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The goal of similarity retrieval is to retrieve images that are similar to query image. 

Good access methods for large image databases are very important for efficient retrieval. 
The 2D B-string-based and unique-ID-based signature methods can provide four kinds 
of similarity retrieval, object and type-i, where 0 ≤ i ≤ 2, and can distinguish 169 spatial 
relationships. However, 169 spatial relationships are still not sufficient to show all kinds 
of spatial relationships between any two objects in 2D space, such as directional rela-
tionships, like north. Moreover, most of the previous similarity retrieval methods, for the 
sake of simplicity, apply the MBRs of two objects to define the spatial relationship be-
tween them. The topological relationships, however, between objects can be quite dif-
ferent from the spatial relationship between their respective MBRs. Therefore, in this 
paper, we propose a new method that focuses on the above two problems. To solve the 
first problem, we add 9 directional relationships to the 169 spatial relationships. In this 
way, we can distinguish up to 289 spatial relationships in 2D space. To handle the second 
problem, we apply the concept of topological relationships in our proposed method. 
Based on the results of our simulation study, we show that our method can achieve a 
higher correct match rate than the 2D B-string-based and unique-ID-based signature 
methods can. 
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1. INTRODUCTION 
 

Recently, in the field of pattern recognition and image processing, much attention 
has been paid to the design of image database systems [2, 11, 25]. Applications which 
use image databases include office automation, computer aided design, robotics, and 
medical pictorial archiving. In general, an image database can be divided into a physical 
and a logical part. The logical part is used to describe the image features and the secon-
dary information in the original physical pictures. For example, in Fig. 1, the logical pic-
ture can be regarded as the abstract model of the corresponding physical picture. When 
the logical picture is searched, the corresponding physical picture can be retrieved.  

For the logical part of an image database, several methods have been introduced. An 
extended survey of them can be found in [29]. Most of these methods adopt content-based  
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(a) The physical picture.              (b) The logical picture. 

Fig. 1. An example of physical and logical parts. 

 
indexing [24]. Indexes by based on content are divided into several categories, such as 
textual, hot spot, color, texture, shape, sketch and the spatial relationships among the 
elements. For example, the QBIC system [15] supports queries based on image features 
such as color, shape, texture, and sketch; meanwhile, the Intelligent Image Database Sys-
tem (IIDS) [7] focuses on spatial relationships. 

Based on previous researches, the spatial relationships used in spatial similarity re-
trieval can be roughly classified into four types: (1) spatial relationships derived through 
symbolic projection, (2) directional relationships, (3) topological relationships, and (4) 
geometry-based spatial relationships [11, 13]. From the viewpoint of the projection along 
the x- and y-axes, each object can be viewed as being surrounded by a Minimum Bound-
ary Rectangle (MBR), as in the 2D string method [6]. Based on the symbolic projection 
(i.e., approach 1) of each object along one of the axes, as in Lee et al.’s 2D C-string 
method [20], there are up to 13 spatial relationships in 1D space. The MBR representation 
is a simple way to represent an object with any shape in an image, which is helpful and 
efficient for visualization and database browsing [17]. On the other hand, a new similar-
ity retrieval method employing a nine-direction lower-triangular (9DLT) matrix was pro-
posed in [4]. Based upon the variations of 2D strings or the 9DLT matrix, another data 
structure, consisting of a set of triples and used to represent the spatial relationship be-
tween each pair of objects in a picture, was proposed. For each triple, a hashing value is 
found and stored. Hence, the problem of image matching becomes that of matching hash-
ing value sequences [5, 30]. Moreover, in [30], in order to deal with the ambiguity of 
MBRs, a method was proposed that combines the topological and directional relation-
ships and uses them to introduce other spatial relationships which are hashed in a hashing 
table in order to answer spatial queries. Other methods were proposed in [9, 16, 18, 19, 
23, 27, 31]. 

When there are a large number of images in an image database and each image con-
tains many objects, the amount of processing time needed for image retrieval is huge. 
Actually, the objects or spatial relationships among objects can be treated as the attrib-
utes or keywords of a document. Thus, a signature can act as a searching filter to prune 
(i.e., filter out) most of the unqualified images. Only the records which match the signa-
ture need to be examined further for exact query matches. Therefore, to handle large 
numbers of image databases, several access methods [8, 10, 13, 21] have been proposed. 

In [21], based on the 2D B-string method, Lee et al. presented a signature method 
which contains 4 kinds of signatures for object and type-i similarity retrieval. Fig. 2 shows  
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(a) The original picture.          (b) Object similarity.         (c) Type-0 similarity.  

    
(d) Type-1 similarity.            (e) Type-2 similarity. 

Fig. 2. Types of similarity. 

 
some examples of different types of similarity. Compared with Fig. 2 (a), Fig. 2 (b) only 
contains the same objects, while Fig. 2 (c) contains the same objects and have the same 
spatial category (the disjoin category) between objects, which is referred to as type-0 
similarity. Moreover, compared with Fig. 2 (a), Fig. 2 (d) satisfies type-0 similarity and 
has the same orthogonal relations, which is referred to as type-1 similarity, while Fig. 2 (e) 
satisfies type-1 similarity and has the same spatial relationships in the x-axis and y-axis, 
which is referred to as type-2 similarity. (Note that the difference between Figs. 2 (d) and 
(e) is that the cat immediately follows, or meets, the duck in the x-axis in Fig. 2 (d), while 
it does not in Fig. 2 (e).) In [10], based on the unique-ID method, Chang et al. presented 
another signature method for object and type-i similarity retrieval. However, Chang et 
al.’s signature contains only type-2 information. Signatures for other kinds of type-i and 
object similarity retrieval are dynamically constructed based on type-2 signatures. 

In this paper, two important problems are addressed. One problem is that, although 
the 2D B-string-based [21] and unique-ID-based [10] signature methods can perform 
similarity retrieval with up to 169 spatial relationships, this is still not sufficient to pre-
sent all kinds of spatial relationships between any two objects. For example, directional 
relationships, like south, exists in 2D space and are difficult to deduce from those 13 spa-
tial operators. Therefore, we propose to consider both of the 9 directional relationships [4] 
(i.e., approach 2) and the 169 spatial relationships in 2D space. In this way, we can dis-
tinguish up to 289 spatial relationships in 2D space. Thus, we have the ability to repre-
sent spatial relationships in 2D space more completely. The other problem is that it is 
hard to correctly describe the spatial relationships of objects in terms of the relationships 
between their corresponding MBRs. To solve this problem, we apply the concept of 
topological relationships (i.e., approach 3) in our proposed method. In this way, we re-
vise the definitions of three kinds of type-i similarity defined in [22] and define six kinds 
similarity in order to make similarity retrieval more precise. From the results of our 
simulation study, we show that our method can achieve a higher correct match rate than 
the 2D B-string- based and unique-ID-based signature methods. 
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The rest of this paper is organized as follows. Section 2 can surveys previously pro-
posed representations for symbolic pictures. Section 3 presents the proposed signature 
method. Section 4 studies the performance of our proposed method. Finally, section 5 
draws conclusions. 

2. BACKGROUND 

In this section, first, we describe 169 spatial relationships [20], the 9DLT matrix [4], 
and the directional and topological relationships [30], which are the focus of our pro-
posed method. Next, we describe the structures of the 2D B-string-based signature [21] 
and the unique-ID-based signature [10].  
 
2.1 Spatial Relationships 
 

Table 1 shows formal definitions of the spatial operators defined in the 2D C-string 
representation [20]. Those operators and the inverse ones for the related operators repre-
sent the spatial relationships between objects in 1D space completely (based on the re-
lated positions of the begin bound and the end bound of two objects). Therefore, there are 
13 × 13 = 169 spatial relationships between two objects in 2D space, as shown in Fig. 3 
[9]. Some of them are enclosed in bold boxes and will be discussed in detail in section 3. 
(Note that spatial relationships among more than two objects can be represented as the 
union of the spatial relationships between any two of those objects.) 
 

Table 1. Definitions of spatial operators based on the 2D C-string representation. 

Notation Condition Meaning 

A < B end(A) < begin (B) A disjoins B 

A = B begin(A) = begin(B) 
end(A) = end(B) 

A is the same as B 

A | B end(A) = begin(B) A is edge to edge with B  

A % B begin(A) < begin(B) 
end(A) > end(B) 

A contains B and they do not have the same bound 

A [ B begin(A) = begin(B) 
end(A) > end(B) 

A contains B and they have the same begin bound 

A ] B begin(A) < begin(B)  
end(A) = end(B) 

A contains B and they have the same end bound 

A / B begin(A) < begin(B) 
< end(A) < end(B) 

A partly overlaps B 

 
For convenience, in [21], the authors divided the 169 spatial relationships into five 

types: disjoin, join, partial overlap, contain, and belong. These five types are called 
spatial category relationships and are defined as follows: (1) disjoin: A ∩ B = Ø; (2) join: 
A ∩ B = single point or line segment; (3) contain: A ∩ B = B; (4) belong: A ∩ B = A;  
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D: disjoin  J: join  P: partial overlap  C: contain  B: belong 

Fig. 3. 169 spatial relationships in 2D space. 

 
(5) partial overlap: A ∩ B = the area of partial A and partial B. The two objects A and B 
are enclosed by MBRs. The measure criterion for categorization is the area of intersection 
between A and B. 

The authors also considered the basic four orthogonal relationships, which are east, 
west, north and south [21]. For pictures with no overlapping objects, it is easy to describe 
the orthogonal relationship between objects A and B, because A and B can be regarded as 
points. But in the case of non-zero sized objects, the authors described the rules charac-
terizing the orthogonal relationships in the symbolic picture as follows: (1) A is to the 
east of B iff: end(A) > end(B) on the x-axis. (2) A is to the west of B iff: begin(A) < be-
gin(B) on the x-axis. (3) A is to the north of B iff: end(A) > end(B) on the y-axis. (4) A is 
to the south of B iff: begin(A) < begin(B) on the y-axis. 
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In [4], C. C. Chang presented 9 direction codes, as shown in Fig. 4 (a). The cen-
troids of two objects are used to obtain the directional relationship between them. For the 
symbolic picture shown in Fig. 4 (b), Fig. 4 (c) shows the corresponding 9DLT matrix. 

    

 D  
A  E 
 B C 

  

(a) 9 direction codes.     (b) A symbolic picture.    (c) The related 9DLT matrix. 

Fig. 4. The 9DLT representation. 

B

A
    

B

A

      

B

A

 
(a) The real picture.        (b) The related MBRs.    (c) The directional and topo-

logical relationships. 

Fig. 5. The MBR drawback. 

 
Zhou et al.’s method [30], instead of applying the concept of MBRs, combines the 

directional and topological relationships (i.e., approaches 2 and 3) into one representation. 
Topological relationships are relationships which are invariant under topological trans-
formation. Given two objects, Oi and Oj, their centroids and boundaries can be used to 
determine whether the topological relationship between them is disjoin, join, contain, 
belong, or partial overlap [12]. (Note that the spatial category relationships mentioned 
previously are different from the topological relationships, even though the same terms 
are used to describe their respective five types.) For example, in Fig. 5 (a), the topologi-
cal relationship between the objects is disjoin, while in Fig. 5 (b), the spatial category 
relationship between the objects of their respective MBRs is partial overlap. Zhou et al.’s 
method can avoid this drawback resulting from MBRs. With the directional and topo-
logical relationships combined, there are 41 types of spatial relationships in 2D space, as 
displayed in Fig. 6. Let us call this method the DT (Direction and Topology) method. 
Based on this classification of 41 spatial types, the objects shown in Fig. 5 (a) can be 
represented correctly as shown in Fig. 5 (c). 

However, there are some disadvantages in Zhou et al.’s method. One is that these 41 
spatial relationships cannot describe the spatial relationships between two objects as pre-
cisely as the 169 spatial relationships derived from the MBRs can, which may also cause  
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Fig. 6. 41 types of spatial relationships in 2D space. 

 
ambiguity. For example, the spatial relationships between the white and gray objects 
shown in Fig. 7 (a) are different; however, these four different spatial relationships are 
classified as the same type (type-ID 2) by Zhou et al.’s method, as shown in Fig. 7 (b). 
The other disadvantage is that we find one missing spatial relationship with Zhou et al.’s 
method. Take Fig. 8 for example. Because the two objects shown in Fig. 8 (a) have the 
same centroid, the spatial relationship between them is type-ID 0, as shown in Fig. 8 (b). 
In fact, the spatial relationship between these two objects should be the one shown in Fig. 
8 (c). However, this type of spatial relationship belonging to the partial overlap category 
does not exist in their proposed 41 spatial relationships.  
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< < | < / < ] <

Lee et al.'s
method

spatial
operator       

2

(b)

Zhou et al.'s
method

type-ID
 

(a) 4 different spatial relationships encountered with 
Lee et al.’s method. 

(b) One unique code (type-ID 2) 
with Zhou et al.’s method. 

Fig. 7. An ambiguous case encountered with Zhou et al.’s method.  
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(c)

Zhou et al.'s
method
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(a) The (%, %*) spatial rela-
tionship with Lee et al.’s 
method. 

(b) The type-ID 0 spatial rela-
tionship with Zhou et al.’s 
method. 

(c) An unknown type-ID (spa-
tial relationship) with Zhou 
et al.’s method. 

Fig. 8. The missing spatial relationship with Zhou et al.’s method. 

 
2.2 Signatures 
 

In [21], Lee et al. proposed the 2D B-string-based signature. Their approach uses 
superimposed coding and disjoint coding to speed up access. The integrated signature, as 
shown in Fig. 9, can handle retrieval by means of objects, binary spatial relationships and 
subpictures to distinguish different types of similarity. 

 
object type-0 type-1 type-2 

RSobj RS0 RS1 RS2 

Wobj bits W0 bits W1 bits W2 bits 

Fig. 9. The structure of the 2D B-string-based signature. 

 
In [10], Chang et al. defined a unique-ID-based signature consisting of RS1 and RS2, 

as shown in Fig. 10. RS1 contains RS1x (13-bit string) and RS1y, which represent the re-
cord signature flags from the viewpoint of the x- and y-axes, respectively. These two 
13-bit strings are used to indicate the existence or absence of these 13 spatial operators 
along the x- and y-axes, respectively. RS2 contains RS2x (13 bit strings) and RS2y. The i-th 
bit string among these 13 bit strings is used to record the union of the signatures of those 
pairs of objects which have the same i-th spatial operator. 
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RS1 RS2 
    

      

13-bit string 13-bit string 13 bit strings 13 bit strings 

RS1x RS1y RS2x RS2y 

Fig. 10. The structure of the unique-ID-based signature. 

3. THE PROPOSED METHOD 

From the above observations, we are motivated to find a way to integrate the ad-
vantages of Lee et al.’s [20] and Zhou et al.’s [30] methods (approaches 1, 2, and 3). That 
is, the 169 spatial relationships, the directional relationships and the topological rela-
tionships are all considered in our method. We carefully classify each of the 169 spatial 
relationships into 9 groups, based on 9 directional relationships. (Note that the topologi-
cal relationships between objects are recorded directly in our signature by using a num-
ber.) However, some of the 169 spatial relationships enclosed in bold boxes in Fig. 3 are 
difficult to classify. 

In this section, we first present the definitions of the extended type-i similarities. 
Next, we define four new spatial strings. Then, we describe how the record signature is 
constructed. Finally, we present algorithms for object and type-i similarity retrieval. 
 
3.1 The Extended Type-i Similarities 
 

According to the definition of orthogonal relationships introduced in [21], a situa-
tion where A is both to the east of B and to the west of B (as shown in Fig. 11, for exam-
ple) may occur. This situation, however, is not logical to human beings. Thus, similar to 
the DT method [30], we revise the definition of orthogonal relationships (denoted by 
newO) based on the centroid of the iconic objects as follows: (1) A is to the east of B iff: 
centroid(A) > centroid(B) on the x-axis. (2) A is to the west of B iff: centroid(A) < cen-
troid(B) on the x-axis. (3) A is to the north of B iff: centroid(A) > centroid(B) on the 
y-axis. (4) A is to the south of B iff: centroid(A) < centroid(B) on the y-axis. 

B

A

 
Fig. 11. An example of an orthogonal relationship. 
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From the above discussion, we can extend and revise the existing similarity of types 
0, 1, and 2, which were introduced in [21], to obtain types 0, 1′, 1.5, 2′, 2.5, and 3 as fol-
lows. 
 
Definition 1  Picture f ′  is a type-i similar picture of f, if 
1. all objects in f ′ are also in f,  
2. for any two objects A and B, 

A CAB B, A newOAB B, A 9DAB B, A RAB B, and A TAB B in f 
A CA′B B, A newOA′B B, A 9DA′B B, A RA′B B, and A TA′B B in f ′, then 

type-0: CA′B = CAB; 
type-1′: (type-0) and (newOA′B = newOAB); 
type-1.5: (type-1′) and (9DA′B = 9DAB); 
type-2′: (type-1′) and (RA′B = RAB ); 
type-2.5: (type-1.5) and (type-2′); 
type-3: (type-2.5) and (TA′B = TAB). 

 
In the above definition, we have used the following notations: (1) CAB denotes one 

of the 5 spatial category relationships between A and B; (2) newOAB denotes one of the 
revised 4 orthogonal relationships between the centroid of A and the centroid of B; (3) 
9DAB denotes one of the 9 direction codes between the centroid of A and the centroid of B; 
(4) RAB denotes one of the 169 spatial relationships in 2D space between A and B; (5) TAB 
denotes one of the 5 topological relationships between A and B. For example, in Fig. 12, 
f0, f1′, f1.5, f2′, f2.5, and f3 are type-0, 1′, 1.5, 2′, 2.5, and 3 similarity, respectively. Fig. 13 
shows the hierarchy of the definition of extended type-i similarity. 

A

B

D
C

 

A

B

D
C

 

B

A

D
C

 

B

A

C

D

 
f                  MBR                  f0                  f1′ 

B

A

C

D

 

B
A

C
D

 

B
A

C D

 

B

C

A

D

 
f1.5                  f2′                  f2.5                  f3 

Fig. 12. Similarities. 

 
There is a division at the type-1′ similarity. We can explain this situation by using 

Figs. 14 and 15. In Fig. 14, since object A in both pictures is to the northeast of object 
B, picture P exhibits type-1.5 similarity with picture Q. However, the spatial relation-
ship between objects A and B in picture P is “/* <*”, while that in picture Q is “|* <*”.  
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type-1'
(newO'AB = newOAB)

type-1.5
(9D'AB = 9DAB)

type-2'
(R'AB =RAB)

type-3
(T'AB = TAB)

type-2.5
(R*'AB = R*

AB)

type-0
(C'AB = CAB)

type-1
(O'AB = OAB)

type-2
(R'AB =RAB)

 type-0 
(CA′B = CAB) 

type-1 
(OA′B = OAB) 

type-2 
(RA′B = RAB) 

type-1′ 
(newOA′B = newOAB) 

type-1.5 
(9DA′B = 9DAB) 

type-2′ 
(RA′B = RAB) 

type-3 
(TA′B = TAB) 

type-2.5 
(R*′AB = R*

AB) 

 
Fig. 13. The hierarchy of type-i similarity. 

B

A

    

B

A

 
(a) Picture P.                (b) Picture Q. 

Fig. 14. An example of two pictures with type-1.5 similarity. 

 
Therefore, picture P does not exhibit type-2′ similarity with picture Q. This indicates that 
pictures which exhibit type-1.5 similarity with each other may not have type-2′ similarity. 
In Fig. 15, object B in both pictures P′ and Q′ is to the west of object A. Moreover, the 
spatial relationship “/ %” between them in picture P′ is the same as that in picture Q′. 
Therefore, picture P′ has type-2′ similarity with picture Q′. However, object B in picture P′ 
is to the northwest of object A, while object B in picture Q′ is to the southwest of object A.  
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(a) Picture P′.               (b) Picture Q′. 

Fig. 15. An example of two pictures with type-2′ similarity. 

 
Therefore, Picture P′ does not exhibit type-1.5 similarity with picture Q′, which indicates 
that some pictures which match with type-2′ similarity may not match with type-1.5 
similarity. Note that although a set of pictures with type-1.5 similarity is not always a 
subset of pictures with type-2′ similarity and vice versa, we still put the position of 
type-2′ similarity lower than that of type-1.5 similarity in the hierarchical picture shown 
in Fig. 13. The reason is that pictures with type-1.5 similarity can only be distinguished 
based on 9 different spatial relationships, while pictures with type-2′ similarity can be 
classified based on 169 different spatial relationships. 

The branches join together at type-2.5 similarity. The reason is that, by combining 
the 9 directional relationships (type-1.5) with the 169 spatial relationships in 2D space 
(type-2′), we can obtain up to 289 spatial relationships in 2D space, which can represent 
all types of spatial relationships more completely than the 169 spatial relationships can. 
The symbol R* in Fig. 13 is used to represent one of the 289 spatial relationships. This 
relationship will be described later. 
 
3.2 Four New Spatial Strings 
 

To support the representation of extended type-i similarities, here, we introduce four 
new spatial strings: SCS, DCS, INS, and TRS. 
 
3.2.1 Spatial category strings (SCS) 
 

For the picture shown in Fig. 16, the corresponding spatial matrix S is shown below, 
where the spatial relationship between A and B along the x-axis (y-axis) is A /* B (A % B):  

                           

0 /

% 0 .
% % 0 %

% ] / 0

A B C D

A

B
S

C

D

∗ ∗ ∗

∗ ∗

 < <
 

< < =  
 
  
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 A

B

D
C

    

A

B

D
C

 
(a) The real picture.      (b) The corresponding MBR. 

Fig. 16. One example of picture f. 

 
We let Sid 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 represent spatial identifiers in 

order to denote the spatial operators <, <*, |, |*, /, /*, ], [, %, =, ] *, [*, and %*, respectively 
[9]. Then, the corresponding reduced spatial matrix (RSM) for the above spatial matrix S 
is as follows: 

                           

0 6 2 2

9 0 2 2
.

9 9 0 9

9 7 5 0

A B C D

A

B
RSM

C

D

 
 
 =
 
 
  

 

According to a given reduced spatial matrix, we can call the function CATE-
GORY(T[i, j], T[j, i]) [9] (as shown in Fig. 17) in order to construct the related spatial 
category matrix, C[i, j]. 
 
 

Function CATEGORY(SidA
x
,B, SidA

y
,B)  

1  if (SidA
x
,B > 4) and (SidA

y
,B > 4) then  

2    if (7 ≤ SidA
x
,B ≤ 10) and (7 ≤ SidA

y
,B ≤ 10) then 

3       return (2)  //* contain *// 
4    else if (10 ≤ SidA

x
,B ≤ 13) and (10 ≤ SidA

y
,B ≤ 13) then 

5          return (3)  //* belong *// 
6       else return 4  //* partial overlap *//  
7  else if (SidA

x
,B > 2) and (SidA

y
,B > 2) then 

8       return (1)  //* join *// 
9    else return (0)  //* disjoin *// 

Fig. 17. The category function. 

 
For the picture shown in Fig. 16, the corresponding spatial category matrix C is 

shown below, where 0 and 4 denote the join and partial overlap relationships, respec-
tively:  
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4
.

0 0

0 0 4

A B C D

A

B
C

C

D

− − − − 
 − − − =
 − −
 −  

 

Based on the spatial category matrix, a spatial category string SCS is defined as 
{OiOjcij | cij ∈ {0, 1, …, 4}}, where Oi and Oj are objects. Therefore, the corresponding 
SCS set for the spatial category matrix C is SCS = {AB4, AC0, AD0, BC0, BD0, CD4}. 
 
3.2.2 Nine direction code strings (DCS) 
 

According to the 9 direction codes, the corresponding 9DLT matrix for Fig. 16 is as 
follows: 

                        

5
.

4 4

6 6 8

A B C D

A

B
M

C

D

− − − − 
 − − − =
 − −
 −  

 

According to the 9DLT matrix M, a nine direction code string DCS is defined as 
{OiOjmij | mij ∈ {0, 1, …, 8}}. Then, the corresponding DCS set for Fig. 16 is DCS = 
{AB5, AC4, AD6, BC4, BD6, CD8}. 
 
3.2.3 Identification number strings (INS) 
 

Based on the definition given in [20], there are 169 spatial relationships in 2D space. 
However, if we add the information about directional relationships, then some spatial 
relationships among these 169 spatial relationships will be divided into several more 
kinds of spatial relationships. Take the spatial operator “%%” in Table 2 as an example. 
Up to 9 cases can occur for the same “%%” operator. 

Therefore, the 169 spatial relationships adopted in the 2D C-string method [20] are 
not sufficient to represent spatial relationships in 2D space. In this way, we can preserve 
these operators used in the 169 spatial relationships; in addition, we can integrate the 
spatial category relationships and directional relationships to obtain one representation to 
divide spatial relationships in 2D space. Take Fig. 18 as an example. There are 17 spatial 
relationships which belong to the partial overlap spatial category, along with direction 
code 2 (i.e., northwest). Note that the number of spatial relationships in each division 
varies. 

Therefore, since we take the 9 directions into consideration, the total number of spa-
tial relationships in our proposed method is 289 (= 64 + 56 + 36 + 35 + 98), as summa-
rized in Table 3. We carefully assign an identification number to each spatial relationship  
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Table 2. 27 cases in the contain category. 

% %

] %

[ %

% ]

% [

% =

= %

2D C Proposed 2D C Proposed

 

     

/* /]* /

[ /

/* [* /* ]

% /

/* %

%* /

/* %*
]* ]

[ [*

[ %*

% [*%* ]

]* %

%* % % %*  
(a) Partial overlap category 

and direction code 2. 
(b) 17 possible spatial relationships. 

Fig. 18. One example of integrating a spatial category and directional relationships. 

 
such that the same spatial operator with different direction codes is assigned the same 
identification number [28]. For example, the spatial operator “%%*” with different direc-
tion codes shown in Table 4 has the same identification number: 10. Based on this ar-
rangement, we can distinguish up to 289 spatial relationships, which include the original 
169 spatial relationships.  
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Table 3. The number of spatial relationships in the proposed method. 

 9 direction codes 

Category 0 1 2 3 4 5 6 7 8 

Disjoin (64) 0 3 13 3 13 3 13 3 13 
Join (56) 0 3 11 3 11 3 11 3 11 

Contain (36) 4 4 4 4 4 4 4 4 4 
Belong (35) 3 4 4 4 4 4 4 4 4 

Partial Overlap (98) 2 7 17 7 7 7 17 7 17 

 

Table 4. Identification numbers for the partial overlap spatial category. 

% %*

% /

/* /

/* %

/* /*

% /*

/ /*
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/ /
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Fig. 19. The structure of the proposed signature. 

Because the information about spatial category relationships and the 9 directional 
relationships are stored in SCS and DCS, respectively, we just further record the identifi-
cation number of the related spatial relationship between two objects. Therefore, we de-
fine the identification number string INS as {OiOjidij | idij ∈ {0, 1, …, 16}}. Conse-
quently, the corresponding INS set for Fig. 16 is INS = {AB8, AC7, AD7, BC7, BD9, 
CD2}. Therefore, based on the specific combination of SCS, DCS, and INS, we can dis-
criminate one of 289 spatial relationships between any two objects. 
 
3.2.4 Topological relationship strings (TRS) 
 

Basically, an m × m Topological Relationship Matrix TRM of picture f is similar to a 
Spatial Category Matrix C, except that the codes of the topology relationships are re-
corded instead of the codes of the spatial categories. For the picture shown in Fig. 16, the 
corresponding topological relationship matrix TRM is as follows: 

                            

0
.

0 0

0 0 0

A B C D

A

B
TRM

C

D

− − − − 
 − − − =
 − −
 −  

 

Then, a topological relationship string TRS is defined as {OiOjtij | tij ∈ {0, 1, …, 4}}. 
Therefore, the corresponding TRS set for the above topological relationship matrix TRM 
is TRS = {AB0, AC0, AD0, BD0, BD0, BC0}. 
 
3.3 Record Signature 
 

We will now define a Record Signature (RS). A RS consists of two parts, RS1 and 
RS2, as shown in Fig. 19. RS1 contains four segments, RS1SC, RS1DC, RS1ID, and RS1TR, 
which represent the record signature flags used to indicate the existence or absence of the 
numbers representing the meaning defined in each segment. Fig. 19 shows the number of 
bits used in each segment of RS1. RS2 consists of four segments: RS2SC, RS2DC, RS2ID, and 
RS2TR. The number of bit strings in each segment is also shown in Fig. 19. Table 5 shows 
each segment notation and the corresponding definition, and the algorithm for efficient 
data access of image databases is described below. 

 
RS1 

  
   

RS1SC RS1DC RS1ID RS1TR 
            

          
5 bits 9 bits 17 bits 5 bits 

(a) RS1. 
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RS2 
  

   

RS2SC RS1DC RS2ID RS2TR 
            

          
5 bit strings 9 bit strings 17 bit strings 5 bit strings 

(b) RS2. 

Fig. 19. (Cont’d) The structure of the proposed signature. 
 

Table 5. Notations and related definitions used in record signature segments. 

Notation Definition 

kr the weight (number of 1s) of the record signature 

br the length (number of bits) of the record signature 

θr the hash function of the record signature 

RSi the record signature for the ith picture 

RS1 the record signature flags 

RS2 the 36 bit strings of a record signature 

RS1TR the record signature flags from the viewpoint of the topological relationship 

RS1SC the record signature flags from the viewpoint of the spatial category 

RS1DC the record signature flags from the viewpoint of the 9 direction codes 

RS1ID the record signature flags from the viewpoint of the identification number 

RS2TR the 5 bit strings corresponding to the signature flag field RS1TR  

RS2SC the 5 bit strings corresponding to the signature flag field RS1SC 

RS2DC the 9 bit strings corresponding to the signature flag field RS1DC 

RS2ID the 17 bit strings corresponding to the signature flag field RS1ID 

RS1(j) the jth bit of RS1 

RS2(j) the jth bit string of RS2 

RSj
i the RSi for the jth picture 

QRS the query record signature 

 
Algorithm Record Signature 
Step 1: List all of SCS set, DCS set, INS set, and TRS set. 
Step 2: Design the function θr, according to the given kr and br, which maps each pair of 

symbols to a unique bit string. 
Step 3: Set all bits in RS to 0. 
Step 4: For each spatial category string ABi in SCS, we let the i-th bit of RS1SC be 1 and 

then perform RS2SC(i) = RS2SC(i) ∪ θr(AB). 
Step 5: For each nine direction code string ABi in DCS, we let the i-th bit of RS1DC be 1 

and then perform RS2DC(i) = RS2DC(i) ∪ θr(AB). 
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Step 6: For each identification number string ABi in INS, we let the i-th bit of RS1ID be 1 
and then perform RS2ID(i) = RS2ID(i) ∪ θr(AB). 

Step 7: For each topological relationship string ABi in TRS, we let the i-th bit of RS1TR be 
1 and then perform RS2TR(i) = RS2TR(i) ∪ θr(AB). 

Step 8: Compress RS2 by removing useless bit strings. If the i-th bit of RS1 is 0, then re-
move the corresponding bit-string RS2(i). 

 
To illustrate the algorithm, we will use the following example. For the figure shown 

in Fig. 20, first, we construct the spatial matrix and the reduced spatial matrix (RSM): 

                    

0 / %

| 0 | ,

% 0

A B C

A

S B

C

∗ 
 

=  
 < 

 

                        

0 6 9

3 0 3 .

1 9 0

A B C

A

RSM B

C

 
 =  
  

 

A

B

C

 
Fig. 20. An example 

 
Applying the algorithm, we can construct the Record Signature of the picture as fol-

lows. 
 
1. Generate SCS set, DCS set, TRS set, and TRS set. We have SCS = {AB1, AC0, BC1}, 

DCS = {AB6, AC7, BC2}, INS = {AB1, AC10, BC0}, and TRS = {AB0, AC0, BC0}. 
2. Design the function θr (where br = 5 and kr = 2), which maps each pair of symbols to a 

unique bit string. For example, we can have θr(AB) = 10001, θr(AC) = 10100, and 
θr(BC) = 01100. 

3. Set all bits in RS to 0. 
4. If ABi ∈ SCS, then we let the i-th bit of RS1SC be 1 and then perform RS2SC(i) = RS2SC(i) 

∪ θr(AB). 
RS1SC = 11000. 
RS2SC(1) = RS2SC(1) ∪ θr(AB) ∪ θr(BC) = 11101. 
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RS2SC(0) = RS2SC(0) ∪ θr(AC) = 10100. 
5. Repeat step 4 by replacing SCS with DCS. We have:  

RS1DC = 001000110. 
RS2DC(6) = RS2DC(6) ∪ θr(AB) = 10001. 
RS2DC(7) = RS2DC(7) ∪ θr(AC) = 10100. 
RS2DC(2) = RS2DC(2) ∪ θr(BC) = 01100. 

6. Repeat step 4 by replacing SCS with INS. We have: 
RS1ID = 11000000001000000. 
RS2ID(1) = RS2ID(1) ∪ θr(AB) = 10001. 
RS2ID(10) = RS2ID(10) ∪ θr(AC) = 10100. 
RS2ID(0) = RS2ID(0) ∪ θr(BC) = 01100. 

7. Repeat step 4 by replacing SCS with TRS. We have: 
RS1TR = 10000.  
RS2TR(0) = RS2TR(0) ∪ θr(AB) ∪ θr(AC) ∪ θr(BC) = 11101. 

8. Compress RS2 by removing useless bit strings. If the i-th bit of RS1 is 0, then remove 
RS2(i). 
RS = 11000 001000110 11000000001000000 10000 

10100 11101 01100 10001 10100 01100 10001 10100 11101. 
 

After the record signature RS and the query signature QRS are constructed, we then 
can use the condition RS ∩ QRS ≠ QRS to decide whether RS should be removed from 
consideration. 
 
3.4 Object and Type-i Similarity Retrieval 
 

We will use our proposed structure of a signature discussed in the previous section 
to illustrate the process of object and type-i similarity retrieval in the following subsec-
tions. 
 
3.4.1 Query of object similarity 
 

To simplify our algorithm, we convert each signature back into its completed form, 
instead of the reduced form. Given a record signature, we will now present an algorithm 
for converting such a record signature into the related object record signature. 
 
Algorithm Object  
(Convert a Record Signature into an Object Record Signature) 
Step 1: Set every bit in ORS to 0. 
Step 2: for i = 0 to 4 do  

if RS1TR(i) = 1 then ORS = ORS ∪ RS2TR(i). 
 

To illustrate the algorithm, we will use the following example. Suppose there are 8 
pictures in the database, as shown in Fig. 21. Let the hash function θr have br = 5 and kr = 
2. For example, we can have θr(AB) = 10001, θr(AC) = 10100, θr(BC) = 00101, θr(AD) = 
10010, θr(BD) = 00011, and θr(CD) = 00110. 
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P1                      P3                      P3 
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P4                      P5                      P6 
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B

C

  

A

B
C

  

A

B

C

 
P7                      P8                      q1 

Fig. 21. An image database (P1, P2, P3, P4, P5, P6, P7, P8) and a query picture (q1). 

 
In this case, for example, the corresponding record signature for picture P6 is:  

 
RS6 =11001 001000100 01100010000000000 11001  

10100 10001 00101 00101 10101 10001 10100 00101 10100 10001 00101. 
 

Next, we will show how the record signatures can be converted into object record 
signatures. Take picture P6 as an example: 
 

ORS6 = 10100 ∪ 10001 ∪ 00101 = 10101. 
 

Thus, the object record signatures for pictures P1 through P8 are: 
 

ORS1 = 10011, ORS2 = 10101, ORS3 = 10101, ORS4 = 10101, 
ORS5 = 10101, ORS6 = 10101, ORS7 = 10101, ORS8 = 10101. 

 
Given a query picture q1, as shown in Fig. 21, the corresponding record signature is:  

 
QRS =11001 000000101 01100010000000000 11000  

10100 10001 00101 10101 00101 10001 10100 00101 10101 10001. 
 

The corresponding object query signature is QORS = 10101. 
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Next, since QORS ∩ ORS1 ≠ QORS and QORS ∩ ORSi = QORS, 2 ≤ i ≤ 8, we con-
clude that pictures P2 through P8 may have the same objects as the query picture q1, 
while picture P1 may have some objects that are different from those in query picture q1. 
(Note that, in fact, in the above Algorithm Object, we can replace RS1TR(i) (RS2TR(i)) with 
any of other three fields, as shown in Fig. 19.) 
 
3.4.2 Query of type-0 similarity 
 

The spatial category field (RS1SR and RS2SR) of the record signature contains infor-
mation about the spatial category relationship between any two objects in the picture. 
Since the record signature has complete information about type-0 similarity (i.e., RS1SR 
and RS2SR), we only have to compare the related bit-strings to find possible answers. In 
the following, we will take the pictures and query shown in Fig. 21 as an example. 
 
1. We have 1

1
SRRS  ∩ QRS1SR = QRS1SR, 1

2
SRRS  ∩ QRS1SR ≠ QRS1SR, 1SR

iRS  ∩ QRS1SR = 
QRS1SR, 3 ≤ i ≤ 8. Picture P2 need not to be checked further. 

2. Next, we have 2
1

SRRS  ∩ QRS2SR ≠ QRS2SR and 2
3

SRRS  ∩ QRS2SR = QRS2SR, and the 
remaining pictures have the same result as picture P3. We conclude that pictures P3 
through P8 may have type-0 similarity with query picture q1, while pictures P1 and P2 
do not have type-0 similarity with query picture q1. 

 
3.4.3 Query of type-1′ similarity 
 

Fig. 22 shows the structure of the type-1′ record signature NSWE. Given a record 
signature, we will now present an algorithm for converting such a record signature into 
the related type-1′ record signature. 

 
NSWE1 NSWE2 

N S W E N S W E 
      
    

4 bits 4 bit strings 

N: North;  S: South;  W: West;  E: East 

Fig. 22. Type-1′ signature NSWE. 

 
Algorithm Type-1′ 
(Convert a Record Signature into a Type-1′ Record Signature) 
Step 1: Set every bit in NSWE to 0. 
Step 2: For i ∈ {1, 2, 8} do                                         /* North*/ 

if RS1DC(i) is 1, set NSWE1(0) to 1, and let NSWE2(0) = NSWE2(0) ∪ RS2DC(i). 
Step 3: For i ∈ {4, 5, 6} do                                         /* South*/ 

if RS1DC(i) is 1, set NSWE1(1) to 1, and let NSWE2(1) = NSWE2(1) ∪ RS2DC(i). 
Step 4: For i ∈ {2, 3, 4} do                                         /* West*/ 
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if RS1DC(i) is 1, set NSWE1(2) to 1, and let NSWE2(2) = NSWE2(2) ∪ RS2DC(i). 
Step 5: For i ∈ {6, 7, 8} do                                          /* East*/ 

if RS1DC(i) is 1, set NSWE1(3) to 1, and let NSWE2(3) = NSWE2(3) ∪ RS2DC(i). 
 

For the 8 pictures from P1 through P8, as shown in Fig. 21, only pictures P3 through 
P8 have type-0 similarity; therefore, we only have to check whether pictures P3 through 
P8 have type-1′ similarity with query picture q1. We can now convert the record signa-
tures of pictures P3 through P8 into the corresponding type-1′ signatures. Take picture P3 
as an example: 

1 1 1
3 3 3

2 2 2
3 3 3

1 1
3 3

2 2 2
3 3 3

(0) (1) (3) 0,

(0) (1) (3) 00000,

(2) (3) 1,

(2) (3) (2) 10101.

DC

DC

NSWE NSWE NSWE

NSWE NSWE NSWE

NSWE RS

NSWE RS NSWE

= = =

= = =

= =

= ∪ =

 

Thus, NSWE3 = 0010 00000 00000 10101 00000. 
In the same way, the resulting type-1 record signatures for pictures P4 through P7 

are as follows:  
 

NSWE4 = 1111 10101 10001 00101 10101, 
NSWE5 = NSWE7 = NSWE8 = 1101 00101 10101 00000 10101, 
NSWE6 = 1111 00101 10101 00101 10101. 

 
Given query picture q1 shown in Fig. 21, the corresponding type-1′ query signature 

is QNSWE = 1101 00101 10101 00000 10101. 
Next, in Fig. 23, we show the algorithm for type-1′ similarity retrieval based on the 

type-1′ record signature, NSWE. 
Therefore, according to the algorithm shown in Fig. 23, we can conclude that pic-

tures P4 through P8 may have type-1′ similarity with query picture q1. However, picture 
P3 does not have type-1′ similarity with query picture q1. 
 
3.4.4 Query of type-1.5 similarity 
 

The direction code field of the record signature (RS1DC and RS2DC) has all the infor-
mation needed to find out if two objects have the same directional relationship. Taking 
advantage of this feature, we can answer a type-1.5 similarity retrieval query directly. 

In Fig. 21, only pictures P4 through P8 have type-1′ similarity; therefore, we only 
need to find out which picture from P4 through P8 has type-1.5 similarity. The steps per-
formed to check for type-1.5 similarity are described as follows. 
 
1. We have 1 1 1

6
DC DC DCRS QRS QRS∩ ≠  and 1 1 1 ,DC DC DC

jRS QRS QRS∩ =  j ∈ {4, 5, 7, 
8}. Then, picture P6 does not have type-1.5 similarity with query picture q1. Pictures 
P4, P5, P7, and P8 need to be checked further. 
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01  If NSWE1 ∩ QNSWE1 = 0000 Then 
02    Return (“the picture is not matched.”); 
03  For i := 0 to 3 do  
04  Begin 
05    j := (i + 1) mod 4; k := (j + 1) mod 4; 
06    flag1 := 0; flag2 := 0; flag3 := 0; 
07    If NSWE1(i) ∩ QNSWE1(i) = 1 Then 
08      If NSWE2(i) ∩ QNSWE2(i) = $ Then flag1 := 1; 
09    Else flag1 := 2; 
10    If NSWE1(j) ∩ QNSWE1(j) = 1 Then 
11      If NSWE2(j) ∩ QNSWE2(j) = $ Then flag2 := 1; 
12    Else flag2 := 2; 
13    If NSWE1(k) ∩ QNSWE1(k) = 1 Then 
14      If NSWE2(k) ∩ QNSWE2(k) = $ Then flag3 := 1; 
15    Else flag3 := 2; 
16    flag := flag1 * flag2 * flag3; 
17    If (flag ≠ 0 And flag ≠ 8) Then Return (“the picture is not matched.”); 
18  End; 
19  Return (“two signatures have type-1′ similarity.”); 
+ The symbol $ means that the intersection of two bit strings is not the union of some θr.  

Fig. 23. Algorithm for type-1′ similarity retrieval. 

 
2. Next, we have 2 2 2

4 .DC DC DCRS QRS QRS∩ ≠  Picture P4 does not have type-1.5 simi-
larity with query picture q1. 

2 2 2 ,DC DC DC
jRS QRS QRS∩ =  j ∈ {5, 7, 8}. So pictures 

P5, P7, and P8 may have type-1.5 similarity with query picture q1. 
 
3.4.5 Query of type-2′ similarity 
 

Before checking for type-2′ similarity, we must check for type-1′ similarity. In sub-
section 3.4.4, we found that pictures P4 through P8 had type-1′ similarity with query pic-
ture q1. To find out whether two objects have type-2′ similarity or not, we need informa-
tion about the 169 spatial relationships between them. The identification number field of 
the record signature (RS1ID and RS2ID) provides with what we need. The steps performed 
to find out which picture has of type-2′ similarity with query picture q1 are as follows. 
 
1. Since 1 1 1 ,ID ID ID

iRS QRS QRS∩ ≠  i ∈ {4, 5}, pictures P4 and P5 do not match and 
need not be checked further.  

2. Next, since 2 2 2 ,ID ID ID
jRS QRS QRS∩ =  j ∈ {6, 7, 8}, pictures P6, P7, and P8 may 

have type-2′ similarity with query picture q1. 
 
3.4.6 Query of type-2.5 similarity 
 

Suppose the set S1.5 contains the pictures which have type-1.5 similarity with query 
picture q1 and that the set S2′ contains the pictures which have type-2′ similarity with 



SIGNATURE EXTRACTION METHOD FOR IMAGE SIMILARITY RETRIEVAL 

 

87 

 

query picture q1. Thus, we have S1.5 = {P5, P7, P8} and S2′ = {P6, P7, P8}. Based on the 
definition of type-2.5 similarity, the answer is the intersection of S1.5 and S2′. That is, pic-
tures P7 and P8 have type-2.5 similarity with query picture q1. 
 
3.4.7 Query of type-3 similarity 
 

Since pictures P7 and P8 have type-2.5 similarity with query picture q1, pictures P7 
and P8 are candidates for type-3 similarity checking. The topological relationship field of 
the record signature (RS1TR and RS2TR) can help us to perform type-3 similarity retrieval. 
The steps are described as follows. 
 
1. Since 1 1 1,iRS QRS QRS∩ =  i ∈ {7, 8}, pictures P7 and P8 need to be checked further.  
2. Next, we have 2 2 2

7 ,RS QRS QRS∩ ≠  2 2 2
8 .RS QRS QRS∩ =  Hence, picture P8 may 

be found to have type-3 similarity with query picture q1, but picture P7 may not. 

4. PERFORMANCE STUDY 

In this section, we compare the performance of the 2D B-string-based [21] and 
unique-ID-base [10] signature methods with that of our proposed method based on a 
simulation study. Moreover, we present the effect of applying block signature approach 
in our method. 
 
4.1 A Comparison with the 2D B-String-Based Signature Method 
 

In this experiments, we let the number of different kinds of objects appearing in the 
database be 60. For each object, the width and height were bounded between 1 and 
100,000 units. We prepared 2,000 pictures using in our proposed method and Lee et al.’s 
method in the database in advance. We considered the case with 15 different objects ran-
domly chosen, with uniform distribution in each picture. There were 100 query pictures, 
and each query picture contained 2 different objects. Thus, the maximum number of 
matching pictures was 100 × 2,000 = 200,000. The begin bound and end bound on the x- 
and y-coordinates of each object were randomly generated with uniform distribution. 
(Note that the data generated in our simulation study could be considered the result of a 
certain public database pre-processed using an image understanding technique which can 
identify and label objects [13]. The spatial relationship between any two objects can be 
derived from the coordinates of the objects.) 

Table 6 compares the correct match rates obtained with these two methods. Each 
rate was calculated based on the fractional number shown below it. The denominator is 
the number of potentially matching pictures as determined by Lee et al.’s or our method. 
The numerator is the number of pictures that actually match the object or have type-i 
similarity with the query pictures. From the denominator shown in Table 6, we observe 
that our method prunes off more unqualified pictures than Lee et al.’s method does. The 
numerator in our method for object similarity is the same as that in Lee et al.’s method, 
since both methods have the same definition of object similarity. The denominator in our 
method is smaller than that in Lee et al.’s method. Thus, our method has a higher correct  
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Table 6. A comparison of the correct match rates obtained with the 2D B-string-based 
method and our proposed signature method. 

 object type-0 type-1* type-2* 

2D B-based 
12.10% 

(11,858/98,017)+ 
8.87% 

(5,403/60,902) 
3.74% 

(465/12,430) 
3.82% 

(298/7,810) 

Proposed 
80.86% 

(11,858/14,665) 
40.37% 

(5,403/13,383) 
30.27% 

(4,045/13,363) 
5.41% 

(300/5,548) 
+ (C/S): C is the number of correctly matched pictures, S is the number of pictures passed by 

the signature. 

Table 7. Correct match rates for type-1.5, type-2.5, and type-3 similarity retrieval ob-
tained with on the proposed method. 

type-1.5 type-2.5 type-3 

12% 
(1,334/11,120) 

4.54% 
(213/4,687) 

3.33% 
(148/4,438) 

 
match rate than Lee et al.’s method does for object similarity. Next, because we revised 
the definition of type-1 similarity used in Lee et al.’s method as type-1′ similarity, the 
numerator for type-1 similarity is different from that for type-1′ similarity. The numerator 
in Lee et al.’s method is smaller than that in our method, which implies that the defini-
tion of type-1 similarity is more restrictive than that of type-1′ similarity. (Note that the 
correct match rate could be affected by the number of objects in the database and in each 
picture, and also could be further improved by choosing a suitable size for a signature 
and for the hash function, which has been studied in [3].) 

From Table 7, we observe that our method distinguishes more different pictures than 
Lee et al.’s method does. For instance, the numbers of matching pictures for type-2.5 and 
type-3 similarity are 213 and 148, respectively. This shows that our method has the abil-
ity to perform precise similarity retrieval based on different criteria. 

Next, we will discuss the storage cost of these two methods. With Lee et al.’s 
method, we let the length of the object signature be 15; we also let the total length of the 
type-0 signature be 50 × 5 (with 50 bits for each category), that of the type-1 signature be 
250 × 5, and that of the type-2 signature be 250 × 2, resulting in a total of 2015 bits for a 
record signature for a picture. With our method, we let the length of a bit string be 55, 
resulting in a total of 2,016 bits (i.e., 36 bits for RS1 and 36 × 55 bits for RS2) for a record 
signature with a picture. Thus, the size of the signature in these two methods was almost 
the same. 

Table 8 shows the storage cost of these two methods, where “Min.”, “Avg.”, and 
“Max.” stand for the minimum, average, and maximum storage cost one picture, respec-
tively. Note that with our method, if RS1(i) = 0, then RS2(i) can be removed. Thus, 2016 
bits is the upper bound for our method. We also observe that the average size of the re-
duced form of our record signature is smaller than 2016 bits. Moreover, our method re-
quires less storage than Lee et al.’s method does, as shown in Table 8. 
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Table 8. A comparison of the storage cost. 

 Min. Avg. Max. 

2D-B based 2,015 2,015 2,015 

Proposed 1,411 1,523 1,631 

 
If we divide the directional relationships into more than 9 cases, for example, one 

for each degree in a circle, then we can achieve more precise similarity retrieval. How-
ever, the storage cost of signatures will be huge. In this paper, we will show that taking 9 
directional relationships into consideration is acceptable both for the degree of similarity 
retrieval and the storage cost. 
 
4.2 A Comparison with the Unique-ID-Based Signature Method 
 

In this experiment, there were 20 different objects and 2,000 pictures in the database. 
We considered the case in which each picture contains 5 different objects. There were 
100 query pictures, and each query picture contained 2 different objects. We let each 
length of RS2x and RS2y bit strings be 100. Thus, the length of the unique-ID-based sig-
nature was (13 + 13) + (13 + 13) * 100 = 2,626. We let the bit-string length for our 
method be 72. Then, the length of our signature was 2,628. (Note that in [10], the authors 
showed that the unique-ID-based signature method outperformed the 2D B-string-based 
signature method.) A comparison of the correct match rate obtained with the 
unique-ID-based method and our proposed method is shown in Table 9. (Note that the 
unique-ID-based method cannot support type-1.5, 2.5, and 3 similarity retrieval.) In Ta-
ble 9, we show that our method achieves a higher correct match rate than the 
unique-ID-based method does. The correct match rate is affected by many parameters, so 
those for our method shown Tables 6 and 9 are different. As for the storage cost, with 
both methods, if RS1(i) = 0, then RS2(i) can be removed. 
 

Table 9. A comparison of correct match rates obtained with the unique-ID-based 
(UID-based) method and our proposed signature method. 

 object type-0 type-1* type-2* 

UID-based 
51.76% 

(10,549/20,382) 
42.51% 

(4,974/11,701) 
23.28% 

(1,383/5,941) 
20.98% 

(292/1,392) 

Proposed 
51.79% 

(10,549/20,370) 
65.01% 

(4,974/7,651) 
72.35% 

(3,774/5,216) 
49.48% 

(1,229/1,491) 

4.3 The Block Signature 
 

The above approach to data filtering for all of the methods is based on a type of 
storage organization based on sequential signatures, as in Quick Filter [26]. That is, 
given NR records, we have to compare signatures NR times sequentially. To reduce the 
number of comparisons with each record signature in an image database, we can use 
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block signature [8, 10], multi-level signature [13], or dynamic hashing [26] techniques to 
each methods. Here, we will present simulation results obtained by applying the block 
signature (BS) technique in our method. The algorithm for constructing BS is almost the 
same as that for constructing RS. The only difference between them is that we use an-
other hashing function, θb, according to the given kb (the number of 1’s in the block sig-
nature) and bb (the number of bits in the block signature) to get the block signatures of 
object blocks. Moreover, the size of the bits generated by the hashing function θb is usu-
ally larger than that used in a record signature such that we can increase the correct 
match rate of a block signature. 

We considered three cases with 5, 10, and 15 objects in each picture, respectively. 
There were 2,000 pictures and 2,000 record signatures in the database. Each block sig-
nature recorded the information of 10 pictures. Thus, we had 2,000/10 = 200 block sig-
natures and a total of 2,200 signatures in the database. From the simulation results shown 
in Table 10, we observe that the fewer the objects per picture, the smaller the percentage 
of signature comparisons needed, where the percentage of signature comparisons is equal 
to (the total number of compared block and record signatures)/(the total number of block 
and record signatures). This is because a smaller number of objects per picture implies a 
smaller number of bit 1’s in the block signature and, hence, a smaller number of com-
parisons. 
 

Table 10. Percentages of signature comparisons for different numbers of objects per 
picture. 

 object type-0 type-1′ type-1.5 type-2′ type-2.5 type-3 

5 objects 31.25% 24.58% 23.78% 12.25% 10.83% 9.80% 9.71% 

10 objects 47.40% 43.74% 43.68% 37.08% 23.45% 21.30% 20.80% 

15 objects 67.37% 64.09% 65.06% 60.50% 44.16% 41.75% 40.80% 

Table 11. Percentages of signature comparisons for different numbers of records per 
block. 

 object type-0 type-1′ type-1.5 type-2′ type-2.5 type-3 

5 records 30.54% 28.91% 28.86% 25.90% 21.00% 20.07% 19.84% 

10 records 47.40% 43.74% 43.68% 37.08% 23.54% 21.30% 20.80% 

15 records 77.46% 72.42% 72.36% 65.25% 41.03% 38.23% 37.10% 

 
We also considered three cases with a block signature recording the information of 5, 

10, and 20 records, respectively. Therefore, there were 400 (= 2,000/5), 200 (= 2,000/10), 
and 100 (= 2,000/20) block signatures in the database, respectively. The total number of 
signatures in the database for each case was 2,400, 2,200, and 2,100, respectively. There 
were 10 objects in each picture. From the simulation results shown in Table 11, we ob-
serve that the more records recorded in one block signature, the larger the percentage of 
signature comparisons needed. This is because a larger number of records recorded in 
one block signature implies a larger number of matched block signatures (QBS ∩ BS = 
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QBS) and, hence, a larger number of comparisons, where QBS is the query block signa-
ture. 

Basically, given NR records, a given number of records recorded in one block sig-
nature, denoted by NRperB, and a given rate of matched block signatures, denoted by 
MRB, the total number of comparisons of record and block signatures (TNC) is equal to  
 

(NR/NRperB) + MRB * (NR/NRperB) * NRperB =  
(NR/NRperB) * (1 + MRB * NRperB). 

 
Therefore, TNC will be affected by MRB and NRperB, given the same NR records. 

As shown in Table 12, the number of objects per picture will affect MRB, resulting in an 
additional effect on TNC. As shown in Table 13, the number of records per block, i.e., 
NRperB, will affect MRB and TNC, too. Moreover, the locality of objects in records (pic-
tures) and queries will also affect MRB. For example, given 1,000 records, 10 objects and 
a block signature containing the information of every 10 records, we can consider the 
case in which objects A and B are located in records 1 to 10 only, and most of the queries 
inquire the relationship between objects A and B. In such a case, MRB will also be re-
duced, resulting in a small value of TNC. In each of the above cases, as long as MRB is 
smaller than ((NRperB − 1)/NRperB), the method that applies block signatures always 
requires a smaller number of comparisons than the sequential signature method does. 
 

Table 12. Match rates of block signatures for different number of objects per picture. 

 object type-0 type-1′ type-1.5 type-2′ type-2.5 type-3 

5 objects 24.68% 17.04% 16.16% 6.78% 1.91% 0.78% 0.69% 

10 objects 42.13% 38.12% 38.05% 30.79% 15.80% 13.44% 12.88% 

15 objects 64.11% 61.59% 61.57% 56.56% 38.58% 35.93% 34.88% 

 

Table 13. Block signatures match rates for different numbers of records per block. 

 object type-0 type-1′ type-1.5 type-2′ type-2.5 type-3 

5 records 16.65% 14.69% 14.63% 11.08% 5.20% 4.08% 3.81% 

10 records 42.13% 38.12% 38.05% 30.79% 15.80% 13.44% 12.88% 

15 records 76.33% 71.04% 70.98% 63.15% 38.08% 35.14% 33.96% 

5. CONCLUSIONS 

In this paper, we have presented a new method which combines the advantages of 
the previous 2D C-string, 9DLT matrix, and DT methods for similarity retrieval from a 
large image database. We have extended the existing three types of type-i similarity to 
obtain up to six types to facilitate highly accurate similarity retrieval. After adding 9 di-
rections to 169 spatial relationships, we have found that up to 289 spatial relationships 
can be used to represent the spatial relationships in 2D space. This makes it possible to 
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distinguish some spatial relationships that can not be distinguished based on the 169 spa-
tial relationships adopted in the 2D C-string method. Moreover, in order to overcome the 
ambiguity resulting from enclosing symbolic objects with MBRs, we have adopted the 
concept of topological relationships. Based on the above extensions, we have proposed a 
new signature structure and algorithms for obtaining object and six type-i similarities. 
From our simulation results, we have shown that our proposed method achieves higher 
correct match rates than the 2D B-string-based and unique-ID-based signature methods 
do. Handling similarity retrieval in the case of images which may be rotated will be a 
subject of our future work. 

REFERENCES 

1. A. F. Abate, M. Nappi, G. Tortora, and M. Tucci, “IME: an image management envi-
ronment with content-based access,” Image and Vision Computing, Vol. 17, 1999, pp. 
967-980.  

2. I. Ahmad and W. I. Grosky, “Indexing and retrieval of images by spatial constraints,” 
Journal of Visual Communication and Image Representation, Vol. 14, 2003, pp. 
291-320.  

3. C. C. Chang and H. C. Wu, “A module-oriented signature extraction to retrieve sym-
bolic pictures,” Journal of Computer, Vol. 2, 1990, pp. 45-54.  

4. C. C. Chang, “Spatial match retrieval of symbolic pictures,” Journal of Information 
Science and Engineering, Vol. 7, 1991, pp. 405-422. 

5. C. C. Chang and C. F. Lee, “A spatial match retrieval mechanism for symbolic pic-
tures,” The Journal of Systems and Software, Vol. 44, 1998, pp. 73-83. 

6. S. K. Chang, Q. Y. Shi, and C. W. Yan, “Iconic indexing by 2D strings,” IEEE Trans-
action on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, 1987, pp. 
413-428. 

7. S. K. Chang, E. Jungert, and G. Tortora, Intelligent Image Database Systems, World 
Scientific Press, Singapore, 1996. 

8. Y. I. Chang and B. Y. Yang, “Efficient access methods for image databases,” Infor-
mation Processing Letters, Vol. 64, 1997, pp. 95-105. 

9. Y. I. Chang, H. Y. Ann, and W. H. Yeh, “A unique-id-based matrix strategy for effi-
cient iconic indexing of symbolic pictures,” Pattern Recognition, Vol. 33, 2000, pp. 
1263-1276. 

10. Y. I. Chang, H. Y. Ann, and W. H. Yeh, “An efficient signature file strategy for simi-
larity retrieval from large iconic image databases,” Journal of Visual Languages and 
Computing, Vol. 13, 2002, pp. 117-147. 

11. E. DiSciascio, M. Mongiello, F. M. Donini, and L. Allegretti, “Retrieval by spatial 
similarity: an algorithm and a comparative evaluation,” Pattern Recognition Letters, 
Vol. 25, 2004, pp. 1633-1645. 

12. M. J. Egenhofer, “Point-set topological spatial relations,” International Journal of 
Geographical Information Systems, Vol. 5, 1991, pp. 161-174. 

13. A. El-Kwae and M. R. Kabuka, “Efficient content-based indexing of large image 
databases,” ACM Transaction on Information Systems, Vol. 18, 2000, pp. 171-210. 

14. C. Faloutsos and S. Christodoulakis, “Description and performance analysis of sig-



SIGNATURE EXTRACTION METHOD FOR IMAGE SIMILARITY RETRIEVAL 

 

93 

 

nature file methods for office filing,” ACM Transactions on Office Information Sys-
tems, Vol. 5, 1987, pp. 237-257. 

15. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. 
Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Query by image and video 
content: the QBIC system,” IEEE Computer Maganize, Vol. 28, 1995, pp. 23-32. 

16. S. Guru and P. Nagabhushan, “Triangular spatial relationship: a new approach for 
spatial knowledge representation,” Pattern Recognition Letters, Vol. 22, 2001, pp. 
999-1006. 

17. P. W. Huang and C. H. Lee, “Image database design based on 9D-SPA representation 
for spatial relations,” IEEE Transactions on Knowledge and Data Engineering, Vol. 
16, 2004, pp. 1486-1496. 

18. J. S. Jin and R. Kurniawati, “Varying similarity metrics in visual information re-
trieval,” Pattern Recognition Letters, Vol. 22, 2001, pp. 583-592. 

19. J. T. Lee and H. P. Chiu, “2D Z-string: a new spatial knowledge representation for 
image databases,” Pattern Recognition Letters, Vol. 24, 2003, pp. 3015-3026. 

20. S. Y. Lee and F. J. Hsu, “2D C−string: a new spatial knowledge representation for 
image database systems,” Pattern Recognition, Vol. 23, 1990, pp. 1077-1087. 

21. S. Y. Lee, M. C. Yang, and J. W. Chen, “Signature file as a spatial filter for iconic 
image database,” Journal of Visual Languages and Computing, Vol. 3, 1992, pp. 
373-397. 

22. S. Y. Lee, M. C. Yang, and J. W. Chen, “2D B-string: a spatial knowledge represen-
tation for image database systems,” in Proceeding of 2nd International Computer 
Science Conference (ICSC ’92), 1992, pp. 609-615. 

23. D. C. Lou and T. L. Yin, “Spatial database with each picture self-contained multis-
cape and access control in a hierarchy,” The Journal of Systems and Software, Vol. 
56, 2001, pp. 153-163. 

24. P. Maresca, A. Guercio, T. Arndt, and G. Tortora, “Multimedia indexing with the 
SMART system,” Journal of Visual Languages and Computing, Vol. 11, 2000, pp. 
405-438. 

25. G. M. Petrakis, “Design and evaluation of spatial similarity approaches for image 
retrieval,” Image and Vision Computing, Vol. 20, 2002, pp. 59-76. 

26. F. Rabitti and P. Zezula, “A dynamic signature technique for multimedia databases,” 
in Proceeding of 13th Annual International ACM/SIGIR Conference on Research 
and Development in Information Retrieval, 1989, pp. 193-210. 

27. Y. H. Wang, “Image indexing and similarity retrieval based on spatial relationship 
model,” Information Sciences, Vol. 154, 2003, pp. 39-58. 

28. W. H. Yeh, “A hybrid approach-based signature extraction method for similarity re-
trieval,” Master Thesis, Department of Computer Science and Engineering, National 
Sun Yat-Sen University, 2001. 

29. A. Yoshitaka and T. Ichikawa, “A survey on content-based retrieval for multimedia 
databases,” IEEE Transaction on Knowledge and Data Engineering, Vol. 11, 1999, 
pp. 81-93. 

30. X. M. Zhou and C. H. Ang, “Retrieving similar pictures from a pictorial database by 
an improved hashing table,” Pattern Recognition Letters, Vol. 18, 1997, pp. 751-758. 

31. X. M. Zhou, C. H. Ang, and T. W. Ling, “Image retrieval based on object’s orienta-
tion spatial relationship,” Pattern Recognition Letters, Vol. 22, 2001, pp. 469-477. 



WEI-HORNG YEH AND YE-IN CHANG 

 

94 

 

Wei-Horng Yeh (葉韋宏) was born in Taipei, Taiwan, 
R.O.C., in 1977. He received the B.S. degree in Applied Mathe-
matics in 1999, and the M.S. degree in Computer Science and 
Engineering in 2001, all from National Sun Yat-Sen University in 
Kaohsiung, Taiwan, R.O.C. He is currently a Ph.D. candidate in 
the Department of Computer Science and Engineering, National 
Sun Yat-Sen University. His research interest includes the index 
design for image and video databases. 

 
 

 
 

Ye-In Chang (張玉盈) was born in Taipei, Taiwan, R.O.C., 
in 1964. She received the B.S. degree in Computer Science and 
Information Engineering from National Taiwan University, 
Taipei, Taiwan, R.O.C., in 1986, and M.S. and Ph.D. degrees in 
Computer and Information Science from the Ohio State Univer-
sity, Columbus, OH, in 1987 and 1991, respectively. From Au-
gust 1991 to July 1999, she joined the faculty of the Department 
of Applied Mathematics at National Sun Yat-Sen University, 
Kaohsiung, Taiwan. Since August 1997, she has been a Professor 
in the Department of Applied Mathematics at National Sun 

Yat-Sen University, Kaohsiung, Taiwan. Since August 1999, she has been a Professor in 
the Department of Computer Science and Engineering at National Sun Yat-Sen Univer-
sity, Kaohsiung, Taiwan. Her research interests include database systems, distributed 
systems, multimedia information systems, and mobile information systems. 

 
 


