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Abstract

Learning how to detect objects from many classes in a wide variety of viewpoints is a
key goal of computer vision. Existing approaches, however, require excessive amounts
of training data. Implementors need to collect numerous training images not only to
cover changes in the same object’s shape due to the viewpoint variation, but also to
accommodate the variability in appearance among instances of the same class.

We introduce the Potemkin model, which exploits the relationship between 3D
objects and their 2D projections for efficient and effective learning. The Potemkin
model can be constructed from a few views of an object of the target class. We
use the Potemkin model to transform images of objects from one view to several
other views, effectively multiplying their value for class detection. This approach can
be coupled with any 2D image-based detection system. We show that automatically
transformed images dramatically decrease the data requirements for multi-view object
class detection.

The Potemkin model also allows detection systems to reconstruct the 3D shapes of
detected objects automatically from a single 2D image. This reconstruction generates
realistic views of 3D models, and also provides accurate 3D information for entire
objects. We demonstrate its usefulness in three applications: robot manipulation,
object detection using 2.5D data, and generating 3D "pop-up’ models from photos.
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Chapter 1

Introduction

1.1 Detecting Object Classes in Multiple Views

The problem we address in this dissertation is how to efficiently learn to detect object
classes from a wide variety of views. This problem is crucial to the task of multi-view
object class detection, which is to detect novel object instances from a wide range of
viewpoints after training with some instances of the target class. In this chapter, we
will first discuss the primary challenges of multi-view object class detection at a high

level, and then we will overview the contributions of this research.

Object detection, including several specialized tasks shown in Figure 1-1, is the
classical problem in computer vision of determining whether a single image contains
some pre-specified objects. The traditional task of object detection is to identify a
particular object - such as George Bush’s face or one specific Adidas sneaker - in a
cluttered image under viewpoint changes, given only a few views of that object for
learning. This task, which is called “multi-view specific object detection”, has been
studied by numerous researchers. However, systems designed for this task can only

find a specific object shown in the model images.

Over the past five years, researchers have started to look at the task of detecting

17



ik

(a) Multi-View Specific Object Detection

(c) Multi-View Object Class Detection

Figure 1-1: Three specified tasks in object detection. For each task, systems are
supposed to detect objects in the test set (right) after they learn models from the
training set (left).

“classes of objects”, such as cars and airplanes, rather than specific objects that have
already been memorized. This task seems to be more complicated, because there may
be large variations in appearance and shape among different instances of the same
class. Researchers have successfully enabled systems to recognize previously unseen
object instances of a generic category after training these systems with a collection
of object instances of that class. However, these systems have a major restriction:
they are typically limited to a single viewpoint, e.g. side-views of airplanes. Thus we
call this task “single-view object class detection” in order to differentiate it from the

traditional task of detecting particular objects.

To better match humans’ ability to perceive the objects, such as to identify novel
instances from arbitrary viewpoints, we need to create a system that detects object
classes in a wide range of viewpoints instead of just a single predefined aspect. Rely-
ing on recent advances in single-view object class detection, several researchers have

begun to work on this topic. This newly emerging task, “multi-view object class

18



detection”, is especially difficult because of the variations due to viewpoint transfor-

mations, as well as the variability among instances of the same class.

One of the key challenges for multi-view object class detection is learning. Suppose
we plan to design a visual system that can quickly detect hundreds of object categories
from arbitrary viewpoints, the training set, including images of object instances that
are viewed under various poses, should be as small as possible. Human-supervised
labeling tasks, such as eliminating the background in the training images, should be

reduced as much as possible.

However, current approaches for multi-view object class detection require many
real training images from many views for many object instances in the same class
to achieve satisfactory detection results. They need to collect numerous training
images for learning: not only to cover the various shapes of the same object due
to viewpoint transformation, but also to accommodate the variability in appearance
among instances of the same class. Moreover, these systems cannot deal with new

viewpoints that have not been trained before.

The learning process in these systems is inefficient in three ways:

e The learning process is restricted to the viewpoints where training images of

object instances are available.

e Learning procedures for each viewpoint of the same object class are performed

without sharing any (or sufficient) information between viewpoints.

e Learning is handled as an independent procedure for each individual object

class.

1.2 Thesis Overview

To efficiently learn object classes in multiple views, the learning procedures for each

viewpoint of the same object class, as well as each instance of each object class, should

19



3D Understanding

s Detection Result
Multi-View .

Object Class
Detection
System

Figure 1-2: The two red arrows represent how the Potemkin model can be used
with a multi-view object class detection system. One is to decrease the training-data
requirement for effective detection. The other is to reconstruct 3D shapes of the
detected objects from a 2D image.

be related and coherent. During the learning process, information should be gathered
from and shared with all trained views, and generalized into viewpoints that have not
been seen before. Our research embraces these ideas: We have developed a model
that transfers information from one view to another, and this model can be learned
for each multi-view object class without undue effort. The learned model can also be

extended to represent the approximate 3D shape of the target class.

1.2.1 Contribution: The Potemkin Model

In this research, we examine what information can be transferred across views, and
generalized for the learning of novel viewpoints of the same class as well as new object
classes. The primary goal of this dissertation is to design a model that can employ
this information in the learning process, that can be efficiently constructed from a few
training images, and that then can be used with a multi-view object class detection

system in two ways, as shown in Figure 1-2.

We develop the Potemkin' model, which facilitates information transfer to help

1So-called ”Potemkin villages’ were artificial villages, constructed only of facades. Our models,

20



the learning of target object classes in multiple views. The Potemkin model exploits
the fact that there is a fundamental relationship between multiple views of an object
class, and allows subsequent unlabeled views of new objects from the same class to be
transformed into novel views. This ability to transform training examples into new
views can generate “virtual” training data to circumvent the excessive training data

requirement for multi-view object class detection.

The Potemkin model of an object class is a collection of parts, which are oriented
3D primitive shapes. The model allows the parts to have an arbitrary arrangement
in 3D, but assumes that, from any viewpoint, the parts themselves can be treated
as being nearly planar. We will refer to the arrangement of the part centroids in 3D
as the skeleton of the class. As one moves the viewpoint around the object, the part
centroids move as dictated by the 3D skeleton; but rather than having the detailed 3D
shape model that would be necessary for predicting each part’s shape in each view, we

model the change in views of each part’s image as a 2D perspective transformation.

The Potemkin model is trained and used in three phases (see Figure 1-3). The
first phase is class-independent and carried out once only. In it, the system learns,
for each element of a set of simple oriented 3D primitive shapes, what 2D image
transformations are induced by changes of viewpoint of the shape primitive. The
necessary data can be simply acquired from synthetic image sequences of a few objects
rotating through the desired space of views. After the first phase is complete, the
model can be used for new object classes with very little overhead. This process might
be seen as learning basic view transformations of primitive 3D shapes by “watching
the world go by”, and then transferring that knowledge to accelerating the learning

of new object types which are constituted of these primitives.

The second phase is class-specific: a few images from a target class (typically a
single object from two views) are used to estimate the 3D skeleton of the object class,
to select an oriented primitive 3D shape for each of the parts, and to initialize part

transforms between pairs of views, for each part.

too, are constructed of facades.
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First Phase: Synthetic Second Phase: Real Third Phase: Virtual
Class-Independent Class-Specific View-Specific

3D Model Few Labeled All Labeled Images

L&) = —"- (]

.
G
2D Synthetic Views
|
Primitive Selection Part Transforms Part Transforms

Generic Transforms Skeleton

| A | i

Shape Primitives Target Object Class Virtual Objects

Infer Part Indicator Combine Parts

Figure 1-3: The architecture of the Potemkin model. The Potemkin model is trained
in the first two phases, and used in the third phase.

The third phase is view-specific: given a new view of interest, the class skeleton is
projected into that view, specifying the 2D centroids of the parts. Then, all available
2D training images, from any view, are transformed into this view using the image
transforms selected in the second phase. These new images are “virtual training ex-
amples” of previously seen objects from novel views. These virtual training examples,
along with any real training examples that are available, can then be used as training
data for any view-dependent 2D detection system, which can then be used to detect

instances of the object class in the novel viewpoint.

The Potemkin model therefore provides a data-efficient learning approach to multi-
view object class detection. Using the Potemkin model, systems are able to generate
virtual training examples in many views from every example in any view. This dra-

matically decreases the training-data requirement for multiple-view class detection

22



by maximally utilizing the value of each real training image.

The Potemkin model also presents an approximate 3D shape model of the target
object class, by estimating a rough extent and planar model of each part in 3D.
When transforming a real training object to a novel view and then forming a virtual
object, this easily-obtained 3D class model provides important information about self-
occlusion and increases the quality of virtual training examples. The virtual examples
generated by the Potemkin model are thus comparable to real examples for training

class-specific detectors.

This 3D class model presented by the Potemkin model can also be used to re-
construct the 3D shape of a detected instance automatically from a single 2D image.
Once this 3D class model is constructed, this reconstruction mechanism can be built
on top of any multi-view object class detection system. The resulting single-view
reconstructions allow artificial systems to perceive the 3D shapes of detected objects
and to perform mechanical actions on them, such as moving a robotic arm to grasp

objects.

1.3 Road Map

In the following chapter we give a more detailed overview of the problem setting
and a discussion of related work. We describe current learning approaches for multi-
view object class detection, and draw a comparison between these approaches and
the Potemkin model. The Potemkin model can be used either to generate virtual
training examples, or to reconstruct 3D shapes of detected instances from a single
image; therefore, the related work in virtual data generation and 3D reconstruction

is also covered in this chapter.

Then in Chapter 3 we sketch the basic version of the Potemkin model, which
emphasizes how to transfer information from one viewpoint to another. In the first

phase of the basic Potemkin model, there is only a single oriented primitive used for
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learning the transforms from view to view. These transforms are then used as the
basis for transforms of all parts in the model. We show how the model can be trained
from only a few labeled images for the target object class, and how the constructed
model can be used to transform images of objects from one view to several other

views, effectively multiplying their value of class detection.

Chapter 4 extends the basic Potemkin model to use a basis set of multiple oriented
primitives in the first phase, and to select among them to represent each of the parts
of the target class based on a pair of initial training images of the class. For each
part, the transforms learned from the selected primitive are used to initialize image
part transforms between pairs of views. We also show how the part labeling process
can be self-supervised and demonstrate that these extensions significantly outperform

the basic model.

Once the details of how to decrease the training-data requirement have been pre-
sented in previous chapters, we then describe an other way to use the Potemkin
model in Chapter 5. We show how to use an extension of the Potemkin model to
support reconstruction of the 3D shapes of object instances from a single image. To
achieve complete automation of the reconstruction process, we describe an approach
involving several steps: detection, segmentation, part registration, and model cre-
ation. Then we demonstrate its usefulness in three applications: robot manipulation,

object detection, and generating 3D 'pop-up’ models from photos.
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Chapter 2

Background and Related Work

In this chapter we frame the problem setting for this research and provide an overview
of the related work. We describe current approaches for learning object classes in
multiple views, and compare these approaches with the Potemkin model (Section 2.1).
Since the Potemkin model can be used either to generate virtual training examples,
or to reconstruct 3D instances from a single image, we also review related work in
virtual example generation (Section 2.2.1) and 3D single-view reconstruction (Section

2.2.2).

2.1 Learning Object Classes in Multiple Views

The task of learning to identify novel object instances from a wide variety of view-
points is highly challenging due to two main factors. First, a single object instance
can look dramatically different depending on its pose relative to the camera. Second,
different instances of objects from the same category can exhibit significant variations

in appearance and shape.
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2.1.1 Background

Most learning methods for object detection are designed to identify a particular ob-
ject. There has been a great deal of work on modeling and recognition for single
3D objects (e.g., [70, 25, 45, 58]), which is to use multiple views of a specific object
instance to construct a 3D model for the object. Such a model allows detection of
the particular object from many viewpoints, including entirely novel views. How-
ever, these methods are not designed to cover the variability in shape and appearance
within instances of a class and therefore cannot be readily generalized for learning
object classes. There is also a long tradition of representing objects as arrangements
of 3D building blocks (e.g., [16, 56, 47, 46, 4, 5, 51, 55]). In particular, Marr and
Nishihara [47] describe objects as a collection of 3D cylinders. Biederman [4] defines
an object as relationships between 3D volumetric components. Decoret et al. [16]
simplify 3D objects onto a set of 3D polygons with texture and transparency maps.
However, it has been difficult to achieve robust detection performance in real images

using these approaches.

Most recent advances in learning methods attempt to train a 2D model for de-
tecting examples of a target class from only a single specific viewpoint [23, 24, 37,
10, 11, 3, 15, 28, 40, 69, 72]. This 2D model represents a single-view object class as
a collection of distinct features, and learns the spatial relationships among these fea-
tures. In principle, these single-view learning methods can be extended to cover the
range of likely views of a set of object classes. However, training a detector for even
a single view of a class already requires a large amount of training data. Multiplying

these requirements by the number of views makes this learning approach expensive.

There is already an existing body of work on learning specific object classes, such
as cars and faces, for multi-view detection [1, 21, 43, 50, 63, 71]. However, these
methods are not readily generalized for learning other object classes. There are also
learning approaches for class detection using cartoon images [18] or synthetic images

from 3D CAD models [44] of objects to avoid collecting real training images. However,
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cartoon images or 3D CAD models with realistic textures are not easily obtained for
some object classes. Below we organize our discussion of current learning approaches
for multi-view object class detection into three groups: multiple 2D models, cross-view
constraints, and 3D explicit models. We also draw a detailed comparison between

these approaches and the Potemkin model.

2.1.2 Multiple 2D Models

In most current approaches to object class detection, the problem of learning multiple
views of the same object class is treated as learning multiple independent object
classes, with a separate 2D model trained for each. Based on this independent-view
approach, there are already a number of effective multi-view object class detection

systems.

For example, Crandall et al. [12] treat ranges of poses as separate classes, with a
separate model learned for each. Torralba et al. [68] show that sharing features among
models for multiple views of the same object class improves both running time and
detection performance. Leibe et al.’s detection system [39] for cars combines a set
of seven view-dependent detectors [41], each of which requires hundreds of training

examples to be effective.

Systems based on this learning approach require a large number of training images
for each viewpoint, which is expensive. Our work aims to alleviate this burden and
to enable existing detection systems to be applied to multi-view detection without

excessive training-data requirements.

2.1.3 Cross-View Constraints

The learning approach based on multiple 2D models is inefficient because the learning
procedures for each viewpoint of the same object class are performed without sharing

any (or sufficient) information between viewpoints. Recently, there have been a range
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of approaches that make deeper use of the relationship between views of the same
class. These approaches attempt to exploit the fact that 2D images of an object class
in multiple views are generated by similar 3D objects. They aim to find a suitable
representation that cover the variability among members of the object classes, and

they use their representation to learn object classes in multiple views.

One approach to exploiting the relationship between views is to link regions of
the same or similar training instances across different viewpoints, forming a multi-
view class model. This multi-view class model can then be used to detect object
instances from a wide variety of viewpoints. During recognition, linked regions in the
multi-view model can work together to determine the location and pose of the object.

Recently, there have been three systems using this approach.

Thomas et al. [67] construct separate view-dependent detectors for each of the
viewing directions, and track regions of the same training instance across different
viewpoints. In their recognition process, these view-dependent detectors act together
by linking tracked features across viewpoints to share image evidence coming from
different training views. Thus, they can use these integrated view-dependent detec-
tors to improve detection, by transferring the tracked regions from one viewpoint to

another during the recognition stage.

Savarese and Fei-Fei [60] also relate multiple views by finding correspondences
among 2D regions, formed by feature grouping, on the same training instance across
different views. The 2D transformation between each pair of 2D regions from the same
viewpoint is also estimated as the geometric relation in their models. Compared to
the work of Thomas et al, their models are more compact and can be learned with
very weak supervision. Using their models, they can detect the object and decide
its pose, by finding a globally consistent combination of multiple 2D regions learned

from the same viewpoint.

Rather than constructing multiple view-dependent detectors, Kushal et al. [38]

construct a single model that relates partial surfaces of the target object class among
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multiple viewpoints. Each partial surface is formed by locally dense rigid assemblies of
image features on training instances across different views. The detection is achieved
by matching each partial surface in the model to the test image independently, and
then using a greedy algorithm to find a most likely global correspondence from their

model to the image.

Each of these three methods requires many training images from each viewpoint
and the first two methods require many views of the same training instances, which

are relatively difficult to obtain.

2.1.4 Explicit 3D Models

An alternative approach to exploiting the relationship between views is to construct
explicit 3D shape models of object classes. An ideal scenario is to use multiple views
of multiple instances to construct a model of the distribution of 3-dimensional shapes
of the object class. Such a model would allow detection of many entirely novel views.
However, this is a very difficult problem, which is yet unsolved. Instead of modeling
the distribution of 3D shapes of the class, there are two recently developed methods

which construct a rough 3D model to represent the target object class.

Hoiem et al. [34] create a coarse 3D model from mean segmentations of two views
of training instances, avoiding the need for many views of the same training object
instance during learning. They exploit this 3D model to learn physically localized
patch appearances and their layout on the training instances. Then they use a con-
ditional random field algorithm on the layout to assign an object label, which defines
an object’s position and viewpoint, to each of the local patches on the test image.
Therefore, they can simultaneously detect and segment objects in a large range of

viewpoints on the test image.

Yan et al. [74] use training images, taken from a dense sampling of viewpoints

around a specific object, to reconstruct a 3D model for the target class. The 3D
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Figure 2-1: The relationship between the Potemkin model and other learning ap-
proaches to multi-view object class detection.

object model is reconstructed by using a homographic framework from the set of
viewpoints around the object, and is represented by a volume consisting of binary
slices. Given a test image, they find matches between the detected 2D image features
and the 3D features stored in the model, and propose several hypotheses based on
the 3D locations of the matched 3D features in the model. The object on the test

image is then detected by evaluating these hypotheses.

Both methods form correspondences between 2D features across training instances
at arbitrary viewpoints by projecting the surfaces of the 3D model onto each instance.
The learned features thus can be shared across viewpoints through 3D correspondence,
which is more flexible than the methods based on cross-view constraints. However,
these two systems still require many training instances at many viewpoints to achieve
satisfactory detection results. It is crucial to have a data-efficient approach for learn-

ing object classes.

2.1.5 Comparison

The Potemkin model we develop in this dissertation is somewhere between the ap-
proaches based on cross-view constraints and those based on explicit 3D models, as
shown in Figure 2-1. Methods based on either cross-view constraints or explicit 3D
models can be difficult to train. Cross-view constraints, which are formed by linking

2D regions of instances from one viewpoint to another, require many training images
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in each of the modeled viewpoints. Detailed 3D models of variable object classes can
be difficult to learn and use. Therefore, we construct a relatively weak 3D model,
which can be learned from a few labeled images, but which is powerful enough to
generate virtual examples in novel viewpoints and to support reconstruction of the

3D shapes of object instances from a single image.

There are two major differences between the Potemkin model and other ap-
proaches for multi-view object class detection: data-efficiency and compatibility. The
Potemkin model facilitates information transfer to help the learning of target object
classes in multiple views. Unlike most approaches which require many training images
from a wide variety of viewpoints to build their models, the Potemkin model needs a
minimum of only two images of one particular object instance to construct a 3D class
model. This 3D class model can then be used to generate credible virtual examples

and to recover 3D shapes of detected instances from a single image.

The learned Potemkin model allows subsequent unlabeled views of new objects
from the same class to be transformed into novel views. Compared to [38, 34], the
Potemkin model requires relatively few total training images in each viewpoint for
multi-view detection, since images from different viewpoints can be transformed to
provide virtual training images for all of the viewpoints. Furthermore, several of these
methods [67, 60, 74] make heavy use of multiple views of particular object instances
to construct their models, which are generally more difficult to acquire than images
of diverse instances each from a different view. On the contrary, the Potemkin model
can generate virtual training examples for multiple viewpoints without the need of

more than one image for each particular instance.

Unlike other methods, which learn models that are directly used for their own
detection systems, the Potemkin model provides a data-efficient approach for any
method in multi-view object class detection. For instance, there are a large number
of effective single-view detection systems available, and it is possible, in principle, to
train enough instances of them to cover the range of likely views of a set of object

classes. The Potemkin model thus enables these single-view detection systems to be
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applied to multi-view detection without excessive training-data requirements.

And, because the Potemkin model can generate multiple virtual views of a sin-
gle instance, the resulting virtual training data could potentially be used as input
to any of the approaches based on either cross-view constraints or explicit 3D mod-
els. The Potemkin model uses information transfer to maximally utilize the value of
each training image for the purpose of multi-view object detection, and amplifies the

effectiveness of any detection method that needs images from multiple views.

The Potemkin model also allows detection systems to perceive the approximate 3D
shapes of detected objects automatically from a single 2D image. This 3D reconstruc-
tion is valuable for many applications such as robot manipulation. Most multi-view
object class detection systems use learning approaches based on either multiple 2D
models or cross-view constraints. Thus, they are only able to obtain 2D shapes from
the detected objects, which are not sufficient for artificial systems to interact with

the external object in 3D space.

2.2 The Use of the Potemkin Model

Below we review the related work to the two uses of the Potemkin model respectively.

2.2.1 Virtual Example Generation

There has been a long tradition of synthesizing novel views of objects without con-
structing 3D models of objects [2, 7, 66]. These methods morph a set of trained views
of an object into a novel view using principles of projective geometry. The set of
source images of the target object needs to contain two views [64], three views [73]
or more than three views [31] of the object. However, these methods are designed
for single objects with known feature correspondences across views. In contrast, the

Potemkin model works at the categorical level rather than the single object level,
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generating novel views of an object from only one given view of a particular object.

Novel views of an object can also be generated from a 3D visual hull (Shape-From-
Silhouette). Grauman et al. [29] learn a non-parametric density model of object shape
for the target class by collecting many multi-view silhouette examples from calibrated
cameras. Given a single input silhouette of a novel object, they search for 3D shapes
with maximal posterior probability to the input contour, and they infer the visual
hull of this object. Virtual views of this input object can then be generated from the

interpolation between neighboring trained virtual hulls of the class.

There are a few methods that generate novel views of real training objects for
specific object classes. For example, Everingham and Zisserman [19] generate virtual
training data for face recognition from multiple viewpoints using a reconstructed 3D
model of the head. Compared to their work, the Potemkin model provides a more
compact but less accurate approach to generating virtual training data for a broad

range of object classes.

The closest work to the Potemkin model’s virtual example generation is Savarese
and Fei-Fei’s method [61]. They extend traditional methods in image-based render-
ing [2, 7, 66], which synthesize novel views of objects without constructing 3D models
of objects, to the category level. Therefore, they can synthesize novel views of trained
objects of the target class, for detecting object instances from the viewpoints that

have not been trained before.

While the work of Savarese and Fei-Fei [61] and the Potemkin model agree in the
general spirit, there are three major differences between these two approaches. First,
as opposed to [61] where novel views are synthesized at detection time, the Potemkin
model constructs virtual examples to augment real training data during the learning
stage. Second, Savarese and Fei-Fei need at least two views of an object instance to
morph novel views of that object instance. In contrast, the Potemkin model generates
virtual views of an object instance from only one training image. Third, the Potemkin

model synthesizes the novel views of the “whole” object as opposed to several partial
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patches of the object [61]. The virtual examples generated by the Potemkin model
can thus be placed into the background from the original training image to construct

a realistic image suitable for use in any existing recognition system.

2.2.2 3D Reconstruction from a Single Image

There are many methods for single-view reconstruction that compute 3D models with
assistance from a human. Taking advantage of manual specification of information
such as surface normals and discontinuities, these methods can reconstruct either
planar scenes [13, 35, 65] or special classes of curved surfaces [53, 75]. One recent
work is the 3D extension of the LabelMe system developed by Torralba et al [59].
After users label the objects and the ground region in an image, the system is able
to construct a 3D “pop-up” visualization by treating each labeled object as a single
3D plane perpendicular to the ground. There is also a long history of bottom-up

methods for general 3D reconstruction of images based on shading, texture, etc. [26].

Recent work in single-view reconstruction focuses on automatic reconstruction of
generic scene elements such as the ground plane, vertical building facades, etc. For
instance, Hoiem et al. [32] learn segmentation cues to classify image regions into
geometric classes (ground, vertical surfaces, and sky), and then create a coarse 3D
scene model from the source image based on this classification. Hoiem et al. [33] also
use geometric classes to improve the performance of existing object detection systems.
They model the contextual relationships between three elements (object detections,
rough 3D scene geometry, and approximate camera position/orientation), and then
use a statistical framework that simultaneously infers the probabilities of these three
elements in a single image. Saxena et al. [62] train a Markov Random Field (MRF)
to predict the relationships between various image patches, and the relation between
the image features and the 3D location/orientation of the planes. Then they use the

MRF to infer a depth map from a 2D intensity image.

There is relatively little work on automatic single-view reconstruction for spe-
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cific object types. Prasad et al. [54] adapt an object-specific 2D segmentation tech-
nique [36] for curved objects, such as oranges or bananas, and then reconstruct a
smooth 3D parametric surface from the segmented region by energy minimization.
Romdhani and Vetter [57] collect a database of 3D face models, then form a linear

basis to instantiate a 3D face from a single image using MAP estimation.

The Potemkin model allows automatic single-view reconstruction of general object
classes, and works well with object classes that can be approximated by a collection
of planar patches. In contrast to gathering a large number of 3D instance models for
a particular class [57], the Potemkin model constructs an easily-learned 3D model,
composed of oriented planar shapes, to represent the target class. This class-specific
3D representation enables the reconstruction of a wide variety of realistic 3D classes,
albeit within a limited range of shape variation. Moreover, this 3D class model can
predict the 3D shape of the occluded parts of the object. The recovered 3D models

provide accurate enough information for applications such as robot manipulation.
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Chapter 3

The Basic Potemkin Model

In this chapter we describe the basic version of the Potemkin model in detail, including
how to estimate the parameters from a small number of training images (Section 3.2),
and how to use it to generate virtual training images in novel views (Section 3.3).
These virtual training images, along with any real training images available, can
then be fed into any view-dependent 2D detection system. The detection system
thus can leverage sparse real training data to achieve multi-view class detection, and
detect objects at previously unseen views. We show results in Section 3.5 using both
Crandall et al’s [10] detection system in a detection task and a detection system we
describe in Section 3.4 in a localization task. The basic Potemkin model emphasizes
how to transfer information from one view to another, but is ultimately too weak to

describe many classes of objects well. We will extend it in Chapter 4.

3.1 The Basic Potemkin Model

Informally, a basic Potemkin model can be viewed as a collection of planar “facades,”
one for each part, which are arranged in three dimensions. In order to model the
transformation of an object from one view to another, the 3D structure is used to

specify the location of each part in the new view, and a set of learned view transforms
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is used to specify how the pixels belonging to that part in the first view should be
transformed into the new view. To achieve this, the view space is divided into a
discrete set of view bins, and an explicit 2D projective transform between each view
bin pair is represented for each part. Different transforms are necessary because the
parts have different shapes, depths, and orientations, so their pixels move differently

from view to view.

More formally, a Potemkin model for an object class with N parts is defined by:

k view bins, which are contiguous regions of the view sphere;

k projection matrices, P, € R?**3, from normalized 3D coordinates to image

coordinates for each view bin «;

a class skeleton, (S1,...,Sn), specifying the 3D positions of part centroids, in

a fixed, normalized reference frame; and

o Nk? view transformation matrices, Tg 5 € R**3, one for each part j and pair of

view bins «, (3, which map points of an image of part j from view « to view (3.

This model is appropriate for object classes in which the skeleton is relatively
similar for all of the instances of the class; if there is more variability, and espe-
cially multi-modality, it will become necessary to extend the model to probability
distributions over the skeleton and matrices, and to integrate or sample over model

uncertainty when using it for prediction.

Of course, a single linear projection cannot correctly model projections from 3D
coordinates to all views in a bin, or from all views in one bin to all views in another;
we assume that the bins are small enough that the error in such a model is tolerable.
The choice of bin size represents a model-selection problem. The smaller the bins,

the more accurate the model, but the more data needed to train it reliably.

Label images indicate which pixels in a training image correspond to each part. A

Potemkin model, together with a label image whose view bin is known, can be used
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Figure 3-1: The architecture of the basic Potemkin model.

to produce additional images containing predicted views of the parts of the instance

from other view bins from which this same set of parts are visible.

3.2 Estimating the Model

Our overall goal is to use the Potemkin model to enable learning from fewer images
than would otherwise be necessary. It is crucial, then, that we be able to estimate the
model itself from few labeled training images. To enable this, we initialize the view
transforms using cheaply available synthetic data, then refine the transforms using
the available training images. Similarly, we solve for the skeleton points by pooling
the data from all the instances in a view bin, exploiting the assumption that the

skeleton is relatively stable across instances of the class.
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Figure 3-2: A synthetic nearly-planar box object used for learning the generic view
transformations.

The view bins are currently selected by hand, but it might be desirable, in future,
to use an adaptive quantization method to find a variable-resolution partition of the

view space that optimizes model complexity and effectiveness.

The projection matrices P,, from 3D to view, are dependent only on the choice
of view bins, and can be computed analytically for the centroid of the view bin or

estimated from data sampled over the whole bin.

The basic Potemkin model is trained and used in three phases (see Figure 3-1).
The first two phases are used to estimate the model: one generic, and one object-class

specific.

3.2.1 Generic Phase: Learning Generic View Transforma-

tions

The generic phase starts by learning a set of generic view transformations, based on

a single oriented 3D primitive shape.
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The set of generic transforms T, 3 map points of an image in view bin a to points
of an image in view bin (3. These transforms are learned from synthetic binary images
(one drawn randomly from each of the k view bins) of approximately 30 relatively
“flat” vertical blocks of varying dimensions, as depicted in figure 3-2. Note that since
we are using synthetic images, we can generate enough data to get a good initial

estimate for all the pairwise view transforms.

To learn the generic transforms 7, 3, we begin by finding the boundaries of the
object in each pair of images, from views « and 3. Then we use the shape context
algorithm [48] to obtain a dense matching between the 2D boundaries across the
images. Finally, we use linear regression to solve for a 2D projective transform that
best explains the observed matches across the set of training image pairs. Note that
we are learning from images that vary substantially in pose and viewpoint, so an
analytic solution for the best 2D projective transform is not straightforward. We will
ultimately use this technique on real images as well, which makes analytic approaches

infeasible.

General 2D projective transforms have 8 degrees of freedom and they can be

decomposed [31] as

I 0O K 0 sR(0) t
Thp = , (3.1)
vl 1 0r 1 or 1
with R(0) the 2D rotation matrix representing angle 6, v7' = [v1,vq], t = [t,,,]7,

and K an upper-triangular matrix of the form

Ka Kb
0 1/K,

K=

In our case, the translation t = [t,,,]” is a zero vector because T, 5 models the
shape transformation around the centroid of the 2D projected object from view « to

view (3. For all synthetic images, the centroid of the object is the origin in the 2D
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coordinate system.

The decomposition in (1) is unique if s > 0. We can therefore represent each
transform as a vector of 6 parameters: [log s, 0, K, K;, v1, v9]. Ideally, the 2D rotation
angle # should be handled specifically to avoid the continuous problem. For example,
the mean of two values of 6, such as -179 and 180, may be too different from either
of the two values. However, in our case, § won’t be bigger than 90 degree across
the view bins we modeled. Thus, we use the mean of the set of parameter vectors

estimated from each image pair in the training data as our generic view transform.

3.2.2 Class-Specific Phase: Refining the View Transforma-

tions

In the class-specific phase, a collection of real training images of different instances
of the class from arbitrary views can be used to estimate the 3D class skeleton of the
object class, and to tune the view transforms To{’ g for each of the parts, j, from view
a to view 3. The outlines of the parts must be labeled in all images used in this

phase, but reasonable results can be obtained using only two such images.

If the real training data set happens to contain more than one view of a particular
instance, in different view bins, then that data can be used to refine the generic view
transforms, making them specific to the particular parts of the class. If it does not,

the model can still be used with the original generic transforms.

Assume we are given a set of label-image pairs (z?,, a:%) with views of the same
instance in bins « and 3. For each part j in each image pair, 7, we use the shape-
context algorithm to match points on the boundaries of the part and then construct

the transform 77 5. represented as a vector of 6 parameters, as above.

We then combine the generic view transform learned in phase 1 with the part
transforms estimated from each image pair to obtain a part-specific view transform

Tiﬁz
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The relative weighting of the generic and specific transforms is determined by the
“pseudo-count” parameter x, which is currently chosen empirically as 9 and seems to

be well behaved in practice.

3.2.3 Class-Specific Phase: Learning the Class Skeleton

The class skeleton can be estimated from any collection of real training images of
instances in any view, and does not require multiple views of any single instance. We
directly compute the centroids of the individual parts from the training label images.
We then use these to estimate the skeleton, using the projection matrices P,, which

specify the projection from 3D points into 2D view bin «.

We begin by aligning and scaling the training images in each view bin so that
the object bounding boxes are all aligned. Next, for each view bin o and part j, we
compute the mean y/, and covariance Y/, of the coordinates of the centroid of part j

in the normalized images in bin «.

For each part, we find the 3D position whose 2D projections minimize a sum of
weighted distances to the observed 2D mean centroids in each view. The weighted
distances are the Mahalanobis distances with respect to the observed covariances in

each view. The minimizing 3D location S; for part j in the skeleton is given by [30]:

-1
S; = (Z Py (2£>—1Pa> (Z F (Egrlua) : (33)
The skeleton locations for each part are estimated independently, because we have

no prior on the structure of a new object class.

Figure 3-3 shows a schematic version of this process. In each view bin, the distri-
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Figure 3-3: The ellipses indicate the distribution of 2D positions of the centroids of
each part in the training set of chair images for each viewpoint. The 3D spheres show
the estimate of the skeleton positions S; for each part. The size of the spheres is not
significant.

bution of the 2D centroid of each part is estimated, shown by the ellipses. Then, the
2D centroid distributions are used to estimate the 3D skeleton locations, shown in
the center. The centroids of parts that are sometimes occluded by other object parts
have higher variance. As we consider more complex objects from a larger variety
of viewpoints, we may have to introduce explicit reasoning about occlusion into this

modeling step.

3.3 View-Specific Phase: Using the Model to Gen-

erate Virtual Images

Finally, we can use the Potemkin model to generate “virtual” training data for a
set of k view-specific 2D detectors. Any training instance in one view bin can be
transformed to many other view bins, using the skeleton and the view transforms,
and used as training data for that detector. This strategy effectively multiplies the

value of each training image, and allows us to train detectors for view bins that have
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Figure 3-4: The basic Potemkin model in the top two rows is constructed from only
two real labeled images (left). Given the label images for two object instances, each
in only one viewpoint bin (highlighted), the other virtual views are generated from
the basic Potemkin model. The model in bottom two rows is constructed from a total
of 10 real images, from 5 object instances over 6 views.

o

never actually been seen, based only on virtual data.

Given an input image and associated label image, indicating which pixels corre-
spond to which parts, in view bin «, for each viewpoint 3 # « for which the same set

of parts are visible, we

e transform the pixels belonging to part j using Ti g, then

e center the resulting shape at P3S;, the view projection of the 3D skeleton loca-

tion of part j into view bin f3.

This process generates a complete virtual label for view 3; in addition, it generates a
virtual image with pixels corresponding to the object, which can be easily combined
with the background of the original image to generate a complete image in the new

view.
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Figure 3-5: Full virtual images and the actual input images (bold border) of two
object instances in the chair data set.

An example of the results of this process can be seen in figure 3-4 (top two rows),
which shows the virtual images constructed from a basic Potemkin model, trained
with only two real labeled images. Note that at least two images are necessary to
solve for the skeleton positions in 3D. The results are already useful for detection, as
shown in Chapter 4. As the amount of training data is increased, the quality of the
transformed images improves. Figure 3-4 (bottom two rows) shows the results after
a total of 10 training images; the transforms and skeletons are learned well enough to
make credible virtual training examples for all view bins given a single label image. We
constructed a background image by filling the labeled area of the given single image
with generated texture and color drawn from the surrounding image data. Then the
virtual examples can be placed into the background image to construct a realistic

image suitable for using in any existing detection system as shown in Figure 3-5.

3.4 View-Specific 2D detection

The Potemkin model can be used to generate transformed versions of training data,
both images and labels, so we can take any multi-view image corpus and increase its
coverage by transforming every image into multiple viewpoints. The resulting corpus
can be used to train view-specific 2D object-class detectors [22, 24, 10, 11]. We have
tested the effectiveness of the basic Potemkin images in a detection task by using

them as input to the method developed by Crandall et al. [10] (see section 3-5). We

46



have also tested localization performance using a closely related method we developed

but which uses a somewhat richer model of the appearances of individual parts.

3.4.1 EigenEdgeStar (EES) Model

A 2D pictorial-structure model consists of a shape model that describes the spatial
relations between the parts and an appearance model for each part, that describes
its appearance in the image. We have developed a specific instance of this class of
models [10], called the EigenEdgeStar model. In it, the shape model is a star, or
Gaussian 1-fan model, meaning that a particular part is chosen as the reference part,
which establishes a 2D reference frame, and then the location of each other part j is
specified with a Gaussian distribution over its position in the frame, using parameters

p; and X%

We assume that appearances of the individual parts are independent of one an-
other and of their respective positions; the model for each part p; is represented as
a probability distribution over a rectangular window of pixels, Pr(I,|p;), with the

dimensions of the window potentially different for each part model.

Let e,, be a vector representing the edge response (strength and orientation) at
pixel z,y in in the window. Edge strength is represented as a positive value between
0 and 1. We represent edge orientation ¢ (which ranges from 0 to 180°) using sin 26
and cos260. So, e, is represented as a vector of three values. The contents of the
window, e,, can then be represented as a concatenation of the e,, vectors for all

pixels in the window.

Even for a relatively small window, representing a full joint Gaussian distribution
over the space of e, would require an enormous number of parameters (quadratic in
the number of pixels), which would then require an unreasonably large amount of
training data to estimate. In pictorial structures, it has been traditional to repre-

sent the distribution as a fully factored distribution over the edge orientations and
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strengths of each pixel within the window. We have found that it is more robust to

model some dependence among pixels within the window.

To reduce the size of the model and the data requirements, we project the N-
dimensional e,, vectors down into an n-dimensional space, for n much less than N,

and represent a joint Gaussian over vectors in that space. So,
Pr(Ly|p;) = Pr(ew|p;) = Pr(View|p;) ~ N(u5, X)

where V; is an n X N matrix, uj is the n-dimensional mean vector, and X7 is the n xn

covariance matrix.

3.4.2 Training

The EES model is trained on images that have been labeled with the outlines of each
part. Bounding boxes for the root part are calculated and the images are scaled so
that the root parts are aligned as well as possible. Now, the shape model is trained
simply by maximum-likelihood estimation of each i and X3 from the positions of the
centroids of part j in each scaled training image, relative to the centroid of the root

part.

To train the appearance models for the parts, we use the edge images that consti-
tute the labeled boundary for each example part. We begin by estimating a bounding
box for all the training examples, which defines the dimensionality of the pixel win-
dow for the part. Then, we compute the vector e, for each example, estimating local
orientations of the edges in the outlines given in the label. The e, vectors are the
input to a PCA algorithm, resulting in Vj. Finally, the set of transformed vectors,

€, = Vjéu, is used to generate the maximum-likelihood estimates of p§ and .
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3.4.3 Detection

Now, given a trained EES model and an image, we would like to localize an in-
stance of the object class in the image. That is, to find the collection of part loca-
tions, ly...lg, that maximize Pr(ly...[l;|I), the probability that there is an object
of the class of interest at those locations in the image I. This is proportional to
Pr(I|ly...lx) Pr(l,...lx), which is proportional to Pr(I|ly...l;) Pr(l}...1}|lp), where
l; is the relative location of part j with respect to [y, because we have no bias on
the location of the root part [y in the image. The first term can be factored into a
product of the probability of the images pixels in the window for each part, times a
background model for the rest of the pixels, which we will neglect because it is the
same for all location hypotheses. The second term can be factored because of the

1-fan assumption. So, we seek the ;... [, that maximize

k k
> logPr(ew(l); 15, 55) + > log Pr(ljllo; 115, %5)
j=0

j=1
where e, (l;) is the edge information for the window centered on location ;.

We begin by running the Canny edge detector [6] on the image, and computing,
for each part j, Pr(e,(l;); uf, £4) for each candidate location of the part in the image.
Then, we maximize the overall criterion using the efficient dynamic-programming
method of the distance transform [22]. This gives us the best set of part centroids,
which allows us to hypothesize the location of the object in the image as a set of
bounding boxes of its parts. Note that in next section the scale of the object instance
is assumed known and therefore detection is done at a single scale; the search could

readily be expanded across scale.
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Figure 3-6: The 6 parts of a chair and the 5 parts of a bicycle.

3.5 Experimental Results

We tested the impact of virtual training images on localization accuracy of objects
within images using the EES approach and in detection tasks using the system by
Crandall et al [10]. We found that the virtual training images improved the perfor-

mance of both systems.

We used two different object classes for testing: four-legged chairs and bicycles
(figure 3-6). The four-legged chair dataset was collected and labeled by our research
group. It contains 140 images of 80 different object instances, at a variety of view-
points ranging over about 30° in elevation and 160° in azimuth. There is considerable
variation in lighting, location of objects within the image, and clutter. We discretized
the range of viewpoints into six bins, as seen in figure 3-3. The bicycle data set is the
TU-Graz-02 database, which is part of the PASCAL Visual Object Classes (VOC)
Challenge [20]. It contains 365 images of bicycles, again with considerable variation
in pose, view, and clutter. Most of the images were taken from four general poses,

and so we use those as our view bins for this data set.

3.5.1 Localization Performance

All the localization experiments reported here are on test sets of instances from a
single class but with views drawn from the full range of viewpoint bins for the class,

six for chairs and four for bicycles. The difference among the experiments is in the

50



Target Object Class: Chair Target Object Class: Bicycle
08p ) : : . r ; : : ; ; : :

Z i : With Virtual Training

! “With Yirtual Training :
i = ==without Viual Training |

TRAE | s ety e e

; - 3 i :
04 T ;

. ‘ i ; i : i ; ; j i i ; i : ; ; : i
1 2 3 4 5 51 7 3 9 10 1 2 3 4 5 51 7 g 9 10

Number of real training images in each view Number of real training images in each view

Average Localization Performance

Figure 3-7: Localization performance of EES for chairs and bicycles, using all the
training data for all views.

training sets. The detection system computes a score for each of the 2D models
corresponding to each view bin and picks the one with the best score. Localization
performance is measured by the percentage of the bounding box of the localized object

that overlaps the ground-truth bounding box in the image.

To test the benefit of using the basic Potemkin model to generate virtual training
data, we first compare localization performance when using only the training images
for each view to the performance using the training images augmented by the virtual

training data from the basic Potemkin model.

Figure 3-7 shows the change in performance as the number of training images in
each view bin goes from 1 to 10. Note that we typically use three principal components
to characterize the appearance of the parts, but if there are fewer than 4 training
image for view bin, we reduce the number of components to be the number of images
minus 1. This is only an issue when working without virtual data; the approach that
uses virtual data has a training instance in each view bin for each image in all of the
view bins. In fact, with virtual training data, we can usually make predictions for

viewpoints for which we have no real training data at all; we explore that case below.

The performance when using virtual training data on chairs shows substantial

improvement over the no virtual data case. Since the shape of chairs is so variable,
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Figure 3-8: Successful localizations of chairs and bicycles using EES.

this type of detection system requires a substantial number of training images. When
using virtual training data, each viewpoint has roughly six times the amount of train-
ing data than the case without virtual data. The increase in performance also attests
to the quality of the virtual data. In the case of bicycles, the use of virtual examples
produces a significant, but somewhat less dramatic improvement. However, the over-
all localization accuracy for bicycles is higher than for chairs, given the same amount
of training data. This is not surprising since the variability in the shapes of bicycles

is small and good performance is reached with little training data.

Figure 3-8 shows some correct localization results on chairs and bicycles.

3.5.2 Localization Results on Previously Unseen Viewpoints

As we pointed out above, using virtual data, it is possible to localize objects seen from
a previously unseen viewpoint. We measured the system’s performance by varying
the number of view bins represented in the training set, while always having all views

represented in the test set.

Figure 3-9 shows localization performance for the chairs dataset when the number
of view bins with real images varies, each with 10 training images. The lower and

upper lines are the performance for the case we saw earlier where every view bin has
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Figure 3-9: Localization performance of EES for chairs as a function of the number
of views in the training data.

real data, with the top line using virtual training data and the bottom line not. These
results illustrate that the quality of the virtual data is comparable to that of the real
data.

3.5.3 Detection Results

We have also carried out detection experiments using the system developed by Cran-
dall et al [10]. We used their implementation and did training using a combination
of real and virtual images for the chair and bicycle data sets. Figure 3-10 (top-left)
shows ROC curves for the chair data set. The task was to detect the presence of a

chair in a known viewpoint versus background images of office environments.

Good performance on this task requires a substantial number of training images;
the performance with 50 real training images is much worse than that with 100 real
training images. The performance with 30 real training images and an additional
100 virtual images obtained from other viewpoints is intermediate between the per-
formance with 50 and 100 real training images. In all cases, we used 55 chair images

and 55 background images for testing.
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Figure 3-10: ROC curves for single-view detection (top). ROC curves for multi-view
bicycle detection (bottom).

As a control, we also tested the effectiveness of using a single global transform
for the whole object instead of the basic Potemkin model with multiple parts. The

images using the basic Potemkin model were more useful for training.

By way of contrast, for single-view detection of the bicycle class (which is much
simpler than the chair class and nearly planar) there is very little improvement in
detection performance; see Figure 3-10 (top-right). In all cases, we used 35 bicycle

images and 35 background images of street scenes for testing.

We also compared the effect of virtual images in a multi-view detection task:
deciding whether any of 4 viewpoints of a bicycle is present in an image (Figure 3-

10:bottom). This is done by training 4 independent classifiers and comparing the

o4



strongest response to the learned threshold value. There are 10 real training images
for each viewpoint, leading to 30 additional virtual training images per viewpoint.
There are 85 test images distributed among the 4 viewpoints and an additional 83

background images.

In this more difficult task, the basic Potemkin virtual images are quite helpful.
Surprisingly, the images derived from a single global transformation are much less
helpful, even for the nearly planar bicycle. Although the globally transformed images
look realistic, the individual parts are not consistent with the appearances of the parts
in the real images. The basic Potemkin model refines the transforms for individual
parts and does a better job of predicting the appearance of parts across distant

viewpoints.

Throughout these tasks, we have demonstrated the effectiveness of the basic
Potemkin model in reducing training data requirements in object class detection.
The basic Potemkin model can be efficiently learned from few images and can be
used to generate virtual training data for a wide range of viewpoints. It circum-
vents one of the key roadblocks to effective multi-view detection, namely the need for

extensive training data in all the viewpoints of interest.
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Chapter 4

The Generalized Potemkin Model

In this chapter we describe the generalized Potemkin model, and how it can be trained
and used. We extend the basic Potemkin model to use a basis set of oriented primitive
shapes, and select among them to represent each of the parts of the target class based
on a pair of initial training images of the class (Section 4.1). We also provide a method
for self-supervised labeling of parts in the training data (Section 4.2). This results
in substantially improved quality of virtual training data over the basic model. We
conduct experiments showing that these virtual examples are comparable to real
examples for training view-dependent detectors, and demonstrating these extensions

significantly outperform the basic model (Section 4.3).

4.1 The Use of Multiple Primitive Shapes

When a basic Potemkin model for an object class is built from only one real training
image-pair of the same instance, the part-specific transforms default to the generic

view transforms for an upright block.

An example of results under these minimal training conditions is shown in figure 4-

1. This process can in some cases be very effective, but in other cases the transformed
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Figure 4-1: Virtual views generated from the highlighted image using a basic
Potemkin model that is minimally trained.

parts are distorted in the new view. The problem highlighted by the red rectangle in
figure 4-1 arises because the model is relying entirely on the generic view transform,
which was learned for a vertical flat block. But, because the seat of the chair is
actually horizontal, the generic transform does a very poor job of predicting pixels in

the new view.

To address this problem, we expand the set of possible primitive 3D part shapes,
with associated generic view transforms, available to the Potemkin model. Given
a new object class, using just two views of one instance to select an appropriate
shape primitive for each part allows the model to make much better predictions of

appearance in unseen views.

With this extension, the Potemkin model can be generalized to rigid objects which
are constituted with these 3D primitive shapes. However, if the shapes of objects are
different from the primitives we used, this generalized Potemkin model can not predict

accurate appearances of the transformed objects.

4.1.1 Oriented Shape Primitives

We will augment the basic Potemkin model with an oriented primitive model for each
part. Each shape primitive is a simple 3D box at one of a small number of possible
3D orientations with respect to the frame of the skeleton. As shown in figure 4-2, we
consider two rotational degrees of freedom: azimuth and elevation angles of rotation
about the shape’s centroid. This allows us to ignore irrelevant in-plane rotations of

nearly planar shapes and rotations about the long axis of nearly linear shapes. It
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Figure 4-2: The top row of the figure shows the three 3D primitive shapes: cube,
flat block, and stick. Each of these shapes is considered at several orientations with
respect to the skeleton. The lower part of the figure shows, for the flat shape, several
views of the shape at three example (azimuth, elevation) orientations.

does, however, limit the possible set of orientations of more general shapes.

We select the primitive shape and its orientation with respect to the skeleton
frame jointly from M possibilities. For each oriented primitive m and each view
bin, we generate a set of synthetic images. First, we generate a 3D shape that is a
random minor variation on the 3D shape primitive in size and aspect ratio and place
it at the specified orientation. Then, from each view bin, we select a view uniformly
at random, and create a 2D image by projecting the 3D instance according to the
chosen view. This gives us a set of images, one from each view bin, of each of a set

of instances of each oriented primitive.

Now, we apply methods from the basic Potemkin model to use pairs of these
images to estimate Mk? primitive view transforms, ags one for each pair of view
bins a, # and oriented primitive m. In addition to computing the mean transform, as
was done in the basic Potemkin model, we also estimate the standard deviation, o] .

Note that the variance in the transform is modeling uncertainty due to variation in
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Figure 4-3: Generative model for 2D part-specific transforms. There are plates for
the M possible oriented primitives, for the IV parts of the object model, and for the
k? view bin pairs. U, o and T’ s represent the view transform from view bin « to [

for oriented primitive m and part j respectively. Ri 5 represents an actual observed
transform of part j from view bin a to 3 in real data. Z; is an indicator variable that
selects which primitive m is the appropriate shape for part j of the object.

the shape primitive as well as the particular views chosen from the view bins.

4.1.2 Selecting Primitives

To learn a new object-class model, we need to select an oriented primitive for each
part. Further, we might want to find a “basis set” of primitives that can be used,
collectively, to represent the parts of a large number of object classes. This basis set
could then be used as a restricted domain of primitives for constructing new class
models, thereby making the process more efficient, and preventing the tendency to

overfit when there are a huge number of primitives available.

We will approach the problem of selecting primitives by developing a latent-
variable model for 2D part-specific transforms; the graphical model is shown in fig-
ure 4-3. In this model, there are plates for the M possible oriented primitives, for
the N parts of the object model, and for the k? view bin pairs. We can think of the
variable Z; as an unobserved indicator variable that selects which oriented primitive

m is the appropriate shape for part j of the object. Thus Z; ~ Multi(1/M,...,1/M)
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has a uniform distribution over the discrete set of possible oriented primitives.

The observed variables Uj'; represent the mean and standard deviation (U and

o¥) of the generic transform for oriented primitive m from view bin « to view bin 3.

The variable Ti 5 represents the the actual view transform of part j from view
bin a to 8. We treat it as normally distributed, according to the generic transform

distribution associated with its primitive part. Thus, for a choice of Z; = m,

Tiﬂ ~N(ULs,087%) . (4.1)

Finally, the variable R(Q 5 represents an actual observed transform of part j from
view bin « to ( in real data. In general, we might have many such observations,
in which case we would have a plate for R; but one will illustrate the inference
process. The observed transforms are modeled as normally distributed about the
true transform, with fixed variance set by hand:

R o~ N(TD 5, 0R) . (4.2)

[0}

So, given this model, our goal is to infer, for each part 7, the maximum a posteriori
probability (MAP) set of view transforms 77; that is, arg maxy; Pr(T7|U, R?). This
model is completely independent for each part, so they can be maximized separately.
Because we are ultimately interested in the MAP assignment of primitives to parts,
as well as the transforms, we will seek

arg max Pr(T7, Z;|U, R?) .

For any particular choice of Z; = m, the posterior mean on TOJ; g for any pair of
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view bins a and ( that have observed samples Riﬂ, can be computed [27] as:

. Ko _ 1 . UUm2 -~ 1 .
Fim _ om, + Rl = Ton gm oy R 43
o, Ko + 1 Ne) Ko + 1 o, (;’JRTjQ + 1 8 0[']}}52 + 1 a,l ( )
Ta,8 %0,

The weight parameter ko could be determined as a function of oz and ag’;, but,
since o was already being selected arbitrarily, we experimented informally with

values of kg, and set it to 9 throughout results reported in this paper.

To find the MAP value of Z;, we enumerate possible values m, and select the one

for which
Pr(T"™, Z; = m|U, R?) oc Pr(R!|T"™)Pr(T"™U™, Z; = m)Pr(Z; =m)  (4.4)

is maximal; because the distribution on Z; is uniform, this means that we can select
the m that maximizes [], 4 Pr(RiMTi’,gl) Pr(Ti”g|U$ﬁ), which is straightforward to

compute.

4.1.3 Learning and Using an Object Class Model

Training the generalized Potemkin model is similar to training the basic Potemkin
model, but it requires some new steps. In the first phase, constructing the generic
transforms relating 2D shapes across each pair of views is essentially unchanged,

except that it is done for each of the oriented primitives.

We begin the second phase by using any available paired instances to select the
most appropriate oriented primitive for each part of the class, and to estimate the

associated view transforms, as just described.

We can take the additional useful step of estimating a rough extent and planar
model of the part in 3D. We find a similarity transform between the actual part

outlines and the projections of the primitives into views a and (3; then, already having
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Figure 4-4: Visualization of 3D skeleton and shape primitives. Top: two views of
the four-legged chair model; bottom: two views of the airplane model. Note that
these models were each constructed from two part-labeled images of the same object,
knowing the view bins but with no further camera calibration.

computed correspondences between the outlines of the projections of the primitives

in phase 1, we can solve for 3D positions of points on the outline of the shape.

The 3D position of the centroid of each part is estimated as for the 3D skeleton

of the basic Potemkin model.

Figure 4-4 shows the skeleton and shape primitives estimated from two part-
labeled images. These easily-obtained 3D class models are not sufficiently detailed
to be used directly for detection, but they provide important information about self-
occlusion. When transforming an input image to a novel view, it often happens

that pixels belonging to different parts in the original image are transformed to the
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Figure 4-5: First row: virtual images generated from highlighted instance without
occlusion handling; second row: with occlusion handling.

same point in the new view. In that case, we use the 3D class model to determine
which part is in front, and select those pixels to be painted. This strategy of self-
occlusion handling works when there is a clear order in depth for the parts in the
target viewpoint. Figure 4-5 shows how understanding self-occlusion can improve the

transformed images.

By increasing the set of primitives and supporting reasoning about occlusion,
the generalized Potemkin model generates significantly more realistic virtual images
compared to those generated by the basic Potemkin model, as shown in figure 4-6.

Note that in both cases, the models are trained with only two real labeled images.

4.2 Self-Supervised Part Labeling

The training algorithm for the Potemkin model requires the viewpoints of the objects
and the outlines of the parts in all real training images to be labeled. While viewpoint
labels and object outlines are readily available, from sources like LabelMe [59], part-

labeled images are not.
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Figure 4-6: The generalized Potemkin model (second and fourth rows) generates more
realistic virtual images than the basic Potemkin model (first and third rows).

We have developed a simple approach that obviates the need for most of this
labeling; we require hand part-labeling on only a few images of the same object to
build the 3D class model and on one image of any instance for each additional view

bin from which images will be transformed.

Our approach is based on the fact that objects in the same class, seen from the
same view, have similar arrangements of parts. For each view of the class, we select
one instance and hand-label its parts. Then we use the shape context algorithm [48]
to match the boundary shapes and deform the boundaries of the labeled instance into
the unlabeled instances, as shown in figure 4-7. The deformed part boundary encloses

a region in the new image, which is labeled as the corresponding part.
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Figure 4-7: Given a model instance with labeled parts (blue), the parts of another
instance (red) in the same view can be found by matching points along the boundaries
of the instances (middle) and by deforming the model instance into the target instance
(right).

4.3 Experimental Results

In this section, we report a number of experiments aimed at evaluating different
aspects of the performance of the generalized Potemkin model. We also demonstrate
that the virtual training examples generated by the generalized Potemkin model can
be used effectively to train an existing view-dependent detection system [10], with
the result that many fewer real training images are required to reach the same level

of performance.

4.3.1 Dataset

We used four different object classes, shown in figure 4-8, for our experiments. We
described chairs using six parts, bicycles using five parts, airplanes using five parts,
and cars using five parts. The four-legged chair data set and the airplane data set

were collected by our research group. These two data sets contain 432 images and
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Figure 4-9: Four selected view bins for bicycles, cars, and airplanes.

262 images respectively. The chair data are discretized into six view bins (figure 4-
1) and the other data sets into four (figure 4-9). The bicycle data set is from the
TU-Graz-02 database, which is part of the PASCAL Visual Object Classes (VOC)
Challenge [20]. It contains 365 images of bicycles. The car data set contains 243
images, some collected by our research group and some taken from the car database
of the VOC Challenge. Images in all four data sets have considerable variation in pose,
view, and clutter. Note that in this paper the scale of the object instance is assumed
to be known. Outlines of objects in all images were labeled by users of LabelMe [59]
and normalized based on object scale We also collected four different background data
sets—indoor scenes, street scenes, sky scenes, and road scenes—which were used to

evaluate detection performance for the corresponding object classes.
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4.3.2 Basis Set of Primitives

We began by conducting an experiment to see whether there was a small “basis set”
of primitives that would effectively model all four of our object classes, which together
have 21 separate parts. For this experiment only, we provided one part-labeled real
image of a single instance of each object class in each of its canonical views, which

we used to generate one observed transform Ri s for each part and view pair.

We used a set of oriented primitives generated from three different types of 3D
shapes: flat blocks, sticks, and cubes. We considered flat blocks and sticks at each of
eight possible orientations (four elevation angles and two azimuth angles) and cubes at
two different orientations (two azimuth angles), yielding a set of 18 possible oriented
primitives. For each primitive, we generated 30 slightly varying instances, and then
for each view bin we selected a view and rendered a 2D image. Now, for each pair
of view bins, we computed the transforms between the image-pair for each instance,
and used that data to estimate the mean and standard deviation of the underlying

transform distribution.

To select a set of primitives sufficient to represent all four models, we ran a greedy

forward-selection process, starting with the single primitive that maximizes

score(m) = H H H Pr(Rf‘lﬁ | Tg[?) , (4.5)
c J ap

the data likelihood over all classes ¢ given a single primitive. Then, we added the
next single primitive which, together with the first, increased the aggregate score the
most, etc. We stopped when the score failed to improve substantially with further

additional primitives.

We measure the quality of these transforms on real images with an aggregate

overlap score:
1 s
N Z Z overlap(Tiigj A;, Bj), (4.6)
Jj ap
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Figure 4-10: The quality of transforms as the number of available primitives (M)
increases. Left: evaluated on training data; right: evaluated on held-out test data.

where A; is the region associated with part j in view a, Ti’gj A; is the transform of
that region into view (3, B, is the true region for that same part in view (3, and the
overlap of two regions is defined to be the ratio between their intersection and their

union.

We ran this greedy selection algorithm for each of the four object classes inde-
pendently, and for all four classes jointly. Figure 4-10 (left) shows the quality of the
transforms on the training set as the number of primitives increases. We can see that
four primitives suffice to model all of the classes effectively. Testing on held-out data
(figure 4-10, right) shows that we are not overfitting the data, in general, but does

suggest that a single primitive may be better than two for the bicycle class.

In all future experiments, we restricted our set of primitives to the four chosen
in this process. All four were flat blocks (the same 3D shape), but at different 3D
orientations. The primitives chosen for each part of each class are shown in Figure 4-
11. The most popular primitive, which represents 10 of 21 parts, is actually the
one used in the basic Potemkin model; but considerable representational accuracy is
gained by adding other primitives to the set. We anticipate that for a more varied
collection of object classes, it would be useful to increase the set of primitives, but are
encouraged to find that individual primitives seem to be applicable to a large number

of different object parts.
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Figure 4-11: 3D shape primitives selected for each part of each class.

4.3.3 Part Labeling

Since we have introduced a self-supervised part labeling strategy, we would like to
independently evaluate the quality of the labelings. We do this by comparing the
automatic part labelings to hand-labeled images, measuring the percentage of pixels
that have the same part labels in both the automatically labeled and hand labeled

images.

Averaged over all real images from all views, the aggregate labeling overlap was:

96.72% for chairs, 98.23% for bicycles, 92.59% for airplanes, and 85.84% for cars.

The automatically generated labels for chairs and bicycles are extremely accurate,
probably because the parts in these classes are clearly separable, as shown in figures 4-

12 and 4-13.
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Figure 4-12: Some part labeling results for four-legged chairs. First row: hand label-
ing; second row: self-supervised labeling.
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Figure 4-13: Some part labeling results of bicycles. First row: hand labeling; second
row: self-supervised labeling.
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Figure 4-14: Some part labeling results of cars. First row: hand labeling; second row:
self-supervised labeling.

On the other hand, the label results for cars are less accurate, as shown in fig-
ure 4-14. We found that different users labeled parts of cars in different ways, since
these parts are not clearly defined, but the automatically generated part labels are
more consistent. For example, some users thought the headlights of cars should be-
long to the “grille” part, while other users included headlights in the “hood” part.
Ultimately, the real test is whether the labels improve detection performance. We
will also compare the performance of these two labeling strategies in the end-to-end

system in the following sections.

4.3.4 Single-View Detection

As in chapter 3, we test the quality of virtual examples generated by the generalized
Potemkin model in single-view and multi-view detection tasks using the detector
developed by Crandall et al. [10]. The goal of our experiments is to show that these
virtual training images are almost as effective as input for a standard 2D detection

method as novel real training images.

In order to illustrate the impact of using multiple oriented primitives on the quality

of the virtual training images generated by the generalized Potemkin model, as well
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as to highlight the model’s effectiveness with very little training data, all 3D models
and transforms were constructed using only two real images of the target object
class. In this situation, the quality of virtual training images is most influenced
by the prior transforms for each of the parts, which are determined by the chosen
oriented primitive. This does mean, however, that the performance shown here could
be improved by using more image pairs to refine the cross-view transforms, as shown

in chapter 3. For efficiency, all detection was done at a single scale.

We trained the single-view detector using a combination of real and virtual images,
for each of the four data sets. The real images are all from the same view bin, called
“the target view bin”. The virtual images were transformed from all “source” view
bins different from the target view bin. In all cases, for testing we used 30 object
images from the target view bin and 30 background images from the corresponding
background data set (indoor scenes for chairs, street scenes for bicycles, sky scenes for
airplanes, and road scenes for cars), and computed an ROC curve for discrimination

between the object and background.

We did four repetitions of the detection experiments for each class, varying the
target view bin. In each case, we held the number of virtual images constant (at 100
for chairs, 10 for bicycles, 75 for airplanes, and 50 for cars), and varied the number
of real images in the target view bin. One data point on a curve in the first two
columns of figure 4-15 is the percentage area under the ROC curve, averaged over all
four repetitions. Note that an object class with higher variability among instances
requires more virtual training images to achieve satisfactory detection performance.

Thus we provided different amounts of virtual training images for different classes.

For each object class, we tested five methods of generating virtual images:

e No virtual images;

e Virtual images generated using a single global transform for the entire object,

ignoring part structure;
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Figure 4-15: Average single novel view detection results over four repetitions of each
of four object classes: chairs (left-top), bicycles (right-top), airplanes (left-bottom),

and cars (right-bottom).

e Virtual images generated using a separate transform for each part, but based

on a single primitive (the basic Potemkin model), using hand-labeled parts;

e Virtual images generated with multiple primitives (the generalized Potemkin

model), using hand-labeled parts;

e Virtual images generated with multiple primitives (the generalized Potemkin

model), using self-supervised part labeling.

In every case but the first, the same number of virtual training images, along

with real training images, were used for training the view-based detector for the

target class. The basic Potemkin model

and the generalized Potemkin model were
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Figure 4-16: The virtual examples (from left to right) are constructed by using the
generalized Potemkin model, the basic Potemkin model, and a global transformation
respectively. These virtual examples are generated by transforming the car in the
highlighted image from side viewpoint to frontal viewpoint.

constructed from only two real images, which were used to construct the skeleton and

select the primitives for each part.

In the case of bicycles, all five parts selected only one primitive, which is the single
primitive of the basic Potemkin model, so the results of the generalized Potemkin
model are the same as for the original. In the other three classes, the use of additional
primitives improves performance considerably. Note that for cars, the basic Potemkin
model performs worse than a single global transform because of unrealistic virtual
images, as shown in figure 4-16. However, the generalized Potemkin model generates
reasonable virtual images which improve the detection performance. Some virtual
training images (virtual examples placed into the background from the original image)

generated from the generalized Potemkin model are shown in figure 4-17.

Self-supervised part labeling decreases detection performance of airplanes, com-
pared to the model trained with hand-labeled parts. We observed that incorrect labels
in self-supervised part labeling are mostly due to instances without tails or with one
wing occluded, which are significantly different from the model instance we used to
deform the shapes. In the future, we could use several model instances in the same
view bin for matching shapes and defining labels. The labels of other instances could

then be determined using the best matching model instance.

Our self-supervised approach for labeling parts works well if most instances of the
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Figure 4-17: Six examples of real images (highlighted) and virtual images constructed
by the generalized Potemkin model.
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Figure 4-18: Multi-view detection performance (ROC curve) for chairs and cars.

target class have the same number of parts and big parts are not occluded, such as
for four-legged chairs. It is particularly interesting that for cars, self-labeling works
better than hand-labeling, probably because self-labeling provides a more consistent

“definition” of parts, as shown in figure 4-14.

4.3.5 Multi-View Detection

We have also carried out experiments in multi-view detection, in which the goal
is to label the class of an object, independent of its view point. We train single-
view detectors for each view of each object, using virtual training data generated by
the generalized Potemkin model, and output the class associated with the detector
generating the largest response on each test image. We compared the same five
training conditions as in the single-view detection experiment, as well as one in which
all of the views are pooled and used to train a single detector. The results are shown
in figure 4-18. The combined detectors trained with the data generated from the

generalized Potemkin model outperform the others by a substantial margin.
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4.3.6 Dalal-Triggs Detector

To support our claim that our virtual training images can improve the performance of
any 2D image-based detector, we also conducted experiments using the detector from
Dalal and Triggs [14], which is currently among the most accurate for cars. In this
section, we performed experiments on the PASCAL VOC Challenge 2005 Cars Test 2
data set [20], which is a standard data set for many state-of-the-art approaches. The
Dalal-Triggs detector requires a pool of positive/negative (car/non-car) examples for
training. Because the data set in the PASCAL Challenge doesn’t provide the outline
segmentations for all objects, we use the car data set collected by our research group
for training. However, we still used the "background” data set provided by the
PASCAL challenge in the car detection task as the negative examples for training the
Dalal-Triggs detector.

For each of the four training viewpoints of cars as shown in Figure 4-9, we collected
20 real images and generated 60 virtual images, by transforming real images from the
other three viewpoints. We also made use of symmetries and generated mirrored
versions of these images. Thus we had a total of 160 real training images and 480

virtual training images.

We set the parameters of the Dalal-Triggs detector and evaluated the detection
results as in [20]. Note the best three average precision (AP) scores (see [20] for the
definition of AP) on this standard test set in PASCAL VOC Challenge 2005 [20] are
0.304 (the Dalal-Triggs detector), 0.181, and 0.106. Our real training data set of cars
is smaller than the training data set provided by the PASCAL VOC Challenge. In
addition, our training data set doesn’t cover all viewing directions of cars as those
in [20]. Thus, for example, our trained detector cannot detect rear views of cars. Our
goal in these experiments is only to give an estimate for the improvement expected

from virtual images using a state-of-the-art detector on a standard data set.

Figure 4-19 shows the precision-recall curves of the Dalal-Triggs detector using our

training data set on the VOC Challenge 2005 Car Test 2 data set. The incorporation
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Figure 4-19: The precision-recall curves of the Dalal-Triggs detector using our training
images.

of our virtual training images increased the AP score of the same detector from 0.162
to 0.272. Because we use the same number of the negative training examples (the
background dataset), the accuracy of the trained detector doesn’t improve (even lower
when the recall is low). However, more cars in the test set were detected (highest

recall: 0.32) using both real and virtual images of cars for training.
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Chapter 5

The 3D Potemkin Model

In this Chapter, we augment the Potemkin model to support automatic reconstruction
of the 3D shapes of object instances. We describe an extension of the Potemkin
model, and show how it can be learned from a few labeled images for each class
(Section 5.1). The learned 3D class model then can be used to estimate the 3D shape
of an object instance, including occluded parts, from a single image (Section 5.2).
We provide a quantitative evaluation of the shape estimation process on real objects,
and demonstrate the 3D estimation is sufficiently accurate for a robot to successfully
grasp the object (Section 5.3). We also demonstrate that the 3D reconstructions
allow 2.5D data, such as depth maps from stereo processing, to improve the detection
performance of existing detection systems [49, 14] (Section 5.4). In addition, we can
use the learned 3D class model to construct 3D 'pop-up’ models from photos (Section

5.5).

5.1 3D Class Models

Informally, the 3D Potemkin (3DP) class model can be viewed as a collection of 3D
planar shapes, one for each part, which are arranged in three dimensions. The model

can also be viewed as an approximation of a detailed 3D model using a small set of
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3D planar polygons. The 3DP model specifies the locations and orientations of these
parts in an object-centered 3D reference frame. In addition, it contains canonical
images with labeled parts, which allow detection results to be decomposed into parts.
The view space is divided into a discrete set of view bins, and an explicit 3D rotation
from the object-centered 3D reference frame to the view reference frame is represented

for each view bin.

The detection process produces a 3DP instance model, which is also a collection
of 3D planar shapes arranged in three dimensions, corresponding to the parts of the

particular 2D instance from which it was constructed.

More formally, a 3DP object class model with N parts is defined by:

k wview bins, which are contiguous regions of the view sphere. Each view bin is
characterized by a rotation matriz, T, € R3>*3, which maps object-centered 3D

coordinates to 3D coordinates in each view reference frame «;

k part-labeled images, specifying the image regions of parts of an instance in

each view bin «;

a class skeleton, Si, ..., Sy, specifying the 3D positions of part centroids, in the

object-centered reference frame; and

N 3D planes, Q;,i € 1,..., N, specifying the 3D plane parameters for each

planar part, in the object-centered reference frame;

In addition, the 3DP class model contains an estimated bounding polygon to
represent the extent of the 3D part graphically, but this polygon plays no role in
reconstruction. Instead, the part shapes in the part-labeled images for each viewpoint

are used for reconstruction.

82



5.1.1 Estimating a 3DP Model from Data

In broad outline, the part centroids are obtained by solving for 3D positions that
best project into the observed part centroids in the part-labeled images in at least
two views. The 3D planes are chosen so as to optimize the match between the 2D
transformations between the boundaries of corresponding parts in the part-labeled
images. Below, we give a brief overview of this estimation process; further details can

be found in previous chapters.

e The view bins are selected. The choice of view bins is arbitrary and guided by
the demands of the application. In this chapter, we have used 12 views bins
equally spaced around a circle at a fixed elevation. The view bins determine

the associated rotation matrices.

e The part-labeled images in each viewpoint should be for similarly-shaped in-
stances of the class (though they can be significantly deformed during the de-

tection process) and two of them must be for the same actual instance.

e The skeleton locations S; are estimated, as shown in Chapter 3, from the mean
and covariance of the coordinates of the centroids of labeled part j in the set of

part-labeled images.

e Learning the 3D planes is more involved. The process is trained in two phases:

one generic, and one object-class specific.

In Chapter 4, we ran a greedy selection algorithm to select a small set of prim-
itives that would effectively model four test object classes (chair, bicycle, air-
plane, car), which together have 21 separate parts. Four primitive orientations

suffice to model all of the parts of these classes effectively.

Once the primitives are selected, a small set of images, which are a subset of
the k part-labeled images in the model, of the same object instance, from any
set of views, as long as each part is visible in at least two views, are used to

estimate the positions and orientations of the parts for this class. By finding
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Figure 5-1: Learned 3DP class model for four-legged chairs in the object-centered
reference frame, and in each view reference frame.

a similarity transform between the actual part outlines and the projections of
the primitives in two different views, and having computed correspondences
between the outlines of the projections of the primitives in phase 1, we can
solve for 3D positions of points on the outline of the shape. This allows us to
estimate a rough extent and planar model of the part in 3D, even when there is

very little data available. We compute @1, ..., Qy based on these planar parts.

Figure 5-1 shows an estimated 3DP class model for chairs. It was constructed
from two part-labeled images of the same object instance, knowing the view bins but

with no further camera calibration.

These easily-obtained 3DP class models may not be able to capture highly detailed
shape information or all of the variability within a class, but each provides adequate
information to represent the basic 3D structure shared by instances of a class. For
example, the 3D class model of airplanes is not unlike the paper cutout airplane in

Figure 5-2.
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Figure 5-2: The 3DP class model of airplanes (right), constructed from two images
of a real airplane, looks like the paper cutout airplane (left).

5.2 Automatic Single-View Reconstruction

In this section we will describe how to use 3DP object class models to reconstruct 3D
objects from a single image. To achieve complete automation of the reconstruction
process, we developed an approach involving several steps: detection, segmentation,

part registration, and model creation. We will address the details of each step below.

5.2.1 Detection and Segmentation

Given the input image, we need to detect the object, identify the viewpoint, and
obtain the contour of the object. This step can be carried out by using any existing
multi-view object-class detection system. For example, Leibe et al.’s car detection
system [39], composed of a set of seven view-dependent detectors [41], provides robust
results on localizing cars (a bounding box and a coarse object segmentation for each

detected car) and identifying their viewpoints on test images.

We assume that the detection system is able to, at least, determine a bounding
box for the detected object and to identify the viewpoint bin. Within the bounding
box, the outline of the detected object can be obtained by existing model-based
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segmentation techniques [42, 36]. We use the part-labeled outline for the identified
view bin in our model to initialize the segmentation process. All of the examples
in this chapter were obtained by using the publically available implementation of

level-set evolution by Li et al. [42].

5.2.2 Part Registration

Once an object outline is available, we need to obtain the part regions corresponding
to the individual parts in the model. The approach we use is described in Section 4.2.
This approach is based on the fact that objects in the same class, seen from the same
view, have similar 2D arrangements of parts. That is, the centroids of the projected

parts have characteristic arrangements.

Our approach uses the shape context algorithm [48] to match and deform the
boundaries of the stored part-labeled image for the detected view bin into the corre-
sponding boundary of the detected instance. This match induces a deformation of the
part-labeled image that is used to predict internal part boundaries for the detected

instance. Further details can be found in Section 4.2.

5.2.3 Creating the 3D Model

Now we are able to generate a 3D instance model from the segmented parts of the
detected object in the input image using our 3D model of the class. We will assume
a known camera matrix M € R*** and a known 3D ground plane Q,(a,X +b,Y +

cyZ +d, =0). Later we explore various ways of obtaining these.

We proceed in the following stages:

e Use the method developed by Hoiem et al. [32] to classify the ground region
in the input image, and recover 3D coordinates of each image point (2, Yim)

on the ground region by solving for X, Y, and Z in the following projection
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equations.

mi1 Myz2 M3 My
M = Mao1 Mo M3 Moy . (5-2)

m31 M3z M33 M34

~ muX +mpY +mizZ + may

m31 X + mgeY + ms3Z + may (5:3)

o ma X+ mgY 4 mo3Z 4 may (5.4)
Yim m31X + m32Y + mggz + maq ' '

agX +byY +cyZ +dy = 0. (5.5)

e For each planar part i of the 3DP class model, compute the parameters (a;q, bia; Cia)
of the 3D plane @, in the 3D reference frame of view bin « (identified by the
detector) by applying the 3D rotation matrix T, to @;. Note that the scale of

parameter d;, is unknown.

e [t a line [, through image points where the detected object touches the ground

region in the image, and get the 3D coordinates of those ground points.

e For each object part j that includes points along the line [,, estimate d;, based
on the recovered 3D coordinates of points on that ground line. Then, solve for
the 3D coordinates of all image points of part j using equations (5.2)—(5.4) and
(Q)jo (the plane supporting part j).

e For each part k£ connected via adjoining pixels in the image to some previously
recovered part j, estimate dg, based on the recovered 3D coordinates of those
points on the intersection of part 7 and part k. Then solve for the 3D coordinates
of all the image points of part k using equations (5.2)—(5.4) and Q. (the plane

supporting part k). Repeat this process until all parts are reconstructed.
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Viewpoint Identification

Input Detection Segmentation Part Registration Output

Figure 5-3: The processing pipeline for automatic single-view 3D reconstruction.

Viewpoint Identification Class Model

Input Detection Segmentation Part Registration Output

Figure 5-4: One failed example of our automatic single-view 3D reconstruction.

Figure 5-3 shows one example of a completely automated reconstruction. It in-
volves detection [39], segmentation [42], part registration, and finally the projection
of the 3D instance model into a new viewpoint. Figure 5-4 shows one failed example

of our automated reconstruction due to inaccurate detection and segmentation.

5.2.4 Estimating Locations of Occluded Parts

After we reconstruct a 3D model for the visible parts of the detected instance in
the source image, we are able to further predict approximate 3D coordinates of the
occluded parts. We compute a 3D transformation from the 3D class model to the re-
constructed 3D instance, by mapping 3D coordinates between the recovered 3D parts
of the instance and corresponding 3D primitive parts in the class model. Then for each
occluded part ¢ of the instance in the source image, we apply this 3D transformation

to part 7 in the class model.

The ability to estimate the 3D shape and extent of the entire instance, including
parts that are not visible in the source image, is very useful in robotics applications,

as demonstrated in section 5.3.2.
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3D Reconstruction (object-centered)

Figure 5-5: A 3D reconstruction (left) from the green-circled car, which is in the
image (right) of 20 model cars.

5.3 3D Object Localization

One important use of 3D localization and shape estimation is in robotic manipulation,
where it can be crucial for the robot to have good 3D estimate of the object’s pose
and shape. Although in some special cases, when grasping is done perpendicular to
the image plane, simple grasping can be done without a 3D understanding of the

scene, robust manipulation of complex objects requires reliable 3D information.

In this section, we present several evaluations of the reliability of the 3D instance

models constructed by our system.

5.3.1 Localization Performance

We evaluated the quality of the 3D reconstruction results on a domain consisting of
20 diecast model cars (Figure 5-5), varying in shape and appearance. We calibrated
a fixed camera (both M and (@), are estimated) in advance, using the Matlab camera
calibration toolbox. We then randomly placed each of the cars on the known 3D

ground plane, a black table, within a 1m by 1.2m area, visible from the camera.

We took images of each of the cars, and constructed 3D instance models of them.
In this setting, detection was done simply by color segmentation. Figure 5-5 shows a
typical reconstruction (for the green-circled car in the figure) and its bounding box

in the 3D coordinate system.
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We measured the accuracy of the single-view reconstructions by comparing the

ground truth with the recovered 3D model according to three criteria:

e The overlap of two volumes (the volume of the intersection divided by the
volume of the union): the estimated 3D bounding box of the car and the ground

truth bounding box;

e The distance from the estimated 3D centroid of the car to the ground truth

centroid; and

e The absolute value of the difference between the estimated orientation of the

car and the ground truth.

For comparison, we also tested the quality of reconstruction using a single 3D surface
perpendicular to the ground plane for the whole object (as in [32]) instead of our
3D class model. The 3D objects reconstructed using our 3D class model were much
more accurate than those modeled by only a vertical 3D plane, as shown by the
average measurements in the table below. (The single-plane method, which use a
single 3D surface perpendicular to the ground plane for the whole object, cannot

compute bounding boxes. Thus, overlap scores are not available).

overlap centroid error orientation error
3DPotemkin | 77.5% 8.75mm 2.34°
Single plane 73.95mm 16.26°

All our estimates were reasonably accurate, except for the red-circled Ferrari F1,
whose shape is the most different from our 3D class model of cars, for which it had

26.56% overlap, 24.89 mm centroid error, and 3.37° angle error.

5.3.2 Robot Manipulation

We can use estimated 3D poses of the parts of objects as input to a robot motion

planner, which calculates a motion trajectory for a robot arm and hand, which should
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Figure 5-6: Some snapshots taken in the process (from left to right, from the first
row to the second row) of the robot grasping a car.

result in the robot grasping the object. We have used a Barrett robot arm and hand,
together with the OpenRave robot motion planning system [17] together with the 3DP
model estimation outputs, to build a system that demonstrates hand-eye coordination
in picking objects. Figure 5-6 shows some snapshots of the Barrett arm picking up a

model car.

To test the utility of the 3D localization results, we placed each of the 20 model
cars in 3 different positions and orientations on the table, and reconstructed the 3D
car from each input image. The robot successfully grasped the car in all these 60
trials, except for the trials involving the red Ferrari F1 (circled in red in Figure 5-
5). Although the reconstruction for the Ferrari was accurate enough for a grasp, the

model car was too fragile and it shattered.

We repeated the same 60 experiments using the single-plane reconstruction method.
The robot was only able to grasp the car in 6 of 60 trials. The successful grasps hap-
pened only when thin cars were placed with their sides nearly face-on to the camera.
For these cases, the estimated orientation and 3D centroids are accurate enough for

a grasp.
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Figure 5-7: Top (From left to right): Our 3D class model of baskets, the input image,
and two views of the reconstructed 3D basket. The handle is recovered even it is
occluded in the input image. Bottom: Some snapshots taken in the process (from
left to right, from the first row to the second row) of the robot’s grasp of a basket

To demonstrate the ability to predict the position of, and then grasp, occluded
parts, we built a 3DP model from two views of a wooden ’basket’, and then showed the
system a completely novel view in which the handle is occluded (shown in Figure 5-
7). The system recovered approximate 3D coordinates for the handle of the basket
and the robot grasped the basket successfully via the occluded handle, as shown in
figure 5-7. In this particular case, the class model was built for the particular instance,
so there was no generalization exhibited, but we expect the results to continue to be

good when there are more instances in the class.
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Figure 5-8: Imaged objects with corresponding stereo depth maps (the second row)
and depth maps generated by reconstruction from the 3DP model (the third row).

5.4 Object Detection Using 2.5D Data

We can use 3DP class models to predict reasonably accurate depths of objects in 2D
intensity images (Figure 5-8 for labeled cars) using projections from 3D reconstruc-
tions. Given a predicted depth map, we can match it against other available 2.5D
data (such as from stereo images), to improve detection performance. In this section,
we apply this strategy to enhance the performance of two existing 2D object detection

systems, using intensity images coupled with 2.5D range images.

We performed experiments using two trained single-view detectors for cars: one
from Murphy, Torralba, and Freeman [49] and one from Dalal and Triggs [14]. The

Dalal-Triggs detector is currently among the most accurate for cars.

In this experiment, our test set consists of 109 outdoor intensity images and corre-
sponding depth maps obtained from a Videre Designs stereo device [9]. These images

include 127 annotated cars, all seen from the same viewpoint.

We ran the 2D detector on each image to get the 15 highest-scoring candidate
detections. Each candidate ¢; consists of a bounding box b; and a likelihood ;. We

converted the SVM outputs of the Dalal and Triggs system to probabilities using the
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Figure 5-9: ROC curves for car detection.

method of Platt [52]. Inside each candidate box, we used the 3DP reconstruction
method to estimate a depth map Z;. Note that the 3D ground planes and the camera
parameters of these images are unknown, so we used a default camera matrix and 3D

ground plane (as in [33]).

Then, we compared the predicted depths with the measured depths, in each of
the detection bounding boxes. Because the camera was not calibrated, we had to
first register our predicted depth map Z; to the stereo depth map Z,. We computed
the difference D; between Z; and the normalized stereo depth map Z, over the depth

region inside b; as follows (a; is a scale parameter and ay is an offset):

D; = min/(Z, — (a1.Z; + ay))? (5.6)

Then, we computed the posterior likelihood for each of the 15 candidates in the test
image using a very simple log-linear model:
exp(log(l;) x w+log(l — D;) x (1 —w)) (5.7)
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Figure 5-10: Row 1: Original image. Row 2 and 3: 3D instance model generated
from the 3DP class model.

The weighting parameter w was determined empirically by optimizing over a separate
validation set of 20 images and corresponding depth maps. For the Dalal-Triggs
detector, we found that w = 0.6 and for the Murphy-Torralba-Freeman detector,
w = 0.5.

Figure 5-9 shows that the performance of both detectors can be substantially
improved by generating predicted range information for each detection and filtering

detections based on the match between the predicted and actual ranges.

5.5 3D Pop-Up Scenes from a Single Image

Once we reconstruct a 3DP instance model from an image, we can automatically
construct a 3D ’pop-up’ visualization of that instance. We use the same method
as [32] to set the camera matrix and a 3D ground plane. Figure 5-10 shows some
3D popup models of chairs and cars. In contrast to previous work on photo pop-

up [32, 62, 59], our results focus on creating realistic 3D shapes of objects.
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Chapter 6

Conclusions

In this dissertation we have proposed a new learning approach that efficiently learns
object classes in a wide variety of viewpoints. We have demonstrated that our learning
approach can be coupled with any 2D image-based detection system, and that it

successfully improves detection performance on a variety of object classes.

The contribution of this work is the Potemkin model, which exploits the fundamen-
tal relationship between multiple views of an object class, and facilitates information
transfer across viewpoints. We have shown how the Potemkin model can be efficiently
constructed from a few images, and can be used for effective multi-view object class

detection.

The Potemkin model provides a middle ground between methods that are based
only on 2D images and those based only on a 3D model; it seeks to gain the best of
both worlds by taking advantage of our general knowledge of the relationship between
3D objects and their 2D projections and using this knowledge as leverage for efficient

and effective learning for multi-view object class detection.

The most important use of the Potemkin model is to circumvent one of the key
roadblocks to effective multi-view recognition, namely the need for collecting large

amounts of training data in all the viewpoints of interest. The Potemkin model makes
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efficient use of training data in each view by transforming it into virtual training data
for all other views. The virtual training examples can be used as training input for any
existing 2D image-based detection system. We have demonstrated the effectiveness
of these virtual examples in reducing training data requirements by training single-
view detectors in novel views and in multi-view detection. We have also shown these
virtual examples improve detection performances in object localization and detection

tasks.

We have also introduced an extension of the Potemkin model which can be used
to reconstruct 3D shapes of detected objects automatically from a single image. This
3D Potemkin model is based on a set of 3D oriented primitives, and can be learned
from a small set of labeled views of an object in the class. Once the 3D Potemkin
model is learned, the reconstruction mechanism can be built on top of any multi-
view object class detection system. We have shown this reconstruction mechanism
generates realistic views of 3D models, and provides accurate 3D information for
entire objects. We have also demonstrated the usefulness of this reconstruction in

three applications: robot manipulation, object detection, and object pop-up.
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