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Abstract

Multi-view object class recognition can be achieved using existing approaches for

single-view object class recognition, by treating different views as entirely inde-

pendent classes. This strategy requires a large amount of training data for many

viewpoints, which can be costly to obtain. We describe a method for constructing

a weak three-dimensional model from as few as two views of an object of the tar-

get class, and using that model to transform images of objects from one view to

several other views, effectively multiplying their value for class recognition. Our ap-

proach can be coupled with any 2D image-based recognition system. We show that

automatically transformed images dramatically decrease the data requirements for

multi-view object class recognition.
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1 Introduction

After seeing a number of instances of objects from the same class from dif-

ferent views, a vision system should be able to recognize other instances of

that class from arbitrary views, including views that have not been seen be-

fore. In most current approaches to object class recognition, the problem of

recognizing multiple views of the same object class is treated as one of recog-

nizing multiple independent object classes, with a separate model learned for

each. This independent-view approach can be effective when there are many

instances at different views available for training, but can typically only han-

dle new viewpoints that are a small distance from some view on which it has

been trained.

An alternate strategy is to use multiple views of multiple instances to construct

a model of the distribution of 3-dimensional shapes of the object class. Such

a model would allow recognition of many entirely novel views. This is a very

difficult problem, which is as yet unsolved.

In our work, we take an intermediate approach, which exploits the fact that

there is a fundamental relationship between multiple views of the same class of

objects, and allows subsequent unlabeled views of new objects from the same

class to be transformed into novel views. We define the Potemkin 1 model of a

3-dimensional object as a collection of parts, which are oriented 3D primitive

shapes. The model allows the parts to have an arbitrary arrangement in 3D,

but assumes that, from any viewpoint, the parts themselves can be treated

1 So-called ”Potemkin villages’ were artificial villages, constructed only of facades.

Our models, too, are constructed of facades.
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as being nearly planar. We will refer to the arrangement of the part centroids

in 3D as the skeleton of the object. As one moves the viewpoint around the

object, the part centroids move as dictated by the 3D skeleton; but rather than

having the detailed 3D shape model that would be necessary for predicting

each part’s shape in each view, we model the change of each part’s image

between views as a 2D perspective transformation.

The Potemkin model is trained and used in three phases. The first phase

is class-independent and carried out once only. In it, the system learns, for

each element of a set of simple oriented 3D primitive shapes, what 2D image

transformations are induced by changes of viewpoint of the shape primitive.

The necessary data can be relatively simply acquired from synthetic image

sequences of a few objects rotating through the desired space of views. After

the first phase is complete, the model can be used for new object classes

with very little overhead. This process might be seen as learning basic view

transformations of primitive 3D shapes by “watching the world go by”, and

then using that knowledge to accelerate learning about new object types which

are constituted of these primitives.

The second phase is class-specific: a few images from a target class (typically

of a single object from two views) are used to estimate the 3D skeleton of the

object class, to select an oriented primitive 3D shape for each of the parts,

and to initialize image transforms between pairs of views, for each part.

The third phase is view-specific: given a new view of interest, the class skeleton

is projected into that view, specifying the 2D centroids of the parts. Then, all

available 2D training images, from any view, are transformed into this view

using the image transforms selected in the second phase. These new images
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are “virtual training examples” of previously seen objects from novel views.

These virtual training examples, along with any real training examples that

are available, can then be used as training data for any view-dependent 2D

recognition system, which can then be used to detect instances of the object

class in the novel viewpoint. In our experiments, we have trained a recognizer

for a novel view of an object with 100 virtual images transformed from 100

training examples in other views; that recognizer, even though it had never

seen an actual image of an object of this class from this view, performs as well

as the same recognition algorithm trained on 50 actual images from this view.

In the following section we provide an overview of related work. Then in section

3 we sketch a basic version of the Potemkin model, which uses only a single

oriented primitive for learning the transforms from view to view in the first

phase. These transforms are then used as the basis for transforms of all parts

in the model. This basic model is ultimately too weak to describe many object

classes well. Section 4 extends the basic Potemkin model to use a basis set of

multiple oriented primitives in the first phase, and to select among them to

represent each of the parts of the target class based on a pair of initial training

images of the class. For each part, the transforms learned from the selected

primitive are used to initialize image transforms between pairs of views. In

section 5 we provide a self-supervised labeling method that obviates the need

for most of part labeling in the real training data. Section 6 demonstrates that

these extensions significantly outperform the basic model and enable existing

view-dependent detection systems to achieve the same level of performance

with many fewer real training images required.
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2 Related work

There has been a great deal of work on modeling and recognition for single

3D objects (e.g., [1–4]), but these methods are not designed to cover the

variability in shape and appearance among instances of a class and cannot be

readily generalized for object class recognition. There is also a long tradition

of representing objects as arrangements of 3D building blocks (e.g., [5–11]).

However, it has been difficult to achieve robust recognition performance in

real images using these approaches.

Most recent advances in object class recognition attempt to detect examples

of a target class from only a single viewpoint [12–22]. Our work leverages such

advances, and enables them to be applied to multi-view recognition without

excessive training-data requirements.

There is an existing body of work on multi-view object class recognition for

specific classes such as cars and faces [23–28]. For example, Everingham and

Zisserman [29] generate virtual training data for face recognition from multiple

viewpoints using a reconstructed 3D model of the head.

For object recognition, more generally, there are a number of effective multi-

view object class recognition systems that are constructed from several in-

dependent single-view detectors. Crandall et al. [30] treat ranges of poses as

separate classes, with a separate model learned for each. Torralba et al. [31]

show that sharing features among models for multiple views of the same ob-

ject class improves both running time and recognition performance. Leibe et

al.’s detection system [32] for cars combines a set of seven view-dependent

ISM detectors [33], each of which requires hundreds of training examples to
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be effective.

There is increased recent interest in methods that make deeper use of the

relationship between views of the same class, via a range of approaches.

One approach is to link regions of the same or similar training instances across

different viewpoints, forming a multi-view class model for recognition. Thomas

et al. [34] construct separate view-dependent detectors for each of the viewing

directions, and track regions of the same instance across different viewpoints.

They use these integrated view-dependent detectors to improve detection, by

transferring information from one viewpoint to another. Savarese and Fei-

Fei [35] also relate multiple views by finding correspondences among 2D re-

gions, formed by feature grouping, on the same instance across different views.

Compared to the work of Thomas et al, these models are more compact and

can be learned with very weak supervision. Rather than constructing multi-

ple view-dependent detectors, Kushal et al. [36] construct a single model that

relates partial surfaces of the target object class among multiple viewpoints.

Each partial surface is formed by locally dense rigid assemblies of image fea-

tures on instances across different views. Each of these three methods requires

many training images from each viewpoint and the first two methods require

many views of the same training instances, which are relatively difficult to

obtain.

An alternative approach is to construct explicit 3D shape models of object

classes. Hoeim et al. [37] create a coarse 3D model from mean segmentations

of two views of training instances, and avoid the need for multiple views of

the same training object instance during learning. Yan et al. [38] use training

images, taken from a dense sampling of viewpoints around a specific object,
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to reconstruct a 3D model for the target class. Both methods form correspon-

dences between 2D features across training instances at arbitrary viewpoints

by projecting the surfaces of the 3D model onto each instance. Thus, the

features can be shared across viewpoints through 3D correspondence. How-

ever, these systems still require many training instances at many viewpoints

to achieve satisfactory recognition results. To avoid collecting real training

images, Liebelt et al. [39] use a database of 3D CAD models of objects of the

target class, and construct feature descriptors on synthetic images generated

from these 3D models. However, 3D CAD models with realistic textures are

not easily obtained for some object classes.

The Potemkin model [40] is intermediate between the approaches based on

cross-view constraints and those based on detailed 3D models. Cross-view

constraints, which are formed by linking 2D regions of instances from one

viewpoint to another, require many training images in each of the modeled

viewpoints. Detailed 3D models of variable object classes can be difficult to

learn and use. Therefore, we construct a relatively weak 3D model, which

can be learned from as few as two labeled images, but is powerful enough to

generate virtual examples in novel viewpoints, amplifying the effectiveness of

any method that needs images from multiple views.

3 Basic shape model

The Potemkin model is used to represent the approximate 3D shape and

relationship among views of a class of objects. In this section we describe the

basic version of the Potemkin model in detail, including how to estimate the

parameters from a small number of training images, and use it to generate
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virtual training images in novel views. The basic model is ultimately too weak

to describe many classes of objects well, because it has only a single primitive

part shape. We will extend it to include multiple primitive shapes in section 4.

3.1 The basic Potemkin model

Informally, a basic Potemkin model can be viewed as a collection of planar

“facades,” one for each part, which are arranged in three dimensions. In order

to model the transformation of an object from one view to another, the 3D

structure is used to specify the location of each part in the new view, and

a set of learned view transforms is used to specify how the pixels belonging

to that part in the first view should be transformed into the new view. To

achieve this, the view space is divided into a discrete set of view bins, and an

explicit 2D projective transform between each view bin pair is represented for

each part. Different transforms are necessary because the parts have different

shapes, depths, and orientations, so their pixels move differently from view to

view.

More formally, a Potemkin model for an object class with N parts is defined

by:

• k view bins, which are contiguous regions of the view sphere;

• k projection matrices, Pα ∈ R2×3, from normalized 3D coordinates to image

coordinates for each view bin α;

• a class skeleton, 〈S1, . . . , SN〉, specifying the 3D positions of part centroids,

in a fixed, normalized reference frame; and

• Nk2 view transformation matrices, T j
α,β ∈ R3×3, one for each part j and
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pair of view bins α, β, which map points of an image of part j from view α

to view β.

This model is appropriate for object classes in which the skeleton is relatively

similar for all of the instances of the class; if there is more variability, and

especially multi-modality, it will become necessary to extend the model to

probability distributions over the skeleton and matrices, and to integrate or

sample over model uncertainty when using it for prediction.

Of course, a single linear projection cannot correctly model projections from

3D coordinates to all views in a bin, or from all views in one bin to all views

in another; we assume that the bins are small enough that the error in such a

model is tolerable. The choice of bin size represents a model-selection problem.

The smaller the bins, the more accurate the model, but the more data needed

to train it reliably.

Label images indicate which pixels in a training image correspond to each part.

A Potemkin model, together with a label image whose view bin is known, can

be used to produce additional images containing predicted views of the parts

of the instance from other view bins from which this same set of parts are

visible.

3.2 Estimating the model

Our overall goal is to use the Potemkin model to enable learning from fewer

images than would otherwise be necessary. It is crucial, then, that we be able

to estimate the model itself from few labeled training images. To enable this,

we initialize the view transforms using cheaply available synthetic data, then
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refine the transforms using the available training images. Similarly, we solve

for the skeleton points by pooling the data from all the instances in a view bin,

exploiting the assumption that the skeleton is relatively stable across instances

of the class.

The view bins are currently selected by hand, but it might be desirable, in

future, to use an adaptive quantization method to find a variable-resolution

partition of the view space that optimizes model complexity and effectiveness.

The projection matrices Pα, from 3D to view, are dependent only on the choice

of view bins, and can be computed analytically for the centroid of the view

bin or estimated from data sampled over the whole bin.

The model is estimated in two phases: one generic, and one object-class spe-

cific.

3.2.1 Generic phase: Learning generic view transformations

The generic phase starts by learning a set of generic view transformations,

based on a single oriented 3D primitive shape.

The set of generic transforms Tα,β map points of an image in view bin α to

points of an image in view bin β. These transforms are learned from synthetic

binary images (one drawn randomly from each of the k view bins) of approx-

imately 30 relatively “flat” vertical blocks of varying dimensions and aligned

orientation, as depicted in figure 1. Note that since we are using synthetic

images, we can generate enough data to get a good initial estimate for all the

pairwise view transforms.

To learn the generic transforms Tα,β, we begin by finding the boundaries of
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The Potemkin Model [CVPR07]

- First Phase: Learning 2D generic view transforms 
from one particular 3D shape

K view bins

4

2D 
Transforms

Fig. 1. A synthetic nearly-planar box object used for learning the generic view

transformations.

the object in each pair of images, from views α and β. Then we use the shape

context algorithm [41] to obtain a dense matching between the 2D boundaries

across the images. Finally, we use linear regression to solve for a 2D projective

transform that best explains the observed matches across the set of training

image pairs. Note we are learning from images that vary substantially in pose

and viewpoint, so an analytic solution for the best 2D projective transform is

not straightforward. We will ultimately use this technique on real images as

well, which makes analytic approaches infeasible.

General 2D projective transforms have 8 degrees of freedom and they can be

decomposed [42] as

Tα,β =


I 0

vT 1




K 0

0T 1




sR(θ) t

0T 1

 , (1)

with R(θ) the 2D rotation matrix representing angle θ, vT = [v1, v2], t =

11



[tx, ty]
T , and K an upper-triangular matrix of the form

K =


Ka Kb

0 1/Ka

 .

In our case, the translation t = [tx, ty]
T is a zero vector because Tα,β models

the shape transformation around the centroid of the 2D projected object from

view α to view β. For all synthetic images, the centroid of the object is the

origin in the 2D coordinate system.

The decomposition in (1) is unique if s > 0. We can therefore represent each

transform as a vector of 6 parameters: [log s, θ, Ka, Kb, v1, v2]. We use the mean

of these parameters over the training data as our generic view transform.

3.2.2 Class-specific phase: Refining the view transformations

In the class-specific phase, a collection of real training images of different

instances of the class from arbitrary views can be used to estimate the 3D

class skeleton of the object class, and to tune the view transforms T j
α,β for

each of the parts, j, from view α to view β. The outlines of the parts must be

labeled in all images used in this phase, but reasonable results can be obtained

using only two such images.

If the real training data set happens to contain more than one view of a

particular instance, in different view bins, then that data can be used to refine

the generic view transforms, making them specific to the particular parts of

the class. If it does not, the model can still be used with the original generic

transforms.
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Assume we are given a set of label-image pairs 〈xi
α, xi

β〉 with views of the same

instance in bins α and β. For each part j in each image pair, i, we use the

shape-context algorithm to match points on the boundaries of the part and

then construct the transform T̂ ij
α,β, represented as a vector of 6 parameters, as

above.

We then combine the generic view transform learned in phase 1, with the

part transforms estimated from each image pair to obtain a part-specific view

transform T j
α,β:

T j
α,β =

1

κ + m

m∑
i=1

T̂ ij
α,β +

κ

κ + m
Tα,β . (2)

The relative weighting of the generic and specific transforms is determined by

the “pseudo-count” parameter κ, which is currently chosen empirically as 9

and seems to be well behaved in practice.

3.2.3 Class-specific phase: Learning the class skeleton

The class skeleton can be estimated from any collection of real training images

of instances in any view, and does not require multiple views of any single

instance. We directly compute the centroids of the individual parts from the

training label images. We then use these to estimate the skeleton, using the

projection matrices Pα, which specify the projection from 3D points into 2D

view bin α.

We begin by aligning and scaling the training images in each view bin so

that the object bounding boxes are all aligned. Next, for each view bin α and

part j, we compute the mean µj
α and covariance Σj

α of the coordinates of the

centroid of part j in the normalized images in bin α.
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Fig. 2. The ellipses indicate the distribution of 2D positions of the centroids of each

part in the training set of chair images for each viewpoint. The 3D spheres show

the estimate of the skeleton positions Sj for each part.

For each part, we find the 3D position whose 2D projections minimize a sum

of weighted distances to the observed 2D mean centroids in each view. The

weighted distances are the Mahalanobis distances with respect to the observed

covariances in each view. The minimizing 3D location Sj for part j in the

skeleton is given by [43]:

Sj =

(∑
α

P T
α (Σj

α)−1Pα

)−1 (∑
α

P T
α (Σj

α)−1µj
α

)
, (3)

The skeleton location for each part is estimated independently, because we

have no prior on the structure of a new object class.

Figure 2 shows a schematic version of this process. In each view bin, the

distribution on the 2D centroid of each part is estimated, shown by the ellipses.

Then, the 2D centroid distributions are used to estimate the 3D skeleton

locations, shown in the center. The centroids of parts that are sometimes

occluded by other object parts have higher variance. As we consider more

complex objects from a larger variety of viewpoints, we may have to introduce
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explicit reasoning about occlusion into this modeling step.

3.3 View-specific phase: Using the model to generate virtual images

Finally, we can use the Potemkin model to generate “virtual” training data

for a set of k view-specific 2D recognizers. Any training instance in one view

bin can be transformed to many other view bins, using the skeleton and the

view transforms, and used as training data for that recognizer. This strategy

effectively multiplies the value of each training image, and allows us to train

recognizers for view bins that have never actually been seen, based only on

virtual data.

Given an input image and associated label image, indicating which pixels

correspond to which parts, in view bin α, for each viewpoint β 6= α for which

the same set of parts are visible, we

• transform the pixels belonging to part j using T j
α,β, then

• center the resulting shape at PβSj, the view projection of the 3D skeleton

location of part j into view bin β.

This process generates a complete virtual label for view β; in addition, it

generates a virtual image with pixels corresponding to the object determined,

which can be easily combined with the background of the original image to

generate a complete image in the new view.

An example of this process can be seen in figure 3, which shows virtual images

constructed from a basic Potemkin model, trained with only two real labeled

images. Even with just two training images, the results are useful for recogni-
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Fig. 3. A basic Potemkin model is constructed from the two real labeled images on

the left. Given the label images for two object instances, each in only one viewpoint

bin (highlighted), the other virtual views are generated from the model.

tion, as shown in section 6. As the amount of training data is increased, the

quality of the transformed images improves [40].

4 The use of multiple primitive shapes

When a basic Potemkin model for an object class is built from only one real

training image-pair of the same instance, the part-specific transforms default

to the generic view transforms for an upright block.

Another example of results under these minimal training conditions is shown in

figure 4. This process can in some cases be very effective, but in other cases the

transformed parts are distorted in the new view. The problem highlighted by

the red rectangle in figure 4 arises because we are relying entirely on the generic

view transform, which was learned for a vertical flat block. But, because the

seat of the chair is actually horizontal, the generic transform does a very poor

job of predicting pixels in the new view.

To address this problem, we expand the set of possible primitive 3D part

shapes, with associated generic view transforms, available to the Potemkin
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Fig. 4. Virtual views generated from the highlighted image using a basic Potemkin

model that is minimally trained.

model. Given a new object class, using just two views of one instance to select

an appropriate shape primitive for each part allows us to make much better

predictions of appearance in unseen views.

4.1 Oriented shape primitives

We will augment the basic Potemkin model with an oriented primitive model

for each part. Each shape primitive is a simple 3D box at one of a small

number of possible 3D orientations with respect to the frame of the skeleton.

As shown in figure 5, we consider two rotational degrees of freedom: azimuth

and elevation angles of rotation about the shape’s centroid. This allows us

to ignore irrelevant rotations of in-plane rotation of nearly planar shapes and

rotations about the long axis of nearly linear shapes. It does, however, limit

the possible set of orientations of more general shapes.

We select the primitive shape and its orientation with respect to the skeleton

frame jointly from M possibilities. For each oriented primitive m and each

view bin, we generate a set of synthetic images. First, we generate a 3D shape

that is a random minor variation on the 3D shape primitive in size and aspect

ratio and place it at the specified orientation. Then, from each view bin, we

select a view uniformly at random, and create a 2D image by projecting the

3D instance according to the chosen view. This gives us a set of images, one
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Multiple Primitives

- 3D shapes with view-dependent orientations (2 DOF).

K views
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Fig. 5. The top row of the figure shows the three 3D primitive shapes: cube, flat

block, and stick. Each of these shapes is considered at several orientations with

respect to the skeleton. The lower part of the figure shows, for the flat shape,

several views of the shape at three example (azimuth, elevation) orientations.

from each view bin, of each of a set of instances of each oriented primitive.

Now, we apply methods from the basic Potemkin model to use pairs of these

images to estimate Mk2 primitive view transforms, Um
α,β, one for each pair of

view bins α, β and oriented primitive m. In addition to computing the mean

transform, as was done in the basic Potemkin model, we also estimate the

standard deviation, σUm

α,β . Note that the variance in the transform is modeling

uncertainty due to variation in the shape primitive as well as the particular

views chosen from the view bins.

4.2 Selecting primitives

To learn a new object-class model, we need to select an oriented primitive for

each part. Further, we might want to find a “basis set” of primitives that can
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Fig. 6. Generative model for 2D part-specific transforms. There are plates for the

M possible oriented primitives, for the N parts of the object model, and for the k2

view bin pairs. Um
α,β and T j

α,β represent the view transform from view bin α to β

for oriented primitive m and part j respectively. Rj
α,β represents an actual observed

transform of part j from view bin α to β in real data. Zj is an indicator variable

that selects which primitive m is the appropriate shape for part j of the object.

be used, collectively, to represent the parts of a large number of object classes.

This basis set could then be used as a restricted domain of primitives for

constructing new class models, thereby making the process more efficient, and

preventing the tendency to overfit when there are a huge number of primitives

available.

We will approach the problem of selecting primitives by developing a latent-

variable model for 2D part-specific transforms; the graphical model is shown in

figure 6. In this model, there are plates for the M possible oriented primitives,

for the N parts of the object model, and for the k2 view bin pairs. We can

think of the variable Zj as an unobserved indicator variable that selects which

oriented primitive m is the appropriate shape for part j of the object. Thus

Zj ∼ Multi(1/M, . . . , 1/M) has a uniform distribution over the discrete set of

possible oriented primitives.

The observed variables Um
α,β represent the mean and standard deviation (Ū
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and σU) of the generic transform for oriented primitive m from view bin α to

view bin β.

The variable T j
α,β represents the the actual view transform of part j from

view bin α to β. We treat it as normally distributed, according to the generic

transform distribution associated with its primitive part. Thus, for a choice of

Zj = m,

T j
α,β ∼ N (Ūm

α,β, σUm

α,β ) . (4)

Finally, the variable Rj
α,β represents an actual observed transform of part j

from view bin α to β in real data. In general, we might have many such

observations, in which case we would have a plate for R; but one will illus-

trate the inference process. The observed transforms are modeled as normally

distributed about the true transform, with fixed variance set by hand:

Rj
α,β ∼ N (T j

α,β, σR) . (5)

So, given this model, our goal is to infer, for each part j, the maximum a poste-

riori probability (MAP) set of view transforms T j; that is, arg maxT j Pr(T j|U,Rj).

This model is completely independent for each part, so they can be maximized

separately. Because we are ultimately interested in the MAP assignment of

primitives to parts, as well as the transforms, we will seek

arg max
T j ,Zj

Pr(T j, Zj|U,Rj) .

For any particular choice of Zj = m, the posterior mean on T j
α,β for any pair

of view bins α and β that have observed samples Rj
α,β, can be computed [44]
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as:

T̄ j,m
α,β =

κ0

κ0 + 1
Ūm

α,β +
1

κ0 + 1
Rj

α,β =

σR
2

σUm
α,β

2

σR
2

σUm
α,β

2 + 1
Ūm

α,β +
1

σR
2

σUm
α,β

2 + 1
Rj

α,β . (6)

The weight parameter κ0 could be determined as a function of σR and σUm

α,β ,

but, since σR was already being selected arbitrarily, we experimented infor-

mally with values of κ0, and set it to 9 throughout results reported in this

paper.

To find the MAP value of Zj, we enumerate possible values m, and select the

one for which

Pr(T̄ j,m, Zj = m|U,Rj) ∝ Pr(Rj|T̄ j,m)Pr(T̄ j,m|Um, Zj = m)Pr(Zj = m)(7)

is maximal; because the distribution on Zj is uniform, this means that we

can select the m that maximizes
∏

α,β Pr(Rj
α,β|T̄

j,m
α,β ) Pr(T̄ j,m

α,β |Um
α,β), which is

straightforward to compute.

4.3 Learning and using an object class model

Training the Potemkin model with multiple primitives is similar to training

the basic Potemkin model, but it requires some new steps. In the first phase,

constructing the generic transforms relating 2D shapes across each pair of

views is essentially unchanged, except that it is done for each of the oriented

primitives.

We begin the second phase by using any available paired instances to select the

most appropriate oriented primitive for each part of the class, and to estimate
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the associated view transforms, as just described.

We can take the additional useful step of estimating a rough extent and planar

model of the part in 3D. We find a similarity transform between the actual part

outlines and the projections of the primitives into views α and β; then, already

having computed correspondences between the outlines of the projections of

the primitives in phase 1, we can solve for 3D positions of points on the outline

of the shape.

The 3D position of the centroid of each part is estimated as for the 3D skeleton

of the basic Potemkin model.

Figure 7 shows the skeleton and shape primitives estimated from two part-

labeled images. These easily-obtained 3D class models are not sufficiently de-

tailed to be used directly for recognition, but they provide important informa-

tion about self-occlusion. When transforming an input image to a novel view,

it often happens that pixels belonging to different parts in the original image

are transformed to the same point in the new view. In that case, we use the

3D class model to determine which part is in front, and select those pixels

to be painted. This strategy of self-occlusion handling works when there is a

clear order in depth for the parts in the target viewpoint. Figure 8 shows how

understanding self-occlusion can improve the transformed images.

By increasing the set of primitives and supporting reasoning about occlusion,

the Potemkin model with multiple primitives generates significantly more real-

istic virtual images compared to those generated by the basic Potemkin model,

as shown in figure 9. Note that in both cases, the models are trained with only

two real labeled images.
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Fig. 7. Visualization of 3D skeleton and shape primitives. Top: two views of the

four-legged chair model; bottom: two views of the airplane model. Note that these

models were each constructed from two part-labeled images of the same object,

knowing the view bins but with no further camera calibration.

5 Self-supervised part labeling

The training algorithm for the Potemkin model requires the viewpoints of the

objects and the outlines of the parts in all real training images to be labeled.

While viewpoint labels and object outlines are readily available, from sources

like LabelMe [45], part-labeled images are not.

We have developed a simple approach that obviates the need for most of this

labeling; we require hand part-labeling on only a single pair of images of the

same object to build the 3D class model and on one image of any instance for
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Fig. 8. First row: virtual images generated from highlighted instance without occlu-

sion handling; second row: with occlusion handling.

Fig. 9. The Potemkin model with multiple primitives (second and fourth rows)

generates more realistic virtual images than the basic Potemkin model (first and

third rows).
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Fig. 10. Given a model instance with labeled parts (blue), the parts of another

instance (red) in the same view can be found by matching points along the bound-

aries of the instances (middle) and by deforming the model instance into the target

instance (right).

each additional view bin from which images will be transformed.

Our approach is based on the fact that objects in the same class, seen from

the same view, have similar arrangements of parts. For each view of the class,

we select one instance and hand-label its parts. Then we use the shape context

algorithm [41] to match the boundary shapes and deform the boundaries of

the labeled instance into the unlabeled instances, as shown in figure 10. The

deformed part boundary encloses a region in the new image, which is labeled

as the corresponding part.

6 Experimental results

In this section, we report a number of experiments aimed at evaluating differ-

ent aspects of the performance of the Potemkin model. We also demonstrate

that the virtual training examples generated by the Potemkin model can be

used effectively to train an existing view-dependent detection system [15], with

the result that many fewer real training images are required to reach the same

level of performance.

25



Greedy Primitive Selection
- Find the best M-element set of primitives to model all parts

M

Greedy Selection

- Four primitives are enough for modeling four object 
classes (21 object parts).
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Fig. 11. Decomposition of object classes into parts.

Fig. 12. Four selected view bins for bicycles, cars, and airplanes.

6.1 Dataset

We used four different object classes, shown in figure 11, for our experiments.

We described chairs using six parts, bicycles using five parts, airplanes using

five parts, and cars using five parts. The four-legged chair data set and the

airplane data set were collected by our research group. These two data sets

contain 432 images and 262 images respectively. The chair data are discretized

into six view bins (figure 4) and the other data sets into four (figure 12). The bi-

cycle data set is from the TU-Graz-02 database, which is part of the PASCAL

Visual Object Classes (VOC) Challenge [46]. It contains 365 images of bicycles.

The car data set contains 243 images, which were collected by our research
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group and taken from the car database of the VOC Challenge. Images in all

four data sets have considerable variation in pose, view, and clutter. Note that

in this paper the scale of the object instance is assumed to be known. Outlines

of objects in all images were labeled by users of LabelMe [45] and normalized

based on object scale We also collected four different background data sets—

indoor scenes, street scenes, sky scenes, and road scenes—which were used to

evaluate detection performance for the corresponding object classes.

6.2 Basis set of primitives

We began by conducting an experiment to see whether there was a small “basis

set” of primitives that would effectively model all four of our object classes,

which together have 21 separate parts. For this experiment only, we provided

one part-labeled real image of a single instance of each object class in each of

its canonical views, which we used to generate one observed transform Rj
α,β

for each part and view pair.

We used a set of oriented primitives generated from three different types of

3D shapes: flat blocks, sticks, and cubes. We considered flat blocks and sticks

at each of eight possible orientations (four elevation angles and two azimuth

angles) and cubes at two different orientations (two azimuth angles), yielding

a set of 18 possible oriented primitives. For each primitive, we generated 30

slightly varying instances, and then for each view bin we selected a view and

rendered a 2D image. Now, for each pair of view bins, we computed the trans-

forms between the image-pair for each instance, and used that data to estimate

the mean and standard deviation of the underlying transform distribution.
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Fig. 13. The quality of transforms as the number of available primitives (M) in-

creases. Left: evaluated on training data; right: evaluated on held-out test data.

To select a set of primitives sufficient to represent all four models, we ran a

greedy forward-selection process, starting with the single primitive that max-

imizes

score(m) =
∏
c

∏
j

∏
α,β

Pr(Rj
α,β | T̄

j,m
α,β ) , (8)

the data likelihood over all classes c given a single primitive. Then, we added

the next single primitive which, together with the first, increased the aggregate

score the most, etc. We stopped when the score failed to improve substantially

with further additional primitives.

We measure the quality of these transforms on real images with an aggregate

overlap score:

1

NK2

∑
j

∑
α,β

overlap(T̄
j,Zj

α,β Aj, Bj) , (9)

where Aj is the region associated with part j in view α, T̄
j,Zj

α,β Aj is the transform

of that region into view β, Bj is the true region for that same part in view

β, and the overlap of two regions is defined to be the ratio between their

intersection and their union.
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Fig. 14. 3D shape primitives selected for each part of each class.

We ran this greedy selection algorithm for each of the four object classes

independently, and for all four classes jointly. Figure 13 (left) shows the quality

of the transforms on the training set as the number of primitives increases.

We can see that four primitives suffice to model all of the classes effectively.

Testing on held-out data (figure 13, right) shows that we are not overfitting

the data, in general, but does suggest that a single primitive may be better

than two for the bicycle class.

In all future experiments, we restricted our set of primitives to the four chosen

in this process. This restricted domain of four primitives makes our modeling

process more efficient, and prevents the tendency to overfit when there are

a huge number of primitives available. All four were flat blocks (the same

3D shape), but at different 3D orientations. The primitives chosen for each

part of each class are shown in Figure 14. The most popular primitive, which
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represents 10 of 21 parts, is actually the one used in the basic Potemkin

model; but considerable representational accuracy is gained by adding other

primitives to the set. We anticipate that for a more varied collection of object

classes, it would be useful to increase the set of primitives, but are encouraged

to find that individual primitives seem to be applicable to a large number of

different object parts.

6.3 Part labeling

Since we have introduced a self-supervised part labeling strategy, we would

like to independently evaluate the quality of the labelings. We do this by

comparing the automatic part labelings to hand-labeled images, measuring the

percentage of pixels that have the same part labels in both the automatically

labeled and hand labeled images.

Averaged over all real images from all views, the aggregate labeling overlap

was: 96.72% for chairs, 98.23% for bicycles, 92.59% for airplanes, and 85.84%

for cars.

The automatically generated labels for chairs and bicycles are extremely ac-

curate, probably because the parts in these classes are clearly separable, as

shown in figures 15 and 16.

On the other hand, the label results for cars are less accurate, as shown in

figure 17. We found that different users labeled parts of cars in different ways,

since these parts are not clearly defined, but the automatically generated part

labels are more consistent. For example, some users thought the headlights of

cars should belong to the “grille” part, while other users included headlights
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Fig. 15. Some part labeling results for four-legged chairs. First row: hand labeling;

second row: self-supervised labeling.

Fig. 16. Some part labeling results of bicycles. First row: hand labeling; second row:

self-supervised labeling.
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Fig. 17. Some part labeling results of cars. First row: hand labeling; second row:

self-supervised labeling.

in the “hood” part. Ultimately, the real test is whether the labels improve

recognition performance. We will also compare the performance of these two

labeling strategies in the end-to-end system in the following sections.

6.4 Single-view detection

The Potemkin model is useful both for recognizing objects at previously unseen

views and for leveraging sparse training data by transforming any training im-

age into a view that is suitable for training any view-dependent recognizer [40].

In this set of experiments we evaluate the quality of virtual training examples

generated using Potemkin models. We test them in single-view and multi-view

detection tasks using a publicly available view-dependent recognizer developed

by Crandall et al. [15]. The goal of our experiments is to show that these virtual

training images are almost as effective as input for a standard 2D recognition

method as novel real training images.

In order to illustrate the impact of using multiple oriented primitives on the

quality of the virtual training images generated by the Potemkin model, as
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well as to highlight the model’s effectiveness with very little training data,

all 3D models and transforms were constructed using only two real images of

the target object class. In this situation, the quality of virtual training images

is most influenced by the prior transforms for each of the parts, which are

determined by the chosen oriented primitive. This does mean, however, that

the performance shown here could be improved by using more image pairs to

refine the cross-view transforms, as shown previously [40]. For efficiency, all

recognition was done at a single scale.

We trained the single-view recognizer using a combination of real and virtual

images, for each of the four data sets. The real images are all from the same

view bin, called “the target view bin”. The virtual images were transformed

from all “source” view bins different from the target view bin. In all cases,

for testing we used 30 object images from the target view bin and 30 back-

ground images from the corresponding background data set (indoor scenes for

chairs, street scenes for bicycles, sky scenes for airplanes, and road scenes for

cars), and computed an ROC curve for discrimination between the object and

background.

We did four repetitions of the detection experiments for each class, varying the

target view bin. In each case, we held the number of virtual images constant

(at 100 for chairs, 10 for bicycles, 75 for airplanes, and 50 for cars), and varied

the number of real images in the target view bin. One data point on a curve

in the first two columns of figure 18 is the percentage area under the ROC

curve, averaged over all four repetitions. Note that an object class with higher

variability among instances requires more virtual training images to achieve

satisfactory detection performance. Thus we provided different amounts of

virtual training images for different classes.
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Fig. 18. Average single novel view detection results over four repetitions of each

of four object classes: chairs (left-top), bicycles (right-top), airplanes (left-bottom),

and cars (right-bottom).

For each object class, we tested five methods of generating virtual images:

• No virtual images;

• Virtual images generated using a single global transform for the entire ob-

ject, ignoring part structure;

• Virtual images generated using a separate transform for each part, but based

on a single primitive (the basic Potemkin model), using hand-labeled parts;

• Virtual images generated with multiple primitives (the Potemkin model),

using hand-labeled parts;

• Virtual images generated with multiple primitives (the Potemkin model),

using self-supervised part labeling.
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Fig. 19. Six examples of real images (highlighted) and virtual images constructed

by the Potemkin model with multiple primitives.

In every case but the first, the same number of virtual training images, along

with real training images, were used for training the view-based recognizer

for the target class. The basic Potemkin model and the Potemkin model with

multiple primitives were constructed from only two real images, which were

used to construct the skeleton and select the primitives for each part.

In the case of bicycles, all five parts selected only one primitive, which is the

single primitive of the basic Potemkin model, so the results of the Potemkin
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model with multiple primitives are the same as for the original. In the other

three classes, the use of additional primitives improves performance consid-

erably. Note that for cars, the basic Potemkin model performs worse than

a single global transform because of unrealistic virtual images. However, the

Potemkin model with multiple primitives generates reasonable virtual images

which improve the detection performance. Some virtual training images (vir-

tual examples placed into the background from the original image) generated

from the Potemkin model with multiple primitives are shown in figure 19.

Self-supervised part labeling decreases detection performance of airplanes,

compared to the model trained with hand-labeled parts. We observed that

incorrect labels in self-supervised part labeling are mostly due to instances

without tails or with one wing occluded, which are significantly different from

the model instance we used to deform the shapes. In the future, we could use

several model instances in the same view bin for matching shapes and defining

labels. The labels of other instances could then be determined using the best

matching model instance.

Our self-supervised approach for labeling parts works well if most instances

of the target class have the same number of parts and big parts are not oc-

cluded, such as for four-legged chairs. It is particularly interesting that for cars,

self-labeling works better than hand-labeling, probably because self-labeling

provides a more consistent “definition” of parts.
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Fig. 20. Multi-view recognition performance (ROC curve) for chairs and cars.

6.5 Multi-view detection

We have also carried out experiments in multi-view detection, in which the

goal is to label the class of an object, independent of its view point. We train

single-view recognizers for each view of each object, using virtual training data

generated by the Potemkin model, and output the class associated with the

recognizer generating the largest response on each test image. We compared

the same five training conditions as in the single-view detection experiment,

as well as one in which all of the views are pooled and used to train a single

detector. The results are shown in figure 20. The combined recognizers trained

with the data generated from the Potemkin model with multiple primitives

outperform the others by a substantial margin.

6.6 Dalal-Triggs Detector

To support our claim that our virtual training images can improve the perfor-

mance of any 2D image-based detector, we also conducted experiments using

the detector from Dalal and Triggs [47], which is currently among the most
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accurate for cars. In this section, we performed experiments on the PASCAL

VOC Challenge 2005 Cars Test 2 data set [46], which is a standard data set for

many state-of-the-art approaches. The Dalal-Triggs detector requires a pool

of positive/negative (car/non-car) examples for training. Because the data set

in the PASCAL Challenge doesn’t provide the outline segmentations for all

objects, we use the car data set collected by our research group for training.

However, we still used the ”background” data set provided by the PASCAL

challenge in the car detection task as the negative examples for training the

Dalal-Triggs detector.

For each of the four training viewpoints of cars as shown in Figure 12, we

collected 20 real images and generated 60 virtual images, by transforming real

images from the other three viewpoints. We also made use of symmetries and

generated mirrored versions of these images. Thus we had a total of 160 real

training images and 480 virtual training images.

We set the parameters of the Dalal-Triggs detector and evaluated the detec-

tion results as in [46]. Note the best three average precision (AP) scores on

this standard test set in PASCAL VOC Challenge 2005 [46] are 0.304 (the

Dalal-Triggs detector), 0.181, and 0.106. Our real training data set of cars is

smaller than the training data set provided by the PASCAL VOC Challenge.

In addition, our training data set doesn’t cover all viewing directions of cars

as those in [46]. Thus, for example, our trained detector cannot recognize rear

views of cars. Our goal in these experiments is only to give an estimate for the

improvement expected from virtual images using a state-of-the-art detector

on a standard data set.

Figure 21 shows the precision-recall curves of the Dalal-Triggs detector using
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Different Training Dataset, Same Test Dataset (PASCAL2005_Test2)

‐ PASCAL:  320 training cars (all views)
INRIA‐Dalal Darmstadt:ISMSVM FranceTelecom

AP (Average Precision)      0.304                   0.181                         0.106   

‐ Ours: 160 real training cars (8 views, no rear view)   AP = 0.158
‐ Ours: 160 real + 480 virtual training cars (8 views, no rear view)  AP = 0.213

Fig. 21. The precision-recall curves of the Dalal-Triggs detector using our training

images.

our training data set on the VOC Challenge 2005 Car Test 2 data set. The

incorporation of our virtual training images increased the AP score of the same

detector from 0.162 to 0.272. Using both real and virtual images for training,

more cars in the test set were detected (highest recall: 0.32).

7 Conclusions

In this paper, we have proposed an approach to multi-view object class recog-

nition based on independent view-dependent recognizers. Our approach makes

efficient use of training data in each view by transforming it into virtual train-

ing data for all other views. The virtual training examples we generate can be

used as training input for any view-dependent 2D recognizer. We have demon-

strated the effectiveness of this approach in learning single-view recognizers in

novel views and in multi-view recognition.

This approach provides a middle ground between methods that are based only

on 2D images and those based only on a 3D model; it seeks to gain the best of
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both worlds by taking advantage of our general knowledge of the relationship

between 3D objects and their 2D projections and using that as leverage for

efficient and effective learning of view-based recognizers.

The demonstrations in the paper have been for a set of view bins that are

significantly different, but that do not exhaust the entire view sphere. In or-

der to handle such a wide variety of views, we would need to add at least two

extensions. First, explicit modeling of occlusion during the skeleton-learning

phase so that largely occluded views of parts do not contribute to the estima-

tion of the 3D structure. Second, reasoning about how the viewpoint change

influences the quality of the transformed virtual images. For some view pairs,

the transformed images will be excellent; but as the views become very dif-

ferent, their quality will degrade. When asked to generate virtual images for

a new view, we should only use a subset of related views as “source” images

for the transformation. With these extensions, we believe the Potemkin model

can serve as the basis for a robust, efficient strategy for multi-view object class

recognition.
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