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Abstract

Our goal is to circumvent one of the roadblocks of using existing bundle adjust-
ment algorithms for achieving satisfactory large-area structure from motion over long
video sequences, namely, the need for sufficient visual features tracked across consecu-
tive frames. We accomplish it by using a novel “virtual insertion” scheme, which con-
structs virtual points and virtual frames to adapt the existence of visual landmark link
outage, namely “visual breaks” due to no common features observed from neighboring
camera views in challenging environments. We show how to insert virtual point corre-
spondences at each break position and its neighboring frames, by transforming initial
motion estimations from non-vision sensors into 3D to 2D projection constraints of vir-
tual scene landmarks. We also show how to add virtual frames to bridge the gap of non-
overlapping field of view (FOV) across sequential frames. Experiments are conducted on
several real-world challenging video sequences, collected by multi-sensor based visual
odometry systems. We demonstrate our proposed scheme significantly improves bundle
adjustment performance in both drift correction and reconstruction accuracy.

1 Introduction
Bundle Adjustment is a key process to enhance the global accuracy of the 3D camera pose
and structure estimation in the framework of structure from motion over long video se-
quences [1, 5, 6, 7, 8]. It is formulated as a nonlinear optimization that minimizes the
2D pixel projection error of each 3D scene feature extracted from the video, resulting op-
timal camera parameters and landmark positions. In recent years, many bundle adjustment
algorithms have been proposed, such as Sparse Bundle Adjustment[10], Parallel Bundle
Adjustment[15] and Incremental Bundle Adjustment[12] etc., and a number of reliable bun-
dle adjustment open softwares have become available[2, 10, 15], which has made bundle
adjustment a standard and convenient tool for Computer Vision community.

However, most bundle adjustment algorithms require sufficient visual feature correspon-
dences from each camera frame to its neighboring frames in video sequences, which are
hard to collect in real environments, especially for indoor real-time navigation applications.
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A camera may not observe enough common scene points over a long period of time due to
occlusions or non-texture background such as the white walls etc.. With the use of video
images as the only input, bundle adjustment will easily fail due to the constant link outage of
visual landmarks in the scene. We call it the effect of “visual breaks”, and the issue of “visual
breaks” has hindered the usage of bundle adjustment. It is particularly critical for sequen-
tial Structure from Motion (sSfM) applications where motion estimation is from “chaining”
neighboring key frames.

On the other hand, to deal with this issue of “visual breaks”, vision-based navigation
systems, such as Simultaneous Localization and Mapping (SLAM)[13], typically do not
rely on the video cameras only for robustness. Different techniques have been proposed to
reduce the drift caused by“visual breaks” and other sources (e.g. inaccurate calibration) by
fusing non-vision sensors, such as Inertial Measurement Unit (IMU)[3, 4], LiDAR[16] or
GPS[11]. There are also systems which make motion assumption, such as constant motion
model, to propagate estimation when there is no visual information available. As a result,
good motion measurements from non-vision sensors or motion assumptions can be obtained
easily at these “visual breaks” locations. However the bundle adjustment is still not able
to use the motion estimates from these techniques directly due to a missing approach to
incorporate them inside the cost function during optimization.

In this paper, in order to overcome the above issue, we propose a “Virtual Insertion”
scheme to construct elastic virtual links on these “visual breaks” positions to fill visual land-
mark link outage with the measurements provided by other sensors or motion assumptions,
so that all camera positions can be linked in the long video by the real or virtual scene
landmarks before bundle adjustment. This way enables the traditional bundle adjustment
algorithms to achieve robust large-area structure from motion over long video sequences.
Specifically, with the measurements from non-vision sensors at the “visual break” positions,
we actually convert them into a set of virtual landmark links that will serve as 3D-2D pro-
jection constraints in the cost function of bundle adjustment optimization. As a result, mea-
surements from other sensors can be integrated into existing bundle adjustment framework.
Experiments on real-world long video sequences show that the virtual insertion scheme can
significantly enhance both robustness and global accuracy of bundle adjustment over long
video sequences in challenging real-world environments.

1.1 Related Work
Many proposed SLAM algorithms can handle the “visual breaks” reasonably well by incor-
porating the motion estimations from non-vision sensors and motion assumptions[4, 9, 11,
13, 14]. Oskiper et al. [14] integrated visual odometry system with a IMU using the ex-
tended Kalman filter framework. However camera poses are locally optimized for real-time
performance. Chiu et al.[4] proposed using Sliding-Window Factor Graphs [9] as short-
term smoother fusing estimations from multiple sensors, together with a long-term smoother
incorporating loop closure constraints to achieve improvements locally and globally. [13] in-
troduced an approximate Maximum A Posteriori estimator-based keyframe approach incor-
porating constraints generated from visual landmarks and IMU from marginalized frames,
achieving computation efficiency and elevated accuracy globally. Instead of minimizing a
weighted sum of image and GPS errors, which is much harder to do, Lhuillier [11] proposed
an incremental Bundle Adjustment framework by enforcing an upper bound for the image
reprojection error with the GPS data.

The proposed virtual insertions scheme is handling “visual breaks” while maintaining
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globally optimized accuracy in a different but innovative fashion. When visual correspon-
dences are non available, motion estimates from non-vision sensors are used to generate
3D-2D constraints that can be incorporated by cost function of traditional bundle adjust-
ment. However, while many of these SLAM algorithms directly incorporate error models
specifically built for different types of sensors in the cost function of bundle adjustment, our
proposed algorithm can adapt to existing bundle adjustment frameworks seamlessly, which
is one of our primary motivation. Moreover, in these SLAM algorithms, error models for
sensors usually require elaborate calibrations, and serious error can be induced throughout
the whole sequence if they are poorly calibrated. With the propose approach, the non-vision
sensors are free from calibration since motion estimates from these sensors are used only at
the locations with “visual breaks”. That way, the motions estimates from non-vision sensor
can be considered reliable within short intervals even without calibration, and the results for
other locations will not be degraded after bundle adjustment.

Hence, compared to the existing SLAM algorithms, our goal is to propose a simple
alternative way handling “visual breaks” problem for global accuracy, and make bundle ad-
justment more widely applicable, convenient and robust over long video sequences.

2 Motivation and Proposed Solution

2.1 “Visual Breaks” and Bundle Adjustment
A “visual break” is critical especially for sequential structure from motion, where usually a
camera position has feature correspondences only with neighboring positions. With the help
of IMU and Kalman filter[16], a visual odometry system is able to output reasonable and
continuous poses using measurements from IMU especially at the “visual breaks”. However
the measurements from IMU cannot be integrated into the framework of bundle adjustment
directly, resulting large jumps and drifts, which is demonstrated below.

The goal of bundle adjustment is to find 3D landmark positions and camera parameters
that minimize the 2D re-projection error of 3D landmarks on the images, that is, let f(x) =
[ f1(x), · · · , fN(x)] be the vector of re-projection errors over N camera positions, we wish to
solve

x′ = argmin
x

N

∑
i=1
‖ fi(x)‖2.

Here we take Levenberg-Marquart[15] (LM) algorithm as an example, in each iteration, LM
solves the non-linear least squares problem in the form of

∆x′ = argmin
∆x
‖J∆x+ f(x)‖2 +λ‖D∆x‖

and updates x′ = x+∆x′. λ is a regularization scalar and D is the square root of the diagonal
of J>J. For example, Figure 1(a) illustrates a typical indoor navigation sequence of a user
traveling from P1 to P8, where Pi are camera positions and qi are visual scene landmarks.
Two “visual breaks” are caused by door closing and opening. Since {q3,q4,q5} are only
within the FOV of {P3,P4,P5} which isolates themselves from other camera locations, the
Jacobian J can be re-arranged as

J′ =
[

JA 0
0 JB

]
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Figure 1: (a) A typical indoor navigation sequence. Black arrows indicate matched corre-
spondences and blue ones denote motions estimated by visual odometry system. (b) Another
example of sequence with "visual break" and the idea of linking the “visual break”.

where JB and JB correspond to two nonoverlapping sets of locations. Similarly decomposi-
tion can be done to D. This is equivalent to two independent bundle adjustment problems.
In other words, the global-minima of the whole sequence becomes the combination of local-
minimas in each of the two segments of the sequence because the transition between loca-
tions set A and B is unconstrained. This is the reason why large jumps can be found in the
output trajectory from bundle adjustment when “visual breaks” exist in the sequence.

2.2 Linking the “Visual Breaks”

Figure 1(b) shows the illustration of a typical motion estimation over a video sequence with
a “visual break” annotated with a red link arrow. Due to drift in the initial poses estimation,
the loop does not close although the person travels back to the origin. It can be seen from
Figure 1 (b) that the initial estimated trajectory from is continuous and smooth. After feature
matching, frames at the end are matched with frames at the beginning, and for the other lo-
cations, frames are only matched with their neighboring frames. During bundle adjustment,
with the constraints provided the loop closure, the drifts at the end can be reduced. However
a large jump can be observed at the “visual break” location, as showed in Figure 1(b), since
the constraints cannot be propagated to the other locations because of the “visual break”. It
is straightforward to consider this “visual break” as a “broken joint”.

It is natural for us to think about adapting the “broken joints” with artificial links. From
initial estimation of the camera poses fused with IMU, we can set up artificial links on the
“visual breaks”. Although drift will accumulate over long period in general, within a small
period of time, the estimation fused with IMU can be considered as reliable and trustworthy.
As shown in Figure 1(b), a virtual link estimated by IMU motion estimation can be inserted
to the break location so that the constraints from loop closure can be propagated to the whole
sequence. Hence, as it can be seen that the whole trajectory can reach global optima with
drifts reduced on every location. In other words, this method is transferring the motion
measurements from non-vision sensors into 3D-2D visual projection constraints, which are
integrated into the cost function of bundle adjustment for a joint global optimization. This
forms the base of proposed virtual insertion techniques.
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3 Virtual Points Insertion
In this section, the detection of “visual breaks” and the method of virtual points insertion are
described. Figure 2 shows an illustration of virtual points insertion.

3.1 “Visual Break” Detection
Let Pi be the 3D pose of camera at location i output by the visual odometry system, and ci, j
be the number of matched feature correspondences between i and j. Assuming we have in
total N key frames in the sequence, we consider location i as a “visual break” of the trajectory
if it satisfies ∑

N
j=i+1 ci, j = 0. However in practice, more than one feature correspondence is

needed to ensure the accuracy and strength of constraint for each position (e.g. at least 3
correspondences are needed in order to effectively remove outliers). So a “visual break” i
should be defined as

N

∑
j=i+1

δ (ci, j > tn) = 0 (1)

in which δ (·) is delta function which equals to 1 when the statement inside is true and 0
otherwise, tn is a threshold as the number of feature correspondences needed to set up a link
between two frames. tn = 8 is used in our experiments.

3.2 Virtual Points Insertion
After a “visual break” location i is detected by the algorithm, n virtual points Xl = {xl

1 . . .x
l
n}

should be generated in the local 3D coordinates system of frame i. These virtual points can
be any structured (e.g. cubes) or unstructured points (i.e. random points) within the FOV
of camera. A set of cube-structured virtual points is used in our experiments, as shown in
Figure 2(a).

We want to insert virtual points to the location i and its neighboring frames so as to build
a virtual link to adapt the “visual break”. Here a set of neighboring frames φi are defined as

φi = {I j| | j− i| ≤ rd} (2)

in which I j is the frame index and rd is the neighboring frame radius usually set to 1 or
2. These virtual points are all within the FOV of camera at position i but not necessarily
within the neighboring frames of position i. Hence we need to select a subset of virtual
points Xs ⊆ Xl by selecting virtual points within the FOV of all neighboring frames. First,
we calculate the 3D coordinates xg

k of the virtual point k in global coordinates system

xg
k = P−1

i xl
k (3)

Then we can calculate the image location x2D
k of the virtual point k on neighbor frame j with

pose P j. A virtual point xg
k is selected if it projected at each neighboring frame within the

radius of rd . Each inserted virtual point forms an independent landmark point track with all
occurrences in the broken frame and its neighboring frames.

4 Virtual Frame Insertion
In real-world scenario, a common cause for a “visual break” is that two consecutive frames
do not share overlapping FOV due to rotating camera too fast i.e. angular velocities are



6 WU, ZHU, CHIU: VIRTUAL INSERTION: ROBUST BUNDLE ADJUSTMENT

C

Pi

C

Pi-1

C

Pi

Pvf
i,1

Pvf
i,2

Virtual Points
Non-overlapping

Break Point

(a) (b)

Figure 2: (a) Illustration of virtual points insertion. The red virtual points in the overlapping
field of view are selected. (b) Illustration of virtual frame insertion.

too high. In this case, no feature correspondences can be extracted from the two consecutive
frames. Hence, virtual frames need to be inserted to fill the gap before the insertion of virtual
points. Figure 2(b) shows the illustration of virtual frame insertion technique. We refer this
kind of “visual break” as non-overlapped “visual breaks" (NVB).

4.1 Non-overlapping “Visual Break” Detection

The way of detecting non-overlapping “visual breaks” is to find motions with large changes
in rotation angles. Let ∆Pi−1→i be the relative camera pose transformation from time (i−1)
to time i, which can be estimated by ∆Pi−1→i = Pi ·P−1

i−1. With ∆Pi−1→i obtained, rotation
matrix ∆Ri−1→i and translation vector ∆Ti−1→i can be extracted:[

∆Ri−1→i ∆Ti−1→i
0 1

]
= ∆Pi−1→i (4)

It is easier to calculate rotation angle with rotation vector ∆vi−1→i which can be obtained by
Rodrigues’ rotation transform: ∆vi−1→i = Rodrigues(∆Ri−1→i). Let ∆θi−1→i = ‖∆vi−1→i‖,
it is straightforward to consider location i to be a non-overlapped break frame if ∆θi−1→i > θt ,
where θt is a threshold depending on the FOV of the camera.

4.2 Virtual Frames Insertion

When ∆θi−1→i is large, i.e. the rotation angle between two consecutive frames is large, one
virtual frame may not be enough to fill the gap. So first we need to determine the number of
virtual frames to be inserted to location i, which we define as

Nv f
i =

∆θi−1→i

αθt
(5)

in which α ∈ (0,1] is a scale factor used to adjust the density of inserted virtual frames
(α = 1 is used in our experiments). Then we can obtain the incremental rotation matrix δRi
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and translation vector δTi by

δRi = Rodrigues
(

∆vi−1→i(N
v f
i )−1

)
(6)

δTi = δR−1
i ∆Ti−1→i (7)

The pose for the kth inserted virtual frame can be obtained by:

Pv f
i,k =

[
δRi δTi

0 1

]k

·Pi−1 (8)

After inserting the virtual frames, we can insert virtual points on every virtual frame created
and its neighboring frames. The algorithms of virtual points insertion and virtual frames
insertion are shown in Algorithm 1 and Algorithm 2 respectively.
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Since serious drifts exist in the initial estimation of
poses, errors may be induced by virtual insertion since they
are estimated based on initial poses. An iterative optimiza-
tion mechanism should be adopted to achieve better accu-
racy and robustness, which is shown in Figure 5. After each
iteration, average 2D projection error of all landmarks is
used to evaluate the output from the bundle adjustment. Iter-
ations continue until projection error is less than the pre-set
threshold. Each iteration starts with updated poses output
from previous iteration, and all the virtual frames and vir-
tual points will be re-calculated. landmarks is used to eval-
uate the output from the bundle adjustment. Iterations con-
tinue until projection error is less than the pre-set threshold.
Each iteration starts with updated poses output from previ-
ous iteration, and all the virtual frames and virtual points
will be re-calculated.

Algorithm 1: Virtual Points Insertion
Input: N : number of frames
{P1, ...,Pi, ...,PN}: pose at each frame
Output: New virtual point tracks
for i = 1 to N � 1 do

Set visual break flag bi =TRUE;
for j = i + 1 to N do

Match frame i with j;
if ci,j > tn then

bi =FALSE;
Break;

end
end

end
for every break location i do

Generate n virtual points Xl;
Xs=Xl;
for k = 1 to n do

for j = i � rd to i + rd do
Calculate image location x2D

k ;
if x2D

k is out of the image frames then
Remove xl

k from Xs;
end

end
end
if |Xs| = 0 then

Remove xl
k from Xs;

end
end

Since serious drifts exist in the initial estimation of
poses, errors may be induced by virtual insertion since they
are estimated based on initial poses. An iterative optimiza-
tion mechanism should be adopted to achieve better accu-
racy and robustness, which is shown in Figure 5. After each
iteration, average 2D projection error of all landmarks is
used to evaluate the output from the bundle adjustment. Iter-

ations continue until projection error is less than the pre-set
threshold. Each iteration starts with updated poses output
from previous iteration, and all the virtual frames and vir-
tual points will be re-calculated. landmarks is used to eval-
uate the output from the bundle adjustment. Iterations con-
tinue until projection error is less than the pre-set threshold.
Each iteration starts with updated poses output from previ-
ous iteration, and all the virtual frames and virtual points
will be re-calculated. landmarks is used to evaluate the out-
put from the bundle adjustment. Iterations continue until
projection error is less than the pre-set threshold. Each it-
eration starts with updated poses output from previous iter-
ation, and all the virtual frames and virtual points will be
re-calculated. landmarks is used to evaluate the output from
the bundle adjustment. Iterations continue until projection
error is less than the pre-set threshold.

Algorithm 2: Virtual Frame Insertion
Input: N : Number of frames
{P1, ...,Pi, ...,PN}: Pose at each frame
Output: Updated poses and point tracks
for i = 2 to N do

Calculate �Pi�1!i;
Extract �Ri�1!i and find �✓i�1!i;
if �✓i�1!i > ✓n then

mark i as a non-overlapping “visual break”;
Find Nvf

i ;
for k = 1 to Nvf

i do
Calculate Pvf

i,k;
Insert virtual points to the virtual frames and
their neighboring frames;

end
end

end

4

4.3 Iterative Optimization

Since serious drifts exist in the initial estimation of poses, errors may be induced by virtual
insertion since they are estimated based on initial poses. An iterative optimization mech-
anism should be adopted to achieve better accuracy and robustness. After each iteration,
average 2D projection error of all landmarks is calculated. Iterations continue until projec-
tion error is less than the pre-set threshold. Each iteration starts with updated poses output
from previous iteration, and all the virtual frames and virtual points will be re-calculated.
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(a1)                                               (a2) 

     

(a) (b)

Figure 3: (a) Two different helmet-based sensor rigs used in the experiment. (b) A typical
example of “visual break” in sequence 1. Only few feature correspondences can be linked
for two neighboring images due to sudden illumination change and quick head movement.

5 Experiments

The proposed algorithm is evaluated on several datasets collected by two different multi-
sensor rig as shown in Figure 3(a). Both of them consist of a pair of stereo cameras and an
IMU. During the experiments, a person wearing the helmet walked and ran around inside
a large building with hallways and different rooms. Four typical real-world indoor navi-
gation sequences were collected, and each sequence has numbers of “visual breaks” and
non-overlapping “visual breaks”. A typical example of a “visual break” is shown in Fig-
ure 3(b), in which few correspondences can be linked from the images caused by sudden
illumination change. Table 1 summarizes the number of “visual breaks” for each sequence.

To demonstrate the effectiveness on drift removal of bundle adjustment, all the sequences
are collected purposely to contain loop closures at the end. The performance of the proposed
algorithm is evaluated by two criteria. First, 3D reconstruction consistency over the whole
trajectory is evaluated by 3D reconstructions of a set of selected landmarks in the scene
observed at difference locations along the trajectory. The coordinates of each landmark
observed at different locations should be very similar. Therefore the difference of the 3D
coordinates of the same landmark observed at various locations with different time stamps
reflects the consistency of 3D reconstruction accuracy. For each sequence, around 100 scene
landmarks along the trajectory are selected for the evaluation. The other criteria is loop
closure distance at the end, which is used to evaluate the drift removal performance of bundle
adjustment.

A multi-core bundle adjustment implementation [15] is adopted in all the experiments.
In addition, the basic Visual Odometry algorithm is implemented with the extended Kalman
filtering fusing technique [14] that will fuse both camera poses and the IMU measurements
for optimal camera pose estimation.

For each sequence, the performance of visual odometry system (VISODO), bundle ad-
justment (BA) and bundle adjustment with the proposed visual insertion technique (VP-BA)
is demonstrated. Table 1 summarizes quantitative results of output from all three methods.
Note that the output of VISODO is the output of Kalman filter fusing the motion estimates
of IMU and Visual Odometry, so it is always continuous even if “visual breaks” exist. For
each location containing “visual breaks”, VP-BA generates 60 virtual point candidates.

Sequence 1 is the most challenging sequence. There are 15 “visual breaks” and 5 non-
overlapping “visual breaks”, and the VISODO output drifted 2.4m at the end. Due to the
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Figure 4: Estimated 3D trajectories of (a)(c) sequence 1, and (b)(d) sequence 4.

Table 1: Summary of number of “visual breaks” for experiment sequences and summarized
quantitative results of the consistency of 3D reconstruction accuracy and loop closure drift
(LCD). (NVB denotes non-overlapped “visual breaks”).

Seq Key Visual NVB Method LCD Consistency Error (m)
# Frames Breaks (m) Max Min Mean

VISODO 2.3722 2.2345 0.9811 1.5284
1 1629 15 5 BA 0.5615 1.3235 0.0787 0.7985

VP-BA 0.0512 0.1271 0.0334 0.0772
VISODO 1.7873 0.9491 0.3495 0.6181

2 833 5 0 BA 1.1461 0.0984 0.0336 0.0649
VP-BA 1.1227 0.0602 0.0104 0.0396

VISODO 0.8679 0.5935 0.2102 0.4272
3 1388 8 1 BA 0.6317 0.4505 0.0174 0.1942

VP-BA 0.5283 0.1367 0.0061 0.0828
VISODO 3.8265 3.9768 0.9070 2.6742

4 1392 12 2 BA 0.3915 1.5386 0.5809 0.9729
VP-BA 0.0370 0.1426 0.0284 0.0849

existence of “visual breaks”, the BA failed in general. Large jumps up to 3m and barely
corrected drifts observed from the BA estimated trajectory as shown in Figure 4. How-
ever the VP-BA obtained a good performance as shown in Figure 4(a)(c), and jumps have
been eliminated completely with proposed virtual insertion technique. Table 1 shows signif-
icant improvements of VP-BA over BA. Mean 3D reconstruction consistency error has been
reduced from 0.7985m to 0.0772m, and loop closure drift has been greatly reduced from
0.5615m to 0.0512m without any jumps. Both mean 3D reconstruction consistency error
and loop closure drift correction of VP-BA have ten fold improvement compared to BA.

The sequence 2 and sequence 3 are relatively easier, and the drift at the end of VISODO
output is around 1m. The estimated 3D trajectories by three methods are shown in Figure 5(a)
and Figure 5(b-d) respectively. Similarly we can observe that VP-BA eliminated all jumps
and improved bundle adjustment performance. Table 1 summarizes that the mean error of
3D reconstruction consistency of the whole trajectory has been reduced from 0.0649m to
0.0396m for sequence 2, and reduced from 0.1942m to 0.0828m for sequence 3.

Sequence 4 is another challenging one. The VISODO output drifted 3.8m at the end as
shown in Figure 4(b)(d). Besides large jumps in the segments containing “visual breaks”,
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Figure 5: Estimated 3D trajectories of (a) sequence 2, and (b) sequence 3.

the BA even failed to close the loop at the end of trajectory. However, as shown in Fig-
ure 4(b)(d), VP-BA eliminated all the large jumps and closed the loop. Table 1 shows the
mean consistency error of 3D reconstruction accuracy over the whole trajectory estimated by
VP-BA is 0.0849m compared to 0.9729m for BA, and VP-BA also has ten fold improvement
on loop closure drift reduction compared to BA, demonstrating that bundle adjustment with
visual insertion technique is able to correct the drift and achieve consistent global accuracy
over the sequence containing “visual breaks” and large drifts.

Note that in our experiments, adding virtual insertion does not increase computation
time noticeably in bundle adjustment since only a few locations with "visual break" needs
insertion. Hence the proposed scheme is inexpensive compared to other sensor fusion based
techniques and suitable for real-time SfM applications.

In summary, we can see that, as expected, the performance of VP-BA, in terms of the ac-
curacy and the global consistency, is improved dramatically over the traditional multi-sensor-
based Visual Odometry system and the traditional Bundle Adjustment over these challenging
real-life navigation datasets.

6 Conclusions
This paper addresses the issue of visual scene landmark outage caused by missing corre-
spondences (“visual breaks”) in bundle adjustment over long video sequences. We propose a
“Virtual Insertion” scheme to address this issue by filling the visual link outage in structure-
from-motion applications with the use of other non-vision sensors or motion assumptions. It
provides a novel approach to incorporate information from non-vision sensors or motion as-
sumptions, by constructing virtual points and virtual frames. These virtual points and frames
are used to bridge the gap due to “visual breaks” for bundle adjustment. As a result, it en-
ables the traditional bundle adjustment algorithms to achieve robust large-area structure from
motion over long video sequences. Future work includes analyzing and improving the virtual
linking strength and flexibility formed by virtual points and virtual frames, specifically the
optimal number and location of virtual points to be inserted to a location with “visual break”,
in order to connect the “break” properly without affecting the accuracy of the neighboring
locations in bundle adjustment.
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