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Abstract

We have proposed a new spatio-temporal knowledge structure called 3D C-string to repre-
sent symbolic videos accompanying with the string generation and video reconstruction
algorithms. In this paper, we extend the idea behind the similarity retrieval of images in 2D
C+-string to 3D C-string. Our extended approach consists of two phases. First, we infer the
spatial relation sequence and temporal relations for each pair of objects in a video. Second,
we use the inferred relations to define various types of similarity measures and propose the
similarity retrieval algorithm. By providing various types of similarity between videos, our
proposed similarity retrieval algorithm has discrimination power about different criteria.
Finally, some experiments are performed to show the efficiency of the proposed approach.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

With the advances in information technology, videos have been promoted as a
valuable information resource. Because of its expressive power, videos are an
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appropriate medium to show dynamic and compound concepts that cannot be easily
explained or demonstrated using text or other media. Recently, there has been wide-
spread interest in various kinds of database management systems for managing
information from videos. The video retrieval problem is concerned with retrieving
videos that are relevant to the users� requests from a large collection of videos,
referred to as a video database.

Over the last decade, many image/video indexing and retrieval methods have been
proposed, for example, OVID [32], KMED [8], QBIC [11], VideoQ [3], etc. Doulamis
et al. [10] presented a fuzzy histogram of visual content for video summarization and
content-based retrieval. Lei and Lin [23] developed a geometry-based indexing ap-
proach to retrieve videos by using the geometric structure of objects and their spatial
relationships. Naphade and Huang [30] proposed a probabilistic framework map-
ping low-level features to high-level semantics. VideoText [17] provided the concep-
tual graph representation to capture the semantic associations among the concepts
described in text annotations of videos. Guimar et al. [12] used topological and mor-
phological tools to transform each video event into a different pattern on a 2D im-
age, called visual rhythm, to segment a video. VideoQA [37] allowed users to use
short natural language questions with implicit constraints on contents to retrieve
short precise news video summaries.

Moreover, many methods using the temporal properties to index and retrieve vid-
eos have been proposed. Caspi and Irani [1] proposed a sequence-to-sequence align-
ment approach to establish correspondences between two different video sequences
of the same dynamic scene and to integrate information across multiple video se-
quences. Liu and Kender [26] presented a heuristic method called sort-merge feature
selection to segment and categorize videos in a coarse-fine manner. Ngo et al. [31]
proposed a motion computation method based on a structure tensor formulation
to encode visual patterns of spatio-temporal slices in a tensor histogram and to de-
scribe the motion trajectories of moving objects. Lo et al. [27] presented a framework
for retrieving video sequences using successive modular operations on temporal sim-
ilarity. Snoek and Worring [36] developed the TIME framework to classify the
semantic events in multimodal video documents.

To retrieve desired videos from a video database, one of the most important meth-
ods for discriminating videos is the perception of the objects and the spatio-temporal
relations that exist between the objects in a video. Much progress in the area of con-
tent-based video retrieval has been made in recent years, such as object searching
based on localized color [29], moving object extraction and indexing
[13,22,24,28,35], motion trail matching in MPEG [9], key-frame-based video brows-
ing [39], and abstraction of high-level video units [38].

To represent the spatial relations between the objects in a symbolic image, many
iconic indexing approaches have been proposed, such as, 2D string [4], 2D G-string
[16], 2D C-string [20], 2D C+-string [15], unique-ID-based matrix [5], GPN matrix
[6], virtual image [33], BP matrix [7], and 2D Z-string [18]. In image similarity retrie-
val, Chang et al. [4] defined three types of 2D subsequences to perform subpicture
matching on 2D strings and transformed the image retrieval problem into a problem
of 2D subsequence matching. Lee et al. [21] proposed a similarity retrieval algorithm
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based on 2D string longest common subsequence (LCS). They showed that an LCS
problem of 2D string can be transformed to the maximum complete subgraph prob-
lem [21]. Based on 13 spatial relations and their categories, Lee and Hsu [21] pro-
posed three types of similarity between images represented by 2D C-string. In the
knowledge structure of 2D C+-string [15], they used the same clique finding algo-
rithm to find the most similar pictures.

To represent the spatial and temporal relations between the objects in a symbolic
video, many iconic indexing approaches, extended from the notion of 2D string to
represent the spatial and temporal relations between the objects in a video, have been
proposed, for example, 2D B-string [34], 2D C-tree [14], 9DLT strings [2], 3D-list
[25], and 3D C-string [19]. In the 3D C-string, we used the projections of objects
to represent spatial and temporal relations between the objects in a video, and to
keep track of the motions and size changes of the objects in a video. We also devel-
oped the string generation and video reconstruction algorithms for the 3D C-string.
The string generated by the string generation algorithm is unique for a given video
and the video reconstructed from a given 3D C-string is unique too. This approach
can provide us an easy and efficient way to retrieve, visualize, and manipulate video
objects in video database systems.

The capability of similarity retrieval is important in video database management
systems. Therefore, in this paper, we extend the idea behind the similarity retrieval of
images in 2D C+-string to 3D C-string. Our extended approach consists of two
phases. First, we infer the spatial relation sequence and temporal relations for each
pair of objects in a video. Second, we use the inferred relations and sequences to de-
fine various types of similarity measures and propose the similarity retrieval algo-
rithm. By providing various types of similarity between videos, our proposed
similarity retrieval algorithm has discrimination power about different criteria.
Our proposed approach can be easily applied to an intelligent video database man-
agement system to infer spatial and temporal relations between the objects in a video
and to retrieve the videos similar to a given query video from a video database.

The remainder of this paper is organized as follows. We first review the 3D C-
string approach of representing symbolic videos in Section 2. In Section 3, we de-
scribe the spatial and temporal relation inference algorithms from which all relation
sequences between objects can be easily derived. Then we discuss the similarity retrie-
val algorithm based on 35 types of similarity between videos in Section 4. In Section
5, the results on two series of performance experiments are presented. Finally, con-
cluding remarks are made in Section 6.

2. 3D C-string

In the knowledge structure of 3D C-string [19], we use the projections of objects to
represent the spatial and temporal relations between the objects in a video.
The objects in a video are projected onto the x-, y-, and time-axes to form three
strings representing the relations and relative positions of the projections in the
x-, y-, and time-axes, respectively. These three strings are called u-, v-, and t-strings.
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The projections of an object onto the x-, y-, and time-axes are called x-, y-, and time-
projections, respectively. In comparison with the 2D C+-string, the 3D C-string has
one more dimension: time-dimension. So the 3D C-string is different from the 2D
C+-string that has only spatial relations between objects, it has spatial and temporal
relations. Hence, it is required to keep track of the information about the motions
and size changes of the objects in a video in 3D C-string.

In the knowledge structure of 3D C-string, there are 13 relations for two one-
dimensional intervals. For the x (or y) dimension, there are 13 spatial relations
and its corresponding spatial operators have been presented in 2D C-string [20]
as listed in Table 1, where Begin(P) and End(P) are the begin-bound (beginning
point) and end-bound (ending point) of the x- (or y-) projection of object P,
respectively. The notations used in this paper follow those defined in the 2D C-
string. In the time dimension, there are 13 temporal relations, too. So we use
the same temporal operators as the spatial operators. For example, in the x

(or y) dimension, P < Q represents that the projection of object P is before that
of object Q. In the time dimension, P < Q denotes that object P disappears before
object Q appears. According to the research of Lee and Hsu [20], all the 13 oper-
ators except ‘‘/’’ can precisely (no ambiguity) represent the relations between two
objects. To avoid using the operator ‘‘/’’, we replace P/Q with P]Q|Q in our cut-
ting mechanism and string generation algorithm.

In the knowledge structure of 3D C-string, an object is approximated by a min-
imum bounding rectangle (MBR) whose sides are parallel to the x-axis and y-axis.
For each object, we keep track of its initial location and size. That is, we keep track
of the location and size of an object in its starting frame. After keeping track of the
initial location and size of an object, we record the information about its motions
and size changes in the 3D C-string.

To represent the time intervals when the motion and size of an object are changed,
we introduce one more temporal operator, |t. For example, P3 |t P5 denotes that in
the first three frames, object P remains in the same state of the motion and size
change. However, from the fourth frame to the eighth frame, the state of the motion
and size change of object P is changed into another.

We also define some metric measures to the knowledge structure of 3D C-string,
and the metric measures are shown as follows:

Table 1
The definitions of spatial operators in 2D C-string

Notations Conditions

P < Q End(P) < Begin(Q)
P = Q Begin(P) = Begin(Q), End(P) = End(Q)
P|Q End(P) = Begin(Q)
P%Q Begin(P) < Begin(Q), End(P) > End(Q)
P[Q Begin(P) = Begin(Q), End(P) > End(Q)
P]Q Begin(P) < Begin(Q), End(P) = End(Q)
P/Q Begin(P) < Begin(Q) < End(P) < End(Q)

752 A.J.T. Lee et al. / J. Vis. Commun. Image R. 16 (2005) 749–773



1. The size of an object: Pr denotes that the size (length) of the x- (y- or time-) pro-
jection of object P is equal to r, where r = Endx (P) � Beginx (P) (r = Endy (P)
� Beginy (P), or r = Endtime (P) � Begintime (P)), Beginx (P), and Endx (P) are
the x coordinates of the begin-bound and end-bound of the x-projection of object
P, respectively. For example,

is represented by P5.
2. The distance associated with operator <: P < dQ denotes that the distance

between the x- (y- or time-) projection of object P and that of object Q is equal
to d, where d = Beginx (Q) � Endx (P) (d = Beginy (Q) � Endy (P), or d =
Begintime (Q) � Endtime (P)). In the knowledge structure of 3D C-string, we only
keep track of the initial location of an object. Hence, for P < dQ, the starting
frame of object P may be different from that of object Q. For example,

is represented by P < 3Q.
3. The distance associated with operator %: P%dQ denotes that the distance

between the x- (y- or time-) projection of object P and that of object Q is equal
to d, where d = Beginx (Q) � Beginx (P) (d = Beginy (Q) � Beginy (P), or d =
Begintime (Q) � Begintime (P)). For example,

is represented by P%5Q.

4. The velocity and rate of size change associated with motion operators ›v,r and
flv,r: operator ›v,r denotes that the object moves along the positive direction of
the x- (or y-) axis. Operator flv,r denotes that the object moves along the negative
direction of the x- (or y-) axis. v is the velocity of the motion and r is the rate of
size change of an object. For example, an u-string: P › 2,1 denotes that object P
moves along the positive direction of the x-axis with the velocity = 2 and the rate
of size change = 1. That is, the size of object P remains unchanged.

To see how 3D C-string works, let us consider the example as shown in Fig. 1. The
3D C-string of video Va shown in Fig. 1 can be represented as follows:
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u-string: ((A2 › 0,1 › 1,1 = C2 › 0, 1 › 0,1.225) < 1B4)
v-string: (A2 › 1, 1 › 0,1 = B2 = C2 › 0, 1 › 0,1)
t-string: ((A6|tA3 = B9)] C2|tC2)

From frame 1 to frame 6, object A moves from bottom to top along the positive
direction of the y-axis with the velocity of 1 unit/frame, but no motion along the x-
axis. From frame 7 to frame 9, object A changes its motion and moves from left to
right along the positive direction of the x-axis with the velocity of 1 unit/frame, but
no motion along the y-axis. Object C is getting larger along the x-axis with the rate
of size change of 1.225 units/frame, but no size change along the y-axis. Because ob-
jects A and C change their states, operator |t appears in the t-string of objects A and
C. Therefore, the knowledge structure of 3D C-string provides an easy and efficient
way to represent the spatio-temporal relations between the objects in a video.

3. Spatio-temporal relation inference

Like the method proposed by Huang and Jean [15], we can use the spatial decision
tree as shown in Fig. 2 to determine the spatial relation between the x- (or y-) pro-
jection of object P and that of object Q. In Fig. 2, BP denotes the begin-bound of the
x- (or y-) projection of object P and SP denotes the size of the x- (or y-) projection of
object P. Similarly, we can construct the temporal decision tree to determine the
temporal relation between the time-projection of object P and that of object Q.

Fig. 1. Video Va.
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The spatial relation between the x- (or y-) projection of object P and that of object
Q may change over time in the video. These changing relations will form a spatial
relation sequence. Therefore, we need to compute and record the new spatial relation
whenever their spatial relation differs. Intuitively, we need to compute the spatial
relation sequence between objectsP andQ in their overlapped time interval. However,
to precisely record the spatial relation changes, we also need to compute the spatial
relation sequence between objects P and Q in the non-overlapped time interval. To
do so,we compute the spatial relation sequence by comparing one object in every frame
in the non-overlapped time interval with the other object at the nearest time point.

Let us consider that the temporal relation between objects P andQ is P/Q. First, we
need to compute the spatial relation sequence betweenP andQ in their overlapped time
interval, [Begintime (Q), Endtime (P)]. Second, we need to compute the spatial relation
sequence between P and Q in the interval [Begintime (P), Begintime (Q)] by comparing
Q at Begintime (Q) withP in every frame in [Begintime (P), Begintime (Q)]. Third, we need
to compute the spatial relation sequence between P and Q in the interval [Endtime (P),
Endtime(Q)] by comparing P at Endtime(P) with Q in every frame in [Endtime(P),
Endtime(Q)]. Then, merge those three spatial relation sequences together. The merged
sequence is the spatial relation sequence between P and Q. This is the main idea of the
spatial relation inference algorithm. The algorithm is described in detail in Fig. 3.

For example, let us show how to compute the spatial relation sequence of objects
A and B as shown in Fig. 1. We apply the spatial relation inference algorithm to
objects A and B. Their temporal relation is A = B. Let us consider the spatial relation
changes in the x dimension. In frame 1, the spatial relation between objects A and B

is A < B. In frame 9, the spatial relation between objects A and B is B [A. There exist
some relation changes from frame 1 to frame 9 for objects A and B. We need to
compute those relation changes and find that the spatial relations between objects
A and B are A < B in frames 1–6, A|B in frame 7, A/B in frame 8, and B[A in

Fig. 2. Spatial decision tree.
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frame 9. The spatial relation sequence of objects A and B can be represented as
A < B:[1,6], A|B:[7,7], A/B:[8,8], and B[A:[9,9]. Similarly, we can find that the spatial
relation sequence between objects A and C in the x dimension is A = C:[1,6], C/
A:[7,8], and C < A:[9,9].

Before discussing the temporal relation inference, we define a notation to repre-
sent a time interval set.

Fig. 3. Spatial relation inference algorithm.
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Definition 1. [h1 � h2, h3 � h4] is a time interval set, which is defined as
{[s1,s2]|h1 6 s1 6 h2, h3 6 s2 6 h4, s1 6 s2} where h1, h2, h3, and h4 are positive
integers and h1 6 h2, h3 6 h4.

Next, let us consider how to compute the possible temporal relations between
objects P and Q in every sub-interval of [min(Begintime (P), Begintime (Q)), max
(Endtime (P), Endtime (Q))], where function min(a,b) returns the smaller value of a
and b, and function max(c,d) returns the larger value of c and d. To compute the pos-
sible temporal relations between P andQ, we need to find the time points at which the
temporal relations between them can be changed. For example, if the temporal rela-
tion between P and Q is equal to P ]Q, the temporal relations can be changed at
Begintime (Q). So, we have the two possible temporal relations between them: (a)
P ]Q holds for each interval in the interval set [Begintime (P) � Begintime (Q) � 1,
Begintime (Q) � Endtime (Q)]; (b) P = Q holds for each interval in the interval set
[Begintime (Q) � Endtime (Q), Begintime (Q) � Endtime (Q)]. The temporal relation infer-

ence algorithm is described in detail in Fig. 4.
For example, let us apply the temporal relation inference algorithm to objects A

and C as shown in Fig. 1. Since the temporal relation between objects A and C is
A9]C4, all the possible temporal relations between objects A and C are A]C:[1 � 5,
6 � 9] and A = C:[6 � 9, 6 � 9].

4. Similarity retrieval

In this section, we extend the idea behind the spatial similarity retrieval in 2D C+-
string to 3D C-string. We define 35 types of the similarity measures and propose the
similarity retrieval algorithm.

Before defining the similarity measures, we introduce some notations used later.

Definition 2. ]h1 � h2, h3 � h4] is a time interval set and its begin-bound is
extendible.]h1 � h2, h3 � h4] is defined as {[s1,s2]|min (1,h1) 6 s1 6 h2, h3 6 s2 6 h4,
s1 6 s2} where h1, h2, h3, h4 are positive integers and h1 6 h2, h3 6 h4. Similarly,
[h1 � h2, h3 � h4[ is a time interval set and its end-bound is extendible. [h1 � h2,
h3 � h4[ is defined as {[s1,s2]| h1 6 s1 6 h2, h3 6 s2 6 max(h4,VL), s1 6 s2} where VL

is the time length of video V. Likewise, ] h1 � h2, h3 � h4[ is a time interval set and its
begin-bound and end-bound are extendible. ]h1 � h2, h3 � h4[ is defined as
{[s1,s2]|min (1,h1) 6 s1 6 h2, h3 6 s2 6 max(h4,VL), s1 6 s2}.

Definition 3. Given two time interval sets U and W, the intersection of U and W is
defined as U \ W = {[s1,s2]|[s1,s2] 2 U and [s1,s2] 2 W}.

Definition 4. Given two spatial relation sequences a = a1:[t0, t1], a2:[t1 + 1, t2], . . . ,
an:[tn � 1 + 1, tn] and a0 ¼ a01:½t00; t01�; a02 : ½t01 þ 1; t02�; . . . ; a0m::½t0m�1 þ 1; t0m�; n Pm > 0,
where ak:[tk � 1 + 1, tk] means that the spatial relation in the interval [tk � 1 + 1, tk]
is ak, if aji ¼ a0i, for all i =1,2, . . . ,m, and 0 6 j1 6 j2 6 � � � 6 jm 6 n, we said that
a0 is a sub-sequence of a. Function subseq (a0,a) means that a0 is a sub-sequence of
a. Function intervalSubseq(a0,a) is defined as follows:
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intervalSubseq ða0; a0Þ ¼

�t0 � t1; tjm�1 þ 1 � tjm �; j1 ¼ 1 and m 6¼ n;

½tj1�1 þ 1 � tj1 ; tn�1 þ 1 � tn½; jm ¼ n and j1 6¼ 1;

�t0 � t1; tn�1 þ 1 � tn�1½; j1 ¼ 1 and m ¼ n;

½tj1�1 þ 1 � tj1 ; tjm�1 þ 1 � tjm �; otherwise:

8>>><
>>>:

For each interval in the interval set intervalSubseq(a0,a), a0 is a sub-sequence of a in
the interval.

Fig. 4. Temporal relation inference algorithm.
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Assume that a pair of objects (P,Q) in a video V 0 matches a pair of objects (P,Q)
in another video V. We use three criteria to measure the similarity degree between
both matched pair of objects. They are listed as follows:

(1) spatial relation,
(2) temporal relation,
(3) duration (that an object lasts in the video).

For each criterion, there are different levels of similarity (defined later). The sim-
ilarity between (P,Q) in video V 0 and (P,Q) in video V can be one of combinations
of different levels of those criteria. We use the initial character to represent each cri-
terion (the underlined character) and call the similarity the type-std similarity. (P,Q)
is called a type-std similar pair between videos V0 and V. Objects P and Q are called
matched objects.

To define the levels of three criteria, for (P,Q) in video V, we use the following
notations to define the similarity measures:

� SRSu
PQ (or SRSv

PQ): the spatial relation sequence between P and Q in the x (or y)
dimension.

� CSSPQ: the category sequence of the spatial relations between P and Q. The con-
cept of the categories of spatial relations was proposed by Lee and Hsu [21]. They
divided 169 spatial relations into 5 spatial categories, namely, disjoin, join, overlap,
contain, and belong.

SRSu
PQ (or SRSv

PQ) can be computed by the spatial relation inference algorithm.
After both SRSu

PQ and SRSv
PQ are obtained, we easily obtain CSSPQ.

� STP (a,b): the size of the time-projection of object P in the interval [a,b]. If the
argument (a,b) is omitted, STP denotes the size of the time-projection of object
P in video V.

� TRPQ (a,b): the temporal relation between the time-projection of object P and that
of object Q in the interval [a,b].

� CTRPQ(a,b): the category of TRPQ (a,b). The 13 temporal relations are also
divided into five categories, namely, disjoin, join, overlap, contain, and belong.

If TRPQ (a,b) and CTRPQ (a,b) omit argument (a,b), TRPQ and CTRPQ denote the
temporal relation, and the category of the temporal relation between the time-pro-
jections of P and Q in the interval [min(Begintime (P), Begintime (Q)), max(Endtime (P),
Endtime (Q))], respectively.

For (P,Q) in video V 0, we can similarly obtain the following information:
SRSu0

PQ ðSRSv0

PQÞ, CSS0
PQ, ST

0
P , TR

0
PQ, and CTR0

PQ.
Since (P,Q) is a type-std similar pair between videos V 0 and V, there exists a

sub-interval of [min (Begintime (P),Begintime (Q)), max(Endtime (P),Endtime (Q))] in
video V such that the type-std similarity holds for (P,Q) in the sub-interval. If
the number of such sub-intervals is more than one, they will form an interval
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set. For each interval in the interval set, the type-std similarity holds for (P,Q). Let
[a,b] be an interval in the sub-interval set. The levels of each criterion are defined
as follows:

‘‘s’’ denotes the similarity degree of the spatial relations between P and Q, and
there are four levels.

s = 0: none.
s = 1: subseqðCSS0

PQ; CSSPQÞ.
s = 2: subseqðCSS0

PQ; CSSPQÞ and ðsubseqðSRSu0

PQ; SRSu
PQÞ or subseqðSRSv0

PQ; SRSv
PQÞÞ.

s = 3: subseqðSRSu0

PQ; SRSu
PQÞ and subseqðSRSv0

PQ; SRSv
PQÞ.

‘‘t’’ denotes the similarity degree of the temporal relations between P and Q, and
there are three levels.

t = 0: none.
t = 1: CTR0

PQ ¼ CTRPQða; bÞ.
t = 2: TR0

PQ ¼ TRPQða; bÞ.

‘‘d’’ denotes the similarity degree of the duration between the time-projections of
P and Q, and there are three levels.

d = 0: none.
d = 1: ST 0

P ¼ ST P ða; bÞ and ST 0
Q ¼ STQða; bÞ.

d = 2: ST 0
P=ST P ða; bÞ ¼ ST 0

Q=STQða; bÞ.

Because type-000 similarity is meaningless, there are 4 · 3 · 3 � 1 = 35 types of
similarity in total. For the same criterion, the higher the level is, the stronger the sim-
ilarity is. For example, type-300 is stronger than type-200 and type-320 is stronger
than type-210. For example, the type-111 similarity between (P,Q) in videos V0

and V can be expressed that ‘‘in video V, there exists a sub-interval [a,b] in [min
(Begintime (P), Begintime (Q)), max(Endtime (P),Endtime (Q))] such that subseqðCSS 0

PQ;
CSSPQÞ, CTR0

PQ ¼ CTRPQða; bÞ, ST 0
P ¼ ST P ða; bÞ and ST 0

Q ¼ STQða; bÞ in the sub-inter-
val.’’ If the number of such sub-intervals is more than one, they will form an interval
set. For each interval in the interval set, the type-111 similarity holds.

Next, let us consider how to compute the interval set. For each interval in the
interval set, the type-std similarity holds for (P,Q) in videos V 0 and V. First, we com-
pute the interval set, U, such that the type-s00 similarity holds for (P,Q) for each
interval in U. Second, we compute the interval set, W, such that the type-0t0 similar-
ity holds for (P,Q) for each interval in W. Third, let H = U \ W. For each interval in
H, the type-st0 similarity holds for (P,Q). If the criterion of duration, d, is equal to 1,
we shall check whether ST 0

P ¼ ST P ða; bÞ and ST 0
Q ¼ STQða; bÞ for each interval [a,b]

inH or not. If not, remove the interval fromH. Similarly, if the criterion of duration,
d, is equal to 2, we shall check whether ST 0

P=ST P ða; bÞ ¼ ST 0
Q=STQða; bÞ for each

interval [a,b] in H or not. If not, remove the interval from H. Finally, for each inter-
val in H, the type-std similarity holds for (P,Q).
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To compute U, we can check if the spatial relation sequence, b0, between (P,Q) in
video V0 is a sub-sequence of the spatial relation sequence, b, between (P,Q) in video
V. If yes, let U = intervalSubseq(b0,b); otherwise, U = / (empty set). For each inter-
val in U, the type-s00 similarity holds for (P,Q).

To compute W, we can apply the temporal relation inference algorithm to inferring
all possible temporal relations for (P,Q) in video V. Then, we can check if the
temporal relation, s, between (P,Q) in video V0 is equal to one of the inferred tem-
poral relations. If yes, let W be the interval set associated with the inferred temporal
relation which is equal to s; otherwise, W = /. For each interval in W, the type-0t0
similarity holds for (P,Q).

Definition 5. Let O = {O1,O2, . . . ,Or}, rP 2, be the largest set of matched objects
in videos V1 and V2 where every pair of matched objects in O is a type-std similar
pair. The video V3 constructed from O is a type-std common subvideo of V1 and
V2.

Definition 6. Let video V3 be the type-std common subvideo of videos V1 and V2.
The type-std similarity degree between V1 and V2 is defined as the number of objects
in V3, and we say that V1 is type-std similar to V2. If V1 is type-std similar of V2 with
the largest similarity degree, V1 is the type-std most similar video of video V2.

To compute the similarity degree between two given videos, V0 and V, we build an
association graph in which the vertices are formed by the matched objects between
two videos. For every type-std similar pair, the corresponding vertices in the associa-
tion graph are connected by an edge. Let Kj be a clique with j vertices, j P 2. If every
pair of vertices inKj is type-std similar, we callKj a type-std clique. The number of ver-
tices of the largest type-std clique in the association graph is the similarity degree be-
tween V 0 and V. The similarity retrieval algorithm is described in detail in Fig. 5.

Let us consider the type-320 similarity. The video Vb shown in Fig. 6 is formed by
the frames 5–8 from video Va as shown in Fig. 1. The 3D C-string of video Vb can be
represented as follows:

u-string: ((A2 › 0,1 › 1,1 = C2 › 0, 1 › 0,1.225) <1B4)
v-string: ((B2 = C2 › 0, 1 › 0,1) <2 A2 › 1,1 › 0,1)
t-string: ((A2|tA2 = B4)] C2|tC1)

There are three objects A, B, and C in both videos Va and Vb. First, we apply the
spatial relation inference algorithm to analyzing the spatial relation sequences between
each pair of objects in video Vb. The spatial relation sequences are shown as follows:

x-dimension: A < B:[1,2], A|B:[3,3], A/B:[4,4],
A = C:[1,2], C/A:[3,4],
C < B:[1,4];

y-dimension: B < A:[1,4],
C < A:[1,4],

B = C:[1,4];
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time-dimension: A = B,
A]C,
B]C.

Fig. 5. Similarity retrieval algorithm.

Fig. 6. Video Vb.
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Second, we apply the spatial relation inference algorithm to analyzing the spatial
relation sequences between each pair of objects in video Va. The spatial relation
sequences are shown as follows where the spatial relation between objects A and
C in frames 1–5 is determined by comparing object C in frame 6 with object A in
every frame from frame 1 to frame 5. The spatial relation sequence between objects
B and C is determined in a similar way.

x-dimension: A < B:[1,6], A|B:[7,7], A/B:[8,8], B[A:[9,9],
A = C:[1,6], C/A:[7,8], C < A:[9,9],
C < B:[1,9];

y-dimension: A = B:[1, 1], B/A:[2,2], B|A:[3,3], B < A:[4,9],
A = C:[1,1], C/A:[2,2], C|A:[3,3], C < A:[4, 9],
B = C:[1,9].

Third, we apply the temporal relation inference algorithm to computing all the
possible temporal relations between each pair of objects in video Va. The temporal
relations are listed as follows:

time-dimension: A = B:[1 � 9,1 � 9],
A]C:[1 � 5,6 � 9], A = C:[6 � 9,6 � 9],
B]C:[1 � 5,6 � 9], B = C:[6 � 9,6 � 9].

Since objects A, B, and C are the matched objects in both videos, we can construct
the association graph with three vertices (A, B, and C). Let us first consider the type-
320 similarity between the similar pair (A,B). For the spatial relation sequence be-
tween objects A and B in the x dimension, we find that A < B:[1,2], A|B:[3,3],
A/B:[4, 4] in Vb is a sub-sequence of A < B:[1,6], A|B:[7,7], A/B:[8,8], B[A:[9,9] in
Va and function intervalSubseq returns ]1 � 6,8]. For the spatial relation sequence
between objects A and B in the y dimension, B < A:[1,4] in Vb is a sub-sequence
of A = B:[1,1], B/A:[2,2], B|A:[3,3], B < A:[4,9] in Va and function intervalSubseq re-
turns [4 � 9,4 � 9[. For the temporal relation in the time dimension, we find that the
temporal relation between objects A and B in Vb is A = B and A = B holds in Va for
each interval of [1 � 9,1 � 9]. Hence, we use an edge to connect vertices A and B in
the association graph as shown in Fig. 7. The interval set associated with edge AB is
the intersection of interval sets ]1 � 6,8], [4 � 9,4 � 9[ and [1 � 9,1 � 9]. The inter-
section is equal to [4 � 6,8]. When we consider the type-320 similarity between the
similar pair (A,C), we can find that the interval set associated with edge AC is
[4 � 5,7 � 8]. Similarly, when we consider the type-320 similarity between the similar
pair (B,C), we can find that the interval set associated with edge BC is [1 � 5,6 � 9].

Now, we have a type-320 K2 set which is fAB : ½4 � 6; 8�; AC : ½4 � 5;
7 � 8�; BC : ½1 � 5; 6 � 9�g. Since all the sub-cliques SK2 of K3 ABC are in the
type-320 K2 set, we can obtain a type-320 K3. The interval set associated with the
type-320 K3 ABC is the intersection of the interval sets associated with AB, AC,
and BC. That is, the interval set associated with the type-320 K3 ABC is equal to
the intersection of [4 � 6,8], [4 � 5,7 � 8], and [1 � 5,6 � 9]. The intersection is
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equal to [4 � 5,8]. Hence, the similarity degree between Va and Vb is 3. Since the
interval set [4 � 5,8] contains two intervals [4,8] and [5,8], we have two sub-videos
which are type-320 similar to video Vb. One is formed by extracting frames 4 � 8
from video Va. The other is formed by extracting frames 5 � 8 from video Va.
The result is shown in Fig. 7.

If we impose a stronger constraint to find the type-321 (or type-322) similarity be-
tween videos Va and Vb, we shall find a type-321 (or type-322) K3 associated with an
interval [5, 8]. The sub-video formedby extracting frames 5 � 8 fromvideoVa is exactly
the same as video Vb.

5. Performance analysis

To compare the performance of our similarity retrieval algorithmwith the 9DLT ap-

proach [2], we perform two series of experiments. The first series of experiments ismade
on the synthesized video indexes. There are four cost factors dominating the perfor-
mance of the similarity retrieval algorithm: the number of objects in a query video,
the number of database videos, the average number of objects in a database video,
and the average number of frames in a database video. We freely set the values of
the four cost factors in the synthesized video database. Since the string matching algo-
rithms proposed in the past are not suitable to apply on 3DC-string, we also use a naive
algorithm for the comparison. The naive algorithm goes quite simple: to match the u-,
v-, or t-strings of a database videowith the u-, v-, or t-string of a query video,we attempt
to compare every possible combination of objects. If a combination satisfies a certain
type-std similarity, we append it to the similar set. After finding all the satisfying com-
binations, we use the ones with the largest similarity degree to be the query result.

The second series of experiments is made on 200 real videos. Each video is a video
clip about oneminute long. The objects in a video are specified by using the video index
tool. All algorithms are implemented on a Pentium III-800 PC with Windows 2000.

5.1. Video index generation and query types

In these two series of experiments, a preprocessing phase is needed to generate
and reconstruct all database videos or query videos. But in this paper we want to
show the efficiency of our similarity retrieval algorithm, so we do not add the cost
of video generation and reconstruction to the execution time.

In query types, we choose three different types from 35 types to compare the cost
of executing queries. They are: type-300 in which we retrieve the videos having the

Fig. 7. The association graph based on the type-320 similarity.
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same spatial relation sequence; type-320 in which we retrieve the videos having the
same temporal relation and spatial relation sequence; type-322 in which we retrieve
the videos having the same temporal relation and spatial relation sequence, and the
duration adjusted proportionally.

5.2. Synthesized videos

In this subsection, we show the efficiency of our similarity retrieval algorithm and
compare it with the 9DLT and naive algorithms. The execution cost of every exper-
iment is measured by the average elapsed time of 100 video queries. Since we can
specify the number of objects in the query videos, the number of objects is set in
the range between 4 and 12, and each video is 1 min long. We freely set the values
to generate 1000 database videos. For each database video, we assign 20–50 objects
to it. The number of frames in a database video is in the range from 1000 to 5000.
Based on these synthesized video indices, we perform four experiments. In each
experiment we change one cost factor and fix the other three cost factors. The values
we choose for the fixed cost factors are 8 objects in a query video, 200 database vid-
eos, 25 objects, and 2000 frames in each database video. The experiment results are
shown as follows.

Fig. 8A illustrates the execution time versus the number of objects in a query vi-
deo. The execution time of the 3D C-string approaches grows slowly as the number
of objects in a query increases. However, the execution time of the naı̈ve approaches
grows sharply as the number of objects in a query increases since they have to check
most combinations of objects in each database video. Since the 9DLT approach
needs to compare every query frame with the frames in its index structure of the
database videos, it takes the most execution time among all of the approaches. All
the 3D C-string approaches need less execution time than the naı̈ve approaches
do. The 3D C-string approach is 2–20 times faster than the 9DLT approach.

Fig. 8B illustrates the execution time versus the number of videos in the database.
The execution time grows nearly linearly as the number of database videos increases
for all the approaches in all three types of video queries. All the 3D C-string ap-
proaches need less execution time than the naive approaches do. The 3D C-string
approach is 2–18 times faster than the 9DLT approach.

Fig. 8. Execution time vs. the number of query objects and database videos.

(A) Number of objects in a query. (B) Number of database videos.
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Fig. 9A illustrates the execution time versus the number of objects of in a database
video. The execution time grows as the number of objects in a database video in-
creases for all the approaches in all three types of video queries. All the 3D C-string
approaches need less execution time than the naive approaches do. The 3D C-string
approach is 30–50 times faster than the 9DLT approach.

Fig. 9B illustrates the execution time versus the number of frames in a database
video. The execution time grows nearly linearly as the number of frames in a data-
base video increases for all the approaches in all three types of video queries. All the
3D C-string approaches need less execution time than the naive approaches do. The
3D C-string approach is 6–30 times faster than the 9DLT approach.

In summary, the execution time of both 3D C-string and naı̈ve approaches in-
creases nearly linearly as the number of database videos or the number of frames
in a database video increases. The execution time of the 3D C-string approaches
grows comparatively slowly as the number of objects in a query increases. For all
cases, all the 3D C-string approaches need less execution time than the naı̈ve ap-
proaches do. The 3D C-string approach is 2–50 times faster than the 9DLT ap-
proach. For the type-322 queries, most of the execution time is spent on
computing and matching spatial relation sequences. Computing and matching tem-
poral relations takes the second most time. Checking the criterion of duration takes
the least time.

5.3. Real videos

In this subsection, we show the efficiency of our similarity retrieval algorithm on
the real videos. First, we demonstrate a video query example. Then, we present
the performance analysis on the real videos. In the example video database, there
are four sets of videos: 60 videos of traffic, 60 videos of campus activities, 40 videos
of cartoons, and 40 videos of TV news. All videos are 1 min long. Typically, a video
of 1 min long contains 1800 frames. To represent the movements of objects, at least a
frame should be indexed for every 10 frames.

Next, an example of video query is presented in Fig. 10. The query video repre-
sented by a 3D C-string is shown in Fig. 10A. The query video represents an over-
taking event in which car B overtakes car A. The corresponding video is shown in

Fig. 9. Execution time vs. the number of objects and frames in a database video.

(B) Number of frames in a database video.(A) Number of objects in a database video.
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Fig. 10B. A database video, which is type-320 similar to the query video, is shown in
Fig. 10C.

The second part of the experiment is performance analysis on real videos. In this
experiment, we use four sets of videos. Generally speaking, different set of videos
may contain the different number of objects. For example, the traffic videos contain
more objects than the other three sets of videos. The average number of objects in
four sets of videos is about 37. The average number of objects of each set of videos
is listed in Table 2.

Fig. 10. Example of the type-320 similarity.

(A) A 3D C-string query.

(B) The corresponding video of the 3D C-string in (A).

(C) A matched database video.
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The execution cost of each experiment is measured by the average elapsed time of
20 video queries. Each video is around one minute long. We perform four experi-
ments. In each experiment, we change one cost factor and fix the other three cost fac-
tors. The values we choose for the fixed cost factors are 8 objects in a query video, 40
database videos, and 1800 frames in each database video.

Fig. 11A illustrates the execution time versus the number of objects in a query vi-
deo for the different sets of videos. The execution time increases as the number of
objects in a query video increases. The execution time of querying the traffic, car-
toon, and TV news videos is quite close. However, the execution time of querying
the campus activities video is obviously greater than that of querying the other sets
of videos. Because a video of campus activities contains a lot of motions and size
changes and the corresponding 3D C-string contains a lot of motion operators, it
is required much time to process the string.

Fig. 11B illustrates the execution time versus the number of database videos for
the different sets of videos. The execution time grows nearly linearly as the number
of database videos increases. The execution time of querying the traffic, cartoon, and
TV news videos is quite close. However, the execution time of querying the campus
activities video is obviously greater than that of querying the other sets of videos be-
cause a video of campus activities contains a lot of motion operators.

Fig. 12A illustrates the execution time versus the number of objects in a database
video for the different sets of videos. The execution time grows as the number of ob-
jects in a database video increases. The execution time of querying campus activities
videos does not grow when the number of objects in a database video is greater than
20. This is because there is no campus activities video containing more than 20 ob-
jects. Similarly, there is no cartoon or TV news video, which contains more than 40
objects. The execution time of querying cartoon and TV news videos does not grow

Fig. 11. Execution time vs. the number of query objects and database videos.

(A) Number of objects in a query. (B) Number of database videos.

Table 2
Average number of objects in real videos

Videos Campus Cartoon Traffic TV news

Average number of objects 18 28 64 31
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when the number of objects in a database video is greater than 40. The execution
time of querying traffic videos keeps growing as the number of objects increases.

Fig. 12B illustrates the execution time versus the number of frames in a video for
the different sets of videos. The execution time increases as the number of frames in a
database video increases. The execution time of querying campus activities videos is
greater than that of querying traffic videos, which is greater than that of querying
cartoon videos. The execution time of querying cartoon videos is greater than that
of querying TV news videos.

Fig. 13A illustrates the execution time versus the number of objects in a query
video for the 9DLT and 3D C-string approaches. The execution time of the 3D
C-string approach grows slowly as the number of objects in a query increases.
However, the execution time of the 9DLT approach grows sharply as the number
of objects in a query increases since the 9DLT approach needs to compare every query
frame with the frames in its index structure of the database videos. Fig. 13B illustrates
the execution time versus the number of videos in the database. The execution time
grows nearly linearly as the number of database videos increases for both approaches.
The 3D C-string approach needs less execution time than the 9DLT approach.

Fig. 14A illustrates the execution time versus the number of objects of in a database
video for the 9DLTand 3DC-string approaches. The execution time grows as the num-
ber of objects in a database video increases for both approaches. The 3D C-string ap-
proach needs less execution time than 9DLT approach. Fig. 14B illustrates the

Fig. 13. Execution time vs. the number of query objects and database videos.

(A) Number of objects in a query.
(B) Number of database videos.

Fig. 12. Execution time vs. the number of objects and frames in a database video.

(B) Number of frames in a database video.(A) Number of objects in a database video.
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execution time versus the number of frames in a database video. The execution time
grows nearly linearly as the number of frames in a database video increases for both
approaches. The 3D C-string approach needs less execution time than the 9DLT
approach.

Fig. 15 illustrates the precision versus recall for the 3D C-string and 9DLT ap-
proaches. As expected, the result of type-322 query is better than that of type-320
query, which is better than that of type-300 query. The results of type-300 query
and 9DLT-string are quite close, because both approaches only use the spatial rela-
tions to query the database.

In summary, the execution time of querying the traffic, cartoon, and TV news
videos is quite close. However, the execution time of querying the campus activities
video is obviously greater than that of querying the other sets of videos. The
average number of objects in the campus activities videos is the smallest among
them. However, an object in this set of videos changes its states quite often includ-
ing motions or rates of size changes. Hence, the 3D C-strings generated by this set
of videos contain a lot of motion operators. The execution time of querying the
campus activities videos is higher than expected. In comparison with the 9DLT
approach, the 3D C-string needs less execution time. Moreover, the 3D C-string
can provide various types of similarity between videos and have discrimination
power about different criteria.

Fig. 15. Precision vs. recall.

Fig. 14. Execution time vs. the number of objects and frames in a database video.

(B) Number of frames in a database video.
(A) Number of objects in a database video.

770 A.J.T. Lee et al. / J. Vis. Commun. Image R. 16 (2005) 749–773



6. Concluding remarks

We have proposed a new spatio-temporal knowledge structure called 3D C-string
to represent symbolic videos accompanying with the string generation and video
reconstruction algorithms. In this paper, we extend the idea behind the similarity re-
trieval of images in 2D C+-string [15] to 3D C-string. Our extended approach con-
sists of two phases. First, we infer the spatial relation sequence and temporal
relations for each pair of objects in a video. Second, we use the inferred relations
and sequences to define various types of similarity measures and propose the similar-
ity retrieval algorithm. Three criteria are used to define similarity measures. The con-
cept of processing spatial relation sequences and temporal relations can also be easily
extended to process other criteria such as velocities, rates of size changes, distances,
and so on. We also show that different types of similarity have different multi-gran-
ularity to meet users� need by examples. By providing various types of similarity be-
tween videos, our proposed similarity retrieval algorithm has discrimination power
about different criteria. Our proposed approach can be easily applied to an intelli-
gent video database management system to infer spatial and temporal relations be-
tween the objects in a video and to retrieve the videos similar to a query video from a
video database.

A video contains rich visual and audio (or sound) information. In the 3D C-string
representation and the similarity retrieval algorithm based on the 3D C-string, we
focused on utilizing the visual information to process videos. How to integrate the
audio information with the visual information to represent a video and perform sim-
ilarity retrieval is worth further study.
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