a Bayes tree data structure by using
cliques, subsets of fully-connected variables, as the nodes
in the tree [17]. Each node encodes a density on the clique
variables, conditioned on variables of its ancestors. In this
way, the Bayes tree also encodes a factorization of the full
joint density p (Θ).

Due to this conditional structure, the Bayes tree can be
incrementally updated when a new factor arrives. Any clique
in the Bayes tree that is connected to the new factor is
removed from the tree, as are all cliques along the path
to the root of the tree. Because the orphaned branches are
merely conditioned on the top of the tree, their conditional
densities are unaffected by the addition of the new factor. The
top of the tree, along with the new factor, are re-eliminated
to form a new tree top, and the orphaned branches are re-
attached to form the complete tree. The unaffected branches
often comprise most of the Bayes tree, allowing for efficient
updates.

To allow relinearization and incremental nonlinear op-
timization, iSAM2 re-eliminates the affected part of the
Bayes tree from the original nonlinear factors instead of the
factored conditionals. This requires special treatment for any
factor that spans the affected tree top and the unaffected
orphan branches. For this set of spanning factors, only the
information on the tree top variables is included. This is
exactly the information contained in the factors fnew (Sj)
that were calculated during the original elimination. By
caching these factors during the elimination procedure, they
need not be recalculated during the incremental updates.

C. Sliding-Window Extension

SWFG extend the iSAM2 algorithm to support inference
in a sliding time window over the graph. While iSAM2 is
capable of constant-time updates when the new factors only
affect the upper cliques of the Bayes tree, the inclusion of
landmark states breaks this assumption, as the same land-
mark may be seen over many frames. To maintain constant-
time updates, we extend iSAM2 to efficiently remove states
that are outside of the constant-length window.

Removing a variable θj from the Bayes tree is equivalent
to marginalizing out the variable from the full joint proba-
bility density, as:

p (θ1...θi−1, θi+1...θn) =

∫
θi

p (Θ) (5)

In general, this is a computationally expensive operation.
However, due to the factored nature of the Bayes tree, as
illustrated in (6), the variable θn of a leaf clique may be
marginalized easily.



p (θ1...θn−1) =

∫
θn

p (θ1) p (θ2|θ1) ... (6)

... p (θn−1|θ1...θn−2) p (θn|θ1...θn−1)

= p (θ1) p (θ2|θ1) ... p (θn−1|θ1...θn−2)

Since θn does not occur anywhere except the last conditional
probability, integrating out θn only requires dropping the
conditional from the end of the joint distribution product.
By using a temporal variable ordering during the elimination
phase, we can ensure the oldest variables in the factor graph
will occur in leaf cliques.

While marginalization is easy within the factored Bayes
tree structure, allowing relinearization and nonlinear opti-
mization of the remaining variables requires modifying the
nonlinear system instead. All of the original nonlinear factors
from which the Bayes tree was constructed that involve
the marginalized variable must be removed. To prevent a
loss of information from the removal of these factors, the
information contained in these factors on variables that
are still in the sliding window must be inserted. As in
the case of incremental updates in iSAM2, the required
information that must be inserted is exactly the fnew (Sj)
factors calculated during the previous variable elimination
step. By caching these factors during elimination, they need
not be recalculated during marginalization.

Within the Bayes tree structure, modifying the factors
related to a variable generally requires the recalculation of
the entire branch, as described in Section III-B. However, in
the case of marginalization, the structure of the remaining
tree and the optimized values of the remaining variables are
unchanged. Thus, no further action is required.

Finally, the SWFG is a hybrid system consisting of nonlin-
ear factors that are wholly within the sliding window and the
linear factors fnew (Sj) for factors that were adjacent to both
variables inside the sliding window and variables that have
been marginalized. To maintain probabilistic consistency, the
linearization point of any variable adjacent to a linear factor
is kept constant, as suggested in [10], [19].

D. Short-Term Smoother

The short-term smoother used the newly devised SWFG to
support a constant-length sliding window for better optimiza-
tion of highly nonlinear factors. Traditional filtering methods
only keep the current state, and linearize measurements only
once at the time of arrival. However, some states require sev-
eral measurements before a good estimate can be obtained.
This is particularly true of 3D landmark positions estimated
from tracked visual features. Using the original linearization
point for these states may lead to poor estimation and con-
vergence performance. The short-term smoother relinearizes
factors inside the window at a particular frequency, and
achieves a more optimal solution than filtering methods by
checking consistency across a larger collection of sensor
measurements. Currently the length of the window is set to
meet the computation requirements of the host system.

E. Long-Term Smoother

The long-term smoother is equivalent to a full smoothing
system because the length of the window is set to infinity.
This effectively reverts SWFG back to the standard iSAM2
algorithm. The main goal of the long-term smoother is to
integrate expensive loop closure constraints, producing a
full, high-quality smoothed trajectory and an optimized map.
In this paper, loop closure constraints are identified using
long-range matches between stored landmarks and features
observed on revisited scenes.

F. Interaction

The interaction between two smoothers is mainly through
a shared map of 3D landmarks (see Figure 1). The 3D
landmarks in the map are optimized by both smoothers.
The short-term smoother models 3D landmarks of tracked
features, and improves the estimation with multiple obser-
vations. The long-term smoother takes summarized informa-
tion from the short-term smoother and forms relative pose
constraints to connect states. It also utilizes loop closures,
which are formed from long-range feature matches between
re-visited scenes and the map, to further optimize the 3D
mapped landmarks involved in the loops. These long-range
matches are also used to derive global known landmark
measurements as unary factors in the short-term smoother
to immediately correct drifts. More details are in Section
IV.

IV. THREE-STAGE LANDMARK REPRESENTATION

In this section, we propose a new three-stage representa-
tion to model visual features based on the maturity of the
underlying 3D landmark in the map. We show the details on
how we formulate feature measurements into factors based
on this three-stage representation. To simplify the notation,
we assume all sensors have the same center, which is the
origin of the body coordinate system. As shown in Figure 2,
we define a state variable node xi at time i in our SWFG as
follows:

xi = (Ri, ti, vi, bi) (7)

where R represents rotation from world coordinate system to
local body’s coordinate system, t is the position of the origin
of the local coordinate system in world coordinate system, v
is the 3-dimension velocity in the world coordinate system,
and b represents the sensor-specific bias variables.

A. Continuously Tracked Features

This new three-stage method utilizes the relationship be-
tween the modeled 3D landmark and the projected 2D points
across frames. It is first initialized in the short-term smoother,
when a feature is tracked by a temporal data association mod-
ule [15]. The temporal data association module efficiently
associates sequential data elements from complex sensors
such as monocular cameras. It tracks measurements and
features over time in a sequential process. The three-stage
method for each tracked visual feature is shown in Figure 3:



Fig. 3: One example of our three-stage modeling on factors for a tracked
feature observed from 7 sequential states. The involved state nodes are
shown with big circles, and factor nodes are represented with small solid
circles (first stage: red, second stage: green, third stage: blue).

• First stage: When one feature track is first observed, we
compute the 3D landmark coordinate by triangulation
and then initialize the feature as a binary factor across
two consecutive states xk and xk+1. The 3D informa-
tion is marginalized out in the factor formulation.

• Second stage: Once the feature has been seen from
enough valid frames, we formulate the tracked feature
as re-projection factors connecting a 3D landmark state
lj and pose variables (R, t) in states x where the feature
is observed. We keep updating the involved states when
the feature is tracked across more frames. For the re-
projection factor formulation, we refer to [1], [3].

• Third stage: Once the uncertainty of the 3D landmark
state converges, we marginalize out the landmark state
and switch back to the binary factor formulation in the
first stage. However, the 3D position of the feature for
the binary factor formulation comes from the marginal-
ized landmark state, estimated in the second stage.

The binary factor formulation used in the first and third stage
is inspired from [9]. However, we use different ways to esti-
mate the 3D feature position and support better optimization
of these highly nonlinear factors. Consider a single feature s
tracked from state xi−1 to state xi, this factor only involves
variables Π = (R, t) ∈ x. The nonlinear measurement model
for observations of s on Πi−1and Πi is

zk = h(Ps,Πk) + nk = h(P ks ) + nk, k = i− 1, i (8)

where Ps = [Z1 Z2 Z3]T is the unknown 3D position of
this feature in world coordinate system, P ks = Rk(Ps−tk) is
the 3D feature position transformed from world coordinate
system to body coordinate system on state xk, h(P ks ) =[
Z1/Z3 Z2/Z3

]T
is the projection on the normalized

image plane, and nk is the 2-dimension image noise vector
with covariance matrix Ck = σ2

imI2.
In the first stage, Ps is estimated by triangulation from

the 2D feature positions on three feature-observed states:
the first state Πo, the previous state Πi−1and the current
state Πi. In the third stage, the value of Ps is retrieved
from the converged 3D landmark state ls for feature s.
This way ensures the formulation directly uses the optimized
3D landmark value to form the binary constraint. Once
this 3D landmark estimation is obtained, we compute the
measurement residual and linearize the estimates of Πk and
Ps as:

rk = zk − ẑk = zk − h(P̂s, Π̂k) ' HΠk
δΠk +HskδPs + nk

(9)
where HΠk

and Hsk are the Jacobians of the measurement
zk with respect to Πk and Ps respectively. We then stack
zi−1 and zi together as:

r ' HΠδΠ +HsδPs + n (10)

where r = [ri−1; ri], HΠ =
[
HΠi−1

;HΠi

]
, Hs =[

Hsi−1
;Hsi

]
, and n = [ni−1;ni] with covariance matrix

C = σ2
imI4. To marginalize out the 3D landmark state Ps

in the formulation, we project r on the left nullspace of Hs

to get ro using a unitary matrix U whose columns form the
basis of the left nullspace of Hs:

ro = UT (z − ẑ) ' UTHΠδΠ + UTn = HoδΠ + no (11)

where ro is a 1-dimension vector after projection. Then
we split Ho into Hoi−1

and Hoi for state Πi−1and Πi re-
spectively. This results in the following linearized constraint
between two states for our factor formulation, and has been
shown [9] to yield better results than epipolar constraints.

ro = Hoi−1
δΠi−1 +HoiδΠi + no (12)

This three-stage method finds a balance between efficiency
and optimization on modeling tracked features. It avoids im-
mediate initialization of the landmark state, which may cause
instability, but still utilizes the feature track for navigate
state estimate before the landmark state is constructed. The
method optimizes both the 3D location of landmark state and
the navigation state in the second stage.

The spirit of the transition from the first stage to the
second stage is similar to [8]. However, the inverse depth
parametrization on landmark states used in [8] is not suitable
for our incremental smoothing algorithm, because extra
parameters on the camera position where the feature was
first observed need to be optimized during each update.

Our model enters into the third stage if the uncertainty
of the 3D landmark state becomes small. This way saves
computation by treating the landmark distributions as fixed.
It also ensures only long-tracked features, which are more
reliable, can move to the second and third stages.

Note each of the tracked features processed at a particular
state will be first observed at different times, so each feature
is handled independently. Features used for inference at any
particular time are therefore in different stages of processing.
Also a feature may not be tracked for sufficient length of time
and in that case may not reach the third stage maturity level
and get established as a fixed landmark.

B. Long-Range Landmark Matching

In addition to tracked features, we have a spatial data
association module [12] that establishes spatial associations
across sensor measurements taken at different times. Newly
discovered associations, which are between stored landmarks



in the map and current observed scene features, determine
two kinds of factors used in the short-term smoother and the
long-term smoother respectively.

If the uncertainty of a matched 3D landmark is low, we
formulate one unary factor in the short-term smoother for
each correspondence between a 2D feature on the query
camera frame and this matched 3D landmark feature in the
map. Since the position of the matched 3D landmark point is
already optimized in the map based on the three-stage model,
we treat it as a fixed 3D point in the global coordinate system.
We then transform this fixed 3D point to the body coordinate
system, based on rotation Ri and translation ti in query state
xi, to generate the measurement model. A detailed derivation
for this factor formulation is available in [15].

This factor formulation is applied to all the point corre-
spondences on matured landmarks returned from the spatial
data association module. These unary factors perform imme-
diate global corrections in the short-term smoother.

We also form loop closure constraints (Figure 2) [1],
[3] from the spatial data association module, and integrate
them into the long-term smoother for full optimization.
This further improves the maturity of the loop-involved 3D
landmarks in the map by optimization, and generates a full
smooth trajectory on all past states.

V. NAVIGATION SYSTEM

In this section, we show how we formulate other sensor
measurements into factors in our system. In addition to
monocular cameras, we use an IMU, an odometer, and
a barometer for experiments in this paper. An odometer
measurement is formulated as a binary factor to describe the
traveled distance between consecutive states. A barometer
measurement reports a height estimate at a particular instance
of time, so we directly formulate it as a unary factor on the
affected variables in a single state.

To fully utilize high-frequency IMU data, we formulate
the IMU mechanism based on the indirect form [9] on the
state variables from the inertial system error propagation
equations. This avoids the dynamic modeling of the complex
kinematics associated with chaotic or rapid movements, and
replaces the system dynamics with a motion model derived
from IMU propagation.

We derive this error-state IMU mechanism within our
factor graph framework, and implemented it as a binary
IMU motion factor between two consecutive states xi−1

and xi. This IMU motion factor integrates IMU readings
between two time steps, and then generates the 6 degrees
of freedom relative pose and corresponding velocity change
as the motion model instead of traditional process models.
It also tracks the IMU-specific bias as part of the state
variables for estimating motion. The linearization point for
xi is computed from this motion model, which is based on
the linearization point for xi−1 and IMU readings between
xi−1 and xi.

VI. EXPERIMENTAL RESULTS

This section demonstrates that our approach provides fast,
highly-accurate navigation solutions with multiple sensors

Fig. 4: Large City Navigation Scenario (3.3 kilometers): Ground truth (blue),
solution using only 1-step short-term smoother (red, 3D RMS error: 19.19
meters), solution using both smoothers (green, 3D RMS error: 5.85 meters),
and the 3D landmarks constructed during the first loop (red points inside
the highlighted yellow box).

on two large-scale real scenarios both assuming GPS is
not available for the navigation state estimate. These two
scenarios provide different aspects to show the strength of
our approach. The initial global position and orientation of
the vehicle is assumed known. Ground Truth is obtained by
using the RTK differential GPS technique [16].

A. Large City Navigation

This data set is collected using a car that drives inside a
city. The car repeats a large loop and then goes to south. It
stops many times during navigation due to traffic signs. The
total travel distance is 3.3 kilometers, and the travel time is
more than 14 minutes. The sensor set includes one 100-hz
IMU, one 1-hz odometer, one 25-hz barometer, and one 4-hz
monocular camera.

1) The Construction of the Landmark Database and Map:
The combination of two smoothers forms a robust framework
to provide accurate navigation solutions. As shown in Figure
4, the spatial association module performs long-range feature
matching between the map (3D landmarks with projected 2D
features on stored images constructed during the first loop)
and new feature measurements from cameras on revisited
scenes. The short-term smoother then immediately takes
these long-range feature associations as global measure-
ments. The long-term smoother uses these associations to
form loop closure constraints to further optimize the 3D
landmarks involved in the loop. To investigate only the
improvement brought by these long-range associations, we
set the sliding window in our short-term smoother to only
cover one time step. The short-term smoother therefore de-
grades to a traditional filtering method, and cannot relinearize
the factors. However, long-range associations dramatically
decrease the 3D RMS error from 19.19 meters to 5.85 meters.
The drift during the second loop in the filter-only solution is
corrected by long-range associations across two loops.

2) Analysis on 3-Stage Feature Model: Next, we set a
constant 12-second window in our short-term smoother, and
adopt the 3-stage model to generate factors for tracked
features. Figure 5 shows the distribution of all features
among the three stages. Note that each feature is handled by



Fig. 5: The maturity distribution (Y-axis: number of features) among all
features during navigation (X-axis: navigation time in video frames). Note
when the car stops, most detected features are in the first stage (red). When
the car moves, there are more long-tracked features (stage 2: green, stage 3:
blue) than short features. These matured features improve the result using
the optimized 3D landmark estimation.

the 3-stage method independently. Tracked features observed
at the same time are therefore distributed among the three
stages. For example, when the car stops, a larger number
of features are matched across frames. However, as new
observations from a stationary camera do not improve the
triangulation, most of these features stay in the first stage.
When the car moves, there are more long-tracked features
in the latter two stages. These matured features are more
reliable, and utilizes the optimized 3D landmark estimation
to improve the accuracy. The incorporation of this three-stage
model reduces the 3D RMS error to 3.76 meters, our best
result on this scenario.

B. Parking Lot Driving

This data set is collected using a car that drives and
turns very fast inside a parking lot. The scenario includes
many repeated loops. The car travels 1.74 kilometers in 325
seconds. The sensor set includes one 100-hz IMU, one 1-hz
odometer, and three 4-hz monocular cameras.

1) The Improvement from 3-Stage Feature Model: To
focus on demonstrating the influence by our 3-stage method,
we first set our system to run using only the short-term
smoother with a constant 8-second sliding window. The long-
term smoother and the spatial data association module are not
used. We compare our short-term smoother to two baseline
methods. The first method is the iterative extended Kalman
filter (EKF) solution [9], which also fuses IMU motion model
and binary constraints from tracked features in a tightly-
coupled manner. The second method uses the same setting
as our short-term smoother except the tracked features are
always formulated as binary constraints. There are no 3D
landmark states used in this baseline method.

Figure 6 shows results of our short-term smoother using
the 3-stage tracked feature model and the two baseline
methods. Compared to the previous scenario, the track length

Fig. 6: Trajectories on parking lot scenario (1.74 kilometers): Ground Truth
(blue), our short-term smoother solution (yellow, 3D RMS error: 2.11
meters), the first baseline method (red, 3D RMS error: 2.88 meters), and
the second baseline method (green, 3D RMS error: 2.46 meters). Note the
repeated loops stick tighter (such as the right portion of trajectories) in our
solution.

Fig. 7: The 3D error (Y-axis in meters) during navigation (X-axis in seconds)
in parking lot scenario: solution using only the short-term smoother (red),
and our full solution using both smoothers (green). Note the 3D error doesn’t
increase over time using our full solution.

of features in this scenario is much shorter because the high-
speed car turning causes many feature breaks. However, by
re-linearizing factors inside the sliding window, our short-
term smoother still performs better using the 3-stage method.
The repeated loops are grouped tighter in our solution.

2) The Combination of Two Smoothers: The combination
of two smoothers is extremely powerful in situations with
many repeated loops. In this scenario, it further reduces the
3D RMS error to 1.59 meters (the short-term smoother only
solution produces 3D RMS error of 2.11 meters), our best
result in this scenario. Figure 7 shows the 3D error is not
increasing during navigation using this combination. It is
because the long-range feature associations across repeated
loops provides global correction and avoids drifts.

3) Computation Cost: Our framework uses an incremental
smoothing algorithm extended from iSAM2 [1] to perform
inference on Sliding-Window Factor Graphs with frequent
relinearization. As shown in Figure 8, our incremental opti-
mization takes less than 200 milliseconds on each update
outputted from the short-term smoother on this scenario.
Compared to traditional batch optimization method, it is



Fig. 8: The processing time along the parking lot scenario: traditional batch
optimization (red), and our incremental smoothing method (blue).

much faster and more suited for real-time operation. In the
first 50 seconds of the scenario, the vehicle is still and there
are 100~200 tracked features in each video frame. Once the
car starts to move, the number of tracked features drops (<50)
and both methods take less time to process measurements
inside the sliding buffer. All timing results were conducted
using a single core of an Intel i7 CPU running at 2.40 GHz.

VII. CONCLUSIONS

In this paper, we present a robotic navigation solution ca-
pable of real-time updates while calculating a full smoothed
trajectory by using a methodology called Sliding-Window
Factor Graphs (SWFG). SWFG efficiently maintains factors
in a sliding time window, and relinearizes stored factors
frequently for optimization. We split the estimation problem
into a fast short-term smoother, a slower but fully global
smoother, and a shared map of 3D landmarks. The short-
term smoother improves linearization performance, which is
particularly important for highly nonlinear measurements. It
achieves a more optimal solution than traditional filtering
methods, while still maintaining constant-time updates as
loop closures are handled by the long-term smoother.

We also introduced a three-stage landmark representation
to take advantage of both smoothers that optimize a landmark
map, while minimizing the computation required on the
short-term smoother side. Each tracked feature in the short-
term smoother is processed depending on the maturity of
the underlying landmark. Long-range associations are used
as two kinds of factors: global point factors on matured
landmarks in the short-term smoother, and loop closure
constraints in the long-term smoother. Experiments demon-
strate our approach provides fast highly-accurate solutions
on large-scale scenarios.

Future work is to ensure our approach operates in real-
time while still estimates the full nonlinear navigation state
under any conditions, such as limited computation resource.
One way is to control the number of factors while main-
taining satisfactory accuracy. For example, we plan to select
visual features based on spatial distribution, uncertainty, and
maturity. Since features with optimized 3D estimations are

more reliable than unstable short feature tracks, we could
only use matured features to contribute the solution if there
are enough third-stage features.
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