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Abstract

In this paper, we presented a novel image representation method to capture the information about spatial relationships

between objects in a picture. Our method is more powerful than all other previous methods in terms of accuracy, flexibility,

and capability of discriminating pictures. In addition, our method also provides different degrees of granularity for

reasoning about directional relations in both 8- and 16-direction reference frames. In similarity retrieval, our system

provides twelve types of similarity measures to support flexible matching between the query picture and the database

pictures. By exercising a database containing 3600 pictures, we successfully demonstrated the effectiveness of our image

retrieval system. Experiment result showed that 97.8% precision rate can be achieved while maintaining 62.5% recall rate;

and 97.9% recall rate can be achieved while maintaining 51.7% precision rate. On an average, 86.1% precision rate and

81.2% recall rate can be achieved simultaneously if the threshold is set to 0.5 or 0.6. This performance is considered to be

very good as an information retrieval system.

r 2007 Published by Elsevier Ltd.
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1. Introduction

Pictorial databases have been used more widely in
recent years. In applications such as computer-aided
design, office automation, medical image archiving,
geographic information, and trademark picture
registration, retrieving pictures from pictorial data-
bases is frequently required. Content-based image
retrieval is the current trend of designing image
database systems as opposed to text-based image
e front matter r 2007 Published by Elsevier Ltd.
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retrieval [1–9]. Rather than proceeding via a
manually generated text-based description, the
content-based image retrieval works by matching
the query image against a database image according
to the contents of images.

The features used in content-based image retrie-
val can be roughly divided into two categories: the
low-level visual features such as color, shape, and
texture and the high-level features such as spatial
relationships among the objects in a picture.
Examples of content-based image retrieval systems
include QBIC [10], VisualSEEK [11], and Wave-
Guide [12], etc. They allow users to retrieve similar
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pictures from a large database based on low-level
visual features.

Retrieving pictures that satisfy high-level spatial
queries is also an important issue in image database
systems [13–20]. For example, to answer the query
‘‘find all pictures having a swimming pool to the left
of a house’’, we need to keep at least the directional
relationship between the swimming pool and the
house for all pictures.

In this paper, we present a spatial knowledge
representation method for pictures containing non-
zero-sized objects. The spatial relations we consid-
ered are both topological and directional relations
between nonzero-sized objects. A set of similarity
measures for handling different types of queries that
will satisfy various kinds of users’ requirements is
also proposed. We use some examples to demon-
strate that our image representation method is more
powerful than many well-known methods. In
particular, we built a database of 3600 pictures,
with each picture containing four to six objects, to
demonstrate the performance of our system in terms
of recall and precision. Experiment results show
that, in the two extreme cases, 97.8% precision rate
can be achieved with 62.5% recall rate, and 97.9%
recall rate can be achieved with 51.7% precision
rate. On an average, a very good performance
of 86.1% precision rate and 81.2% recall rate can
be achieved simultaneously with threshold Th ¼ 0.5
or 0.6.

2. Overview

Spatial relationships between objects have been
identified as one of the most important features for
describing the contents of images. Unlike topologi-
cal relations which are well defined and less
disputable, directional relations can be viewed and
Fig. 1. A is the target object and B is the reference object. (a) Rectangle

partition: A is to the east of B.
modeled in different ways. Previous methods for
modeling directional relations include direction
between Minimum Bounding Rectangles (MBRs)
[13,18–20], 2D-strings [16,17], 2D-PIR [22], trian-
gular model [23], and symbolic arrays [24]. A
detailed analysis for comparing these methods can
be found in Ref. [24]. Except the above methods,
two other direction models, direction–relation
matrix [21] and 9D-SPA [14], based on rectangle-
shaped partition were also proposed. They partition
the whole space around a reference object and
record into which direction tiles an target object
falls. They can provide better approximations for
spatial relations between objects with complex
structures including shapes such as concave regions
or objects with holes. The 9D-SPA method can even
support an efficient indexing structure to facilitate
search in similarity retrieval. In this paper, we only
concentrate on iconic picture retrieval based on
spatial relations where the set of icons are known
and each object in a picture must match an icon [25].

Different from 9D-SPA which uses rectangle-
shaped partition, this paper presents an image
representation method for capturing the relations
among nonzero-sized objects based on a triangular
partition approach. Triangular partition is more
consistent with human perception and is better than
rectangle-shaped partition from an observer’s point
of view, if the observer is placed at the position
where the reference object is located. Such a
phenomenon is clearly demonstrated in Fig. 1,
where object A is to the east of object B in triangular
partition while object A is to the northeast of object
B in rectangle-shaped partition. However, directions
based on triangular partition approach may still be
misleading and not suitable for direction queries in
spatial databases if objects are overlapping, inter-
twined, or horseshoe-shaped. This paper improves
-shaped partition: A is to the northeast of B. (b) Classic triangular
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the previous triangular model to overcome the
above problems.
3. Image representation

To represent a picture using our method, the
picture has to be preprocessed first. Assume that the
objects in a picture can be identified by some image
segmentation and object recognition procedures.
Various techniques of image segmentation and
object recognition can be found in [26].

Once the objects of a picture are segmented and
recognized, the next step is to define the directional
relation between any two objects. Each directional
relation involves one reference object and one target
object. For each directional relation, the whole
space is divided into eight non-overlapping neigh-
borhood areas with respect to the reference object.
These eight neighborhood areas are namely east,
northeast, north, northwest, west, southwest, south,
southeast; and each area is assigned an integer from
1 to 8, respectively. The areas in which the target
object is located indicate the directional relation of
the target object with respect to the reference object.

There are two different types for partitioning
a space.
�
 Type-1 partition: there is no overlapping between
the MBR of the reference object and the target
object as shown in Fig. 2(a). Given a reference
object, the procedure for segmenting the whole
space into eight direction areas is as follows:
(1) Find the MBR M of the reference object.
Fig. 2. (a) Type-1 space partitioning, (b
(2) Find the center of M and treat it as the origin
of a Cartesian coordinate system.

(3) For each side s of M

If s is parallel to the y-axis (x-axis), draw an
angle A such that the following three condi-
tions are satisfied
(i) The vertex of angle A is on the x-axis

(y-axis).
(ii) Each side of angle A must go through the

respective terminal point of s.
(iii) The size of angle A is 451.
) Typ
e-2 s
�
 Type-2 partition: There is some overlapping
between the reference object’s MBR and the
target object as shown in Fig. 2(b). The space is
equally divided into eight areas by the partition
lines emitting from the centroid of the reference
object.
No matter which type is used to partition a space,
a direction area can be further divided into two
sections, called the first and the second section in
counterclockwise order, by the middle line of
each area.

Type-1 partition modifies the classic triangular
model by taking sizes and orientations of both
objects (the reference and the target) into account.
It is essential to consider sizes and orientations
of objects when determining the binary directi-
onal relationship between them. For example, in
Fig. 3(a), the classic triangular partition method (or
type-2 partition) uses the centroid of reference
object B as the center for partitioning and obtains
the result ‘‘object A is to the northeast of object B.’’
pace partitioning.



ARTICLE IN PRESS

Fig. 3. Our type-1 partition method is better than the classic triangular partition method. (a) ‘‘Object A is to the east of object B’’ is more

correct. (b) ‘‘Object A is to the northeast of object B’’ is more correct.
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However, ‘‘A is to the east of B’’ can be obtained if
type-1 partition is applied and this result is more
consistent with human perception. On the other
hand, ‘‘A is northeast of B’’ is obtained by the type-
1 partition method while ‘‘A is to the east of B’’ is
obtained by the classic triangular model as shown
in Fig. 3(b). From this example, we can easily see
that type-1 partition method is better than
the classic triangular partition method because the
former considers the size and orientation of the
reference object.

In type-1 partition, the ‘‘area of acceptance’’ for
any direction with respect to a reference object is
defined as the area inside the partition triangle of
that direction and outside the MBR of the reference
object. If a target object overlaps with the MBR of a
reference object, the area of acceptance for any
direction in relation to the reference object men-
tioned above is inappropriate and type-1 partition
becomes not applicable. Thus, type-2 partition (i.e.
the classic triangular partition method) will be
applied in this case. Indeed, if two objects are close
to each other, size and orientation of the reference
object become unimportant for determining the
directional relationship among objects.

Now we are ready to define the representation of
a picture. Suppose that a picture P contains n

objects (O1, O2, y, On). Then, the image represen-
tation of P can be encoded as a set of 4-tuples:
R ¼ {(Oij, Tij, Dij , Dji)| 8Oi, OjAP, and 1pi o
jpn}, where Oij is the code of object-pair (Oi, Oj);
Tij is the code for the topological relation between
Oi and Oj while Dij is the code for the directional
relation between objects Oi and Oj with Oj as the
reference object; Dji is the code for the directional
relation between objects Oi and Oj with Oi as the
reference object. It is obvious that the total number
of 4-tuples in R is nðn�1Þ

2 .
Let Oi be the ith object in the image database

(1pipN). We assign integer i to object Oi as its
object number. Then Oij is called the object-pair

code for object-pair (Oi, Oj). Given two objects Oi

and Oj, we can easily compute the object-pair code
Oij using the following formula proposed in [14]:

Oij ¼
ðj � 1Þðj � 2Þ

2
þ i.

To obtain the two object numbers i and j from Oij

(or to decode Oij), we use the formula
i ¼ Oij �

aðaþ1Þ
2

, where a is the largest non-negative
integer such that aðaþ1Þ

2
oOij and j ¼ a+2.

Tij indicates the topological relationship between
objects Oi and Oj with Oj as the reference object.
Possible values assigned to Tij are: 0 (stands for
‘‘disjoint’’), 1 (stands for ‘‘meet’’), 2 (stands for
‘‘overlap’’), 3 (stands for ‘‘cover’’), 4 (stands for
‘‘covered-by’’), 5 (stands for ‘‘contain’’), 6 (stands
for ‘‘inside’’), 7 (stands for ‘‘equal’’). The precise
definitions for the above topological relations are
based on the four-intersection model which can be
found in ref. [27].

Dij represents the directional relation between
target object Oi and reference object Oj. The
directional relation Dij is a 5-tuple (Cij, fij, bij, sij,
eij), where

CijA{k|1pkp8} indicates in which direction area
the centroid of object Oi is located with Oj as the
reference object.

fij (or bij) indicates the number of additional
direction areas that object Oi spans forward in
counterclockwise direction (or backward in clock-
wise direction) starting from the direction area in
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which the centroid of Oj is located. It is obvious that
0pfij, bijp8;

sij (or eij) indicates the start-point (or end-point)
information about target object Oi. Let the centroid
of the reference object be the origin of a Cartesian
coordinate system. Imagine that a radial segment
moves counterclockwise from the positive x-direc-
tion (or zero-degree direction) until the first tangent
point to the target object is met and this point is
called the start-point of the target object. The
second point at which the radial segment is tangent
to the target object is called the end-point of the
target object. The information about sij (eij) related
to the start-point (end-point) of a target object is
interpreted as follows (see Fig. 4):
(a)
 In the case of fij ¼ bij ¼ 0:
If sij ¼ eij ¼ 0, then the whole object Oi is
located in the first section of the direction area
of object Oj.
If sij ¼ eij ¼ 1, then the whole object Oi is
located in the second section of the direction
area of object Oj.
If sij ¼ 0 and eij ¼ 1, then object Oi is located
over the middle line of the direction area of
object Oj.
(b)
 In the case of bij6¼0 or fij6¼0:
If sij ¼ 1, then object Oi spans over the middle
line of the direction area in which the start-point
of Oi is located; otherwise, object Oi does not
span over the middle line of the direction area in
which the start-point of Oi is located.
Fig. 4. An example for interpretin
If eij ¼ 1, then object Oi spans over the middle
line of the direction area in which the end-point
of Oi is located; otherwise, object Oi does not
span over the middle line of the direction area in
which the end-point of Oi is located.
Notice that middle lines are needed only in the
direction area that a target object Oi begins and in
the direction area that the same object Oi ends in
counterclockwise direction.

Let us look at the example shown in Fig. 5.
Assume that object B is the reference object. Since
the MBR of object B overlaps with object A, we
divide the space using type-2 partition. In Fig. 5(a),
the centroid of A is located in the ‘‘east’’ direction
area of object B, therefore, CAB ¼ 1. Since the
whole object A falls in the second section of the
‘‘east’’ direction area of B, we have fAB ¼ bAB ¼ 0

and sAB ¼ eAB ¼ 1. Consequently, the 5-tuple for
DAB is (1, 0, 0, 1, 1). In Fig. 5(b), the centroid of A is
located in the ‘‘west’’ direction area of object B,
therefore, CAB ¼ 5. Since the whole object A falls in
the first section of the ‘‘west’’ direction area of B, we
have fAB ¼ bAB ¼ 0 and sAB ¼ eAB ¼ 0. As a result,
the 5-tuple for DAB is (5, 0, 0, 0, 0). Using our
representation, we can easily tell the difference
between the image in Fig. 5(a) and the image in
Fig. 5(b). In particular, we can easily see that A is to
the east of B in Fig. 5(a) because CAB ¼ 1 while A is
to the west of B in Fig. 5(b) because CAB ¼ 5. In
2D*-string representations, there is no way to
distinguish these two images because they have the
g fij, bij, sij, and eij.
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Fig. 5. Pictures (a) and (b) are not distinguishable in all 2D*-string representations. It is also impossible to infer the directional relation

between objects A and B.

Fig. 6. Pictures (a) and (b) are not distinguishable in all 2D*-string representations, 2D-PIR, and 9D-SPA representation. However, the

difference can be easily identified by our proposed method.
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same spatial image representation: (B%A, B%A). It
is also impossible to infer the directional relation
between objects A and B.

As a second example, let us look at the pictures
shown in Figs. 6(a) and (b). For all image
representations based on topological relations, there
is no way to differentiate these two pictures because
the only information we can get is ‘‘object A is
contained in object B’’ or ‘‘object B contains object
A.’’ In all 2D*-string representations [13,16–20],
both pictures have the same representation (B%A,

B%A) based on the projection interval relation
along the x- and y-axis between A and B. Since 2D-
PIR representation [22] combines topological rela-
tions with the idea of projection interval relations, it
still has the disadvantage of being not able to
distinguish pictures such as the ones shown in
Fig. 6(a) and (b). In 9D-SPA representation,
although it has many powerful functions, the
directional relations between objects A and B are
also the same in both pictures (i.e. DAB ¼ 00000000
and DBA ¼ 11111111), therefore, it still can not
distinguish Fig. 6(a) from Fig. 6(b). However, in
our representation method, DAB is (1, 1, 0, 1, 0) in
Fig. 6(a) and (5, 1, 0, 1, 0) in Fig. 6(b). It is obvious
that these two pictures are easily discriminated
because image representations are different. More-
over, we have TAB ¼ 5 in both pictures, therefore,
they all imply that ‘‘object B contains object A.’’ In
Fig. 6(a), we may conclude that A is to the east of
centroid of B and its size spans from the east
direction area to the northeast direction area with
respect to B because CAB ¼ 1, fAB ¼ 1, bAB ¼ 0. In
Fig. 6(b), we may conclude that A is to the west of
the centroid of B and its size spans from the west
direction area to the southwest direction area with
respect to B because CAB ¼ 5, fAB ¼ 1, bAB ¼ 0. If
we look at more details in the representation, we can
easily find that the size of object A spans over the
middle line of the east direction area (because
sAB ¼ 1), however, does not span over the middle
line of the northeast direction area (because
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eAB ¼ 0) with respect to the centroid of object B as
shown in Fig. 6(a). Similarly, from the representa-
tion for Fig. 6(b), we can easily conclude that the
size of object A spans over the middle line of the
west direction area (because sAB ¼ 1); however,
does not span over the middle line of the southwest
direction area (because eAB ¼ 0) with respect to the
centroid of object B. This example clearly reveals
the fact that our method supports not only
similarity retrieval but also the capability of spatial
reasoning to make the system become cleverer as
desired by the intelligent image database systems.

The direction areas of the above two examples are
defined by type-2 partition because the target object
overlaps with the MBR of the reference object in the
pictures shown in Figs. 5 and 6. Let us look at the
third example where the MBR of object B is disjoint
from object A and type-1 partition is used to define
the direction areas as shown in Fig. 7. The two
pictures in Figs. 7(a) and (b) are exactly the same
except the orientation of object A. In Fig. 7(a), the
centroid of object A is located at the north direction
area of object B, so CAB ¼ 3. Since object A spans
over two extra direction areas (the northeast and the
east) in backward (clockwise) direction and no extra
direction area in forward (counterclockwise) direc-
tion, so bAB ¼ 2 and fAB ¼ 0. Moreover, because the
start-point of object A does not cross over the
middle line of the east direction area and its end-
point does not cross over the middle line of
the north direction area neither, so sAB ¼ 0
and eAB ¼ 0. Therefore, DAB ¼ (3, 0, 2, 0, 0) for
Fig. 7(a). Similarly, in Fig. 7(b), the centroid of
object A is located at the northeast direction area of
object B, so CAB ¼ 2. Since object A spans over one
extra direction area (the east) in backward (clock-
Fig. 7. Pictures (a) and (b) are not distinguishable in all 2D*-string r

partitioning. However, the difference can be easily determined by our
wise) direction and one extra direction area (the
north) in forward (counterclockwise) direction, so
bAB ¼ 1 and fAB ¼ 1. Moreover, because the start-
point of object A does not cross over the middle line
of the east direction area and its end-point does not
cross over the middle line of the north direction area
neither, so sAB ¼ 0 and eAB ¼ 0. Therefore, DAB ¼

(2, 1, 1, 0, 0) for Fig. 7(b). As a result, the 5-tuple
DAB in Fig. 7(a) is (3, 0, 2, 0, 0) which is different
from the 5-tuple DAB ¼ (2, 1, 1, 0, 0) in Fig. 7(b).
This example demonstrates that our method can
even discriminate pictures containing objects with
the same locations but in different orientations.
4. Spatial Inference on multiple reference frames

As mentioned before, a picture P with n objects
(O1, O2, y, On) can be transformed into a set of
4-tuples R ¼ {(Oij, Tij, Dij, Dji)| 8Oi, OjAP, and
1piojpn}. Given a 4-tuple (Oij, Tij, Dij, Dji) in R,
we can easily find the topological relation between
Oi and Oj through Tij as well as the directional
relation between Oi and Oj through Dij and Dji. One
of the advantages of our approach is that we can use
the same representation to interpret the relation-
ships between two objects on different reference
frames. For example, we may need finer granularity
for describing a directional relation such as ‘‘A is to
the north of northeast of B’’ which requires to
partition the space into 16 direction areas instead of
8 with respect to the reference object. By cutting
each one of the 8 direction areas into equal halves,
we can easily obtain the 16 direction areas as
shown in Fig. 8. In other words, the user needs an
8-direction reference frame for coarse spatial
epresentations or any direction model based on rectangle-shape

image representation method.
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Fig. 8. (a) The reference frame with eight direction areas. (b) The reference frame with sixteen direction areas.

Table 1

Interpretation of direction areas in 8-direction/16-direction

reference frames

8-direction reference frame 16-direction reference frame

a1 East b1 South of east

b2 North of east

a2 Northeast b3 East of northeast

b4 North of northeast

a3 North b5 East of north

b6 West of north

a4 Northwest b7 North of northwest

b8 West of northwest

a5 West b9 North of west

b10 South of west

a6 Southwest b11 West of southwest

b12 South of southwest

a7 South b13 West of south

b14 East of south

a8 Southeast b15 South of southeast

b16 East of southeast

Table 2

Look-up table for d1 and d2

(sij, eij) (d1, d2)

fij ¼ bij ¼ 0 (0, 0) (�1, �1)

(0, 1) (�1, 0)

(1, 0) –

(1, 1) (0, 0)

fij 6¼0 or bij 6¼0 (0, 0) (0, �1)

(0, 1) (0, 0)

(1, 0) (�1, �1)

(1, 1) (�1, 0)

P.-W. Huang et al. / Journal of Visual Languages and Computing 19 (2008) 637–651644
reasoning while requires a 16-direction reference
frame for finer spatial reasoning.

The relationship between the 8-direction reference
frame and the 16-direction reference frame, as well as
the interpretation for all direction areas in these two
reference frames is shown in Table 1. In our system,
we can transform the reference frame of 8 direction
areas into the reference frame of sixteen direction
areas very easily. The converting method is as follows.

Given Dij ¼ (Cij, fij, bij, sij, eij), we assume that
target object Oi spans from the starting direction
area b to the ending direction area e with respect to
reference object Oj in the eight-direction reference
frame. Let b0 and e0 be the starting and ending
direction areas, respectively, for target object Oi in
the 16-direction reference frame. Then, b and e can
be calculated by the following equations:

b ¼
Cij � bij þ 8 if Cij � bijp0;

Cij � bij otherwise;

(

e ¼
Cij þ f ij � 8 if Cij þ f ij48;

Cij þ f ij otherwise;

(
ð1Þ

In the 16-direction reference frame, b0 and e0 can
be easily obtained from the corresponding b and e

as follows:

b0 ¼ bn2þ d1,

e0 ¼ en2þ d2, ð2Þ

where d1 and d2 can be determined by Table 2
without extra computation.

To illustrate the above concept, let’s look
at the picture shown in Fig. 5(a) again. We have
DAB ¼ (1, 0, 0, 1, 1) as explained in Section 3. From
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formula (1), we can get b ¼ 1 and e ¼ 1. Therefore,
we say that object A is located in the a1 direction area
of object B in the 8-direction reference frame (or
object A is to the east direction area of object B).
From formula (2) and Table 2, we can get b0 ¼ 2 and
e0 ¼ 2 in the 16-direction reference frame. So we say
that object A is located in the b2 direction area with
respect to object B in the 16-direction reference frame
(or object A is in the second section of the east
direction area of object B) from a more detailed
observer’s point of view. For another example, let’s
see the picture shown in Fig. 6(a). As already
explained in Section 3, we have DAB ¼ (1, 1, 0, 1,
0). Therefore, we can get b ¼ 1 and e ¼ 2 by using
formula (1). Since the code for TAB is 6, so we say
that object A is inside of object B and spans two
direction areas a1 and a2 (the first and second
sections of east direction area) in the 8-direction
reference frame. On the other hand, in the 16-
direction reference frame, we get b0 ¼ 1 and e0 ¼ 3 by
using formula (2). As a result, we may also say that
object A spans three direction areas b1 (the first
section of east direction area), b2 (the second section
of east direction area), and b3 (the first section of NE
direction area) in the 16-direction reference frame.

5. Similarity retrieval

In similarity retrieval, the user usually submits a
sketch picture to the system for searching similar
pictures in the database and this method is called
the ‘‘query-by-pictorial-example’’ approach [25,28].
Since the user may not remember the exact spatial
relationships among the objects in a desired picture,
the system should provide the user with a set of
coarse-to-fine similarity measures to flexibly evalu-
ate the difference between the query picture and the
database pictures for satisfying user’s different
requirements.
Table 3

The 12 types of similarity measures

Type-uv v ¼ 0, without conside

object’s span

u ¼ 0, without considering any spatial

relation

Type-00

u ¼ 1, consider topological relation between

objects (Tij)

Type-10

u ¼ 2, consider direction relation between

centroids of objects (Cij)

Type-20

u ¼ 3, consider both Tij and Cij Type-30
There are 12 types of similarity measures pro-
vided by our system as shown in Table 3 and their
semantics are described below:
�

ring
Type-00: matching is performed based on IDs of
objects.

�
 Type-10: matching is performed based on topo-

logical relations between objects.

�
 Type-20: matching is performed based on direc-

tional relations between centroids of objects.

�
 Type-30: matching is performed based on both

topological relations between objects and direc-
tional relations between centroids of objects.

�
 Type-01: matching is performed based on type-00

criterion and the spanning ranges (in terms of
direction areas) of all other objects viewed from
every object.

�
 Type-11: matching is performed based on type-10

criterion and the spanning ranges of all other
objects viewed from every object.

�
 Type-21: matching is performed based on type-20

criterion and the spanning ranges of all other
objects viewed from every object.

�
 Type-31: matching is performed based on type-30

criterion and the spanning ranges of all other
objects viewed from every object.

�
 Type-02: matching is performed based on type-01

criterion and the condition whether the start-point
and the end-point of each target object cross
through the middle line of the direction area in
which start-point (or end-point) is located.

�
 Type-12: matching is performed based on type-11

criterion and the second condition specified in
type-02.

�
 Type-22: matching is performed based on type-21

criterion and the second condition specified in type-02.

�
 Type-32: matching is performed based on type-31

criterion and the second condition specified in
type-02.
v ¼ 1, consider object’s

span using fij, bij

v ¼ 2, consider object’s

span using fij, bij, sij, eij

Type-01 Type-02

Type-11 Type-12

Type-21 Type-22

Type-31 Type-32
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For convenience of explanation, let us introduce
the following notations before giving the precise

definitions for similarity measures.
�
 Rp (or Rq): the image representation for picture p

(or q).

�
 Wp (or Wq): the set of objects in picture p (or q).

�
 tp (or tq): a tuple in Rp (or Rq).

�
 t.C1: the centroid’s location-code, with Oj as the

reference object, of tuple t.

�
 t.C2: the centroid’s location-code, with Oi as

the reference object, of tuple t.

�
 t.D1: the directional relation-code, with Oj as the

reference object, of tuple t.

�
 t.D2: the directional relation-code, with Oi as the

reference object, of tuple t.

�
 t.T: the topological relation-code of tuple t.

�
 a(k) (or b(k) ): the kth bit of the binary code a

(or b ).

Let Rq ¼ ft
q1; tq2; :::; tqmg and Rp ¼ ft

p1; tp2; :::; tpng

be the image representations for query picture q and
database picture p, respectively. Let K be an ordered
set to record the same code for object-pair in these
two image representations in an ascending order;
|K| is the number of elements in K; K(i) is the ith
object-pair code in K. We define the object-
similarity measure between Rp and Rq as

SOðp; qÞ ¼
jW p \W qj

jW p [W qj
. (3)

For defining the directional-similarity measure, we
use a transformation function

f r : t:D! ar�1ar�2 . . . a1a0,

to transform Dij (or Dji) to a binary code
ar�1ar�2 . . . a1a0 with r ¼ 8 or 16. Then the direc-
tional-similarity measure between Rp and Rq is
defined as
where

S0Drða; bÞ ¼

Pr�1
k¼0

aðkÞ ^ bðkÞ

Pr�1
k¼0

aðkÞ _ bðkÞ

. (5)
Similarly, the topological-similarity measure be-
tween Rp and Rq is defined as

ST ðRp;RqÞ ¼

PjK j
i¼1

S0T ðt
p
KðiÞ:T ; t

q
KðiÞ:TÞ

jK j
, (6)

where

S0T ðr1; r2Þ ¼ 1�
disðr1; r2Þ

4
. (7)

In the above equation, r1 and r2 are the codes for
two topological relations, and dis(r1, r2) represents
the shortest distance between r1 and r2 (the length of
the shortest path connecting nodes r1 and r2) on the
topological relationship neighborhood graph [22] as
shown in Fig. 9.

Finally, we define the centroid-location-similarity
measure between Rp and Rq as

SCðRp;RqÞ

¼

PjKj
i¼1

S0Cðt
p
KðiÞ:C1; t

q
KðiÞ:C1Þ þ

PjKj
i¼1

S0Cðt
p
KðiÞ:C2; t

q
KðiÞ:C2Þ

2� jKj
,

ð8Þ

where

S0Cða;bÞ ¼ 1�
diff ða;bÞ

4
, (9)

with diff ða;bÞ ¼ min fja� bj; 8� ja� bjg; a and b
are the numbers assigned to the direction areas in
which the two centroids of objects are located,
respectively.

Based on the above similarity measuring equa-
tions and the rationale that SO, SDr ,ST, and SC are
not orthogonal to one another, the twelve types of
similarity measures Sij (0pip3, 0pjp2) can be
defined as the product result of some subset selected
from {SO, ST, SC, SDr}.
1.
 Type-00: S00 ¼ SO.

2.
 Type-01: S01 ¼ SO � SD8.

3.
 Type-02: S02 ¼ SO � SD16.

4.
 Type-10: S10 ¼ SO � ST .

5.
 Type-11: S11 ¼ SO � ST � SD8.

6.
 Type-12: S12 ¼ SO � ST � SD16.
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Fig. 10. An example for similarity measurement.

Fig. 9. Topological neighborhood graph.
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7.
 Type-20: S20 ¼ SO � SC .

8.
 Type-21: S21 ¼ SO � SC � SD8:

9.
 Type-22: S22 ¼ SO � SC � SD16.
10.
 Type-30: S30 ¼ SO � ST � SC .

11.
 Type-31: S31 ¼ SO � ST � SC � SD8.

12.
 Type-32: S32 ¼ SO � ST � SC � SD16.
Now we use the pictures shown in Fig. 10 as an
example to illustrate the effectiveness of our
similarity measures. Let Rp1, Rp2, Rp3 and Rp4 be
the image representations for pictures p1, p2, p3, and
p4, respectively. Then

Rp1 ¼ {(1,0, (6,1,0,1,0), (3,0,2,0,0)), (4,4, (8,8,
8,1,1), (4,1,1,0,1)), (5,0, (2,1,1,0,0), (6,1,1,0,0))},

Rp2 ¼ {(1,0, (6,1,0,1,0), (3,0,2,0,0)), (4,6, (1,8,8,
1,1), (5,2,2,0,0)), (5,0, (2,1,1,0,0), (6,1,1,0,0))},

Rp3 ¼ {(1,0, (7,0,1,1,1), (3,0,1,1,1)), (4,6, (1,8,8,
1,1), (5,2,2,0,0)), (5,0, (2,1,1,0,1), (7,0,0,0,0))},

Rp4 ¼ {(1,0, (6,1,0,1,1), (3,0,2,0,1)), (2,0, (5,0,0,
0,1), (1,0,0,0,1)), (3,0, (3,1,0,1,0), (7,1,0,0,0)),
(4,6, (1,8,8,1,1), (5,2,2,0,0)), (5,0, (2,1,1,0,0), (7,0,
1,0,0)), (6,0, (1,0,0,0,1), (5,0,0,0,1))}.

Since Type-32 is the most precise measure, we use
it to calculate the similarity scores for database
pictures p2, p3, p4 with respect to the query picture
p1. Because p1 has objects O1, O2, O4 and p4 has
objects O1, O2, O3, O4, therefore, the object-
similarity measure SO(Rp4, Rp1) is

jW p4 \W p1j

jW p4 [W p1j
¼

3

4
¼ 0:75.

In topological-similarity measure or directional-
similarity measure, the tuples used for comparison
must have the same object-pair code. For this
purpose, we use notation ti

p to represent a tuple
whose object-pair code is i in image representation
Rp for picture p. So we have

S0T ðt
p4
1 :T ; t

p1
1 :TÞ ¼ 1; S0T ðt

p4
4 :T ; t

p1
4 :TÞ ¼ 3=4,

S0T ðt
p4
5 :T ; t

p1
5 :TÞ ¼ 1.
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As a consequence, the topological-similarity
measure ST(Rp4, Rp1) is

P3
i¼1

S0T ðt
p4
KðiÞ:T ; t

p1
KðiÞ:TÞ

3
¼

11

12
¼ 0:917.

By applying Eq. (5) to Rp1 and Rp4, we obtain the
following results:

S0D16ðf 16ðt
p4
1 :D1Þ; f 16ðt

p1
1 :D1ÞÞ ¼

3
4
,

S0D16ðf 16ðt
p4
4 :D1Þ; f 16ðt

p1
4 :D1ÞÞ ¼ 1,

S0D16ðf 16ðt
p4
5 :D1Þ; f 16ðt

p1
5 :D1ÞÞ ¼ 1,

S0D16ðf 16ðt
p4
1 :D2Þ; f 16ðt

p1
1 :D2ÞÞ ¼

4
5
,

S0D16ðf 16ðt
p4
4 :D2Þ; f 16ðt

p1
4 :D2ÞÞ ¼

5
8
,

S0D16ðf 16ðt
p4
5 :D2Þ; f 16ðt

p1
5 :D2ÞÞ ¼

1
2
.

Thus, the direction-similarity measure SD16

(Rp4, Rp1) is
By applying Eq. (9) to Rp1 and Rp4, we obtain the
results:

S0Cðt
p4
1 :C1; t

p1
1 :C1Þ ¼ 1; S0Cðt

p4
4 :C1; t

p1
4 :C1Þ ¼

3
4
;

S0Cðt
p4
5 :C1; t

p1
5 :C1Þ ¼ 1; S0Cðt

p4
1 :C2; t

p1
1 :C2Þ ¼ 1;

S0Cðt
p4
4 :C2; t

p1
4 :C2Þ ¼

3
4
; S0Cðt

p4
5 :C2; t

p1
5 :C2Þ ¼

3
4
:

Thus, the centroid location-similarity measure
SC(Rp4, Rp1) is

P3
i¼1

S0Cðt
p4
KðiÞ:C1; t

p1
KðiÞ:C1Þ þ

P3
i¼1

S0Cðt
p4
KðiÞ:C2; t

p1
KðiÞ:C2Þ

2� 3

¼
21

24
¼ 0:875.

As a result, the type-32 similarity measure
between Rp1 and Rp4 is

S32ðRp4;Rp1Þ ¼ SO � ST � SD16 � SC ¼ 0:469.

Similarly, we can obtain the type-32 similarity
measures for (p1, p2) and (p1, p3) as follows:

S32ðRp2;Rp1Þ ¼ 0:787; S32ðRp3;Rp1Þ ¼ 0:624.

The above result implies that picture p2 is more
similar to picture p1 than picture p3. This result is
due to the fact that the directional relations between
objects O1 and O2 in p1 and p2 are the same while
the directional relations between objects O1 and O2

in p1 and p3 are different as shown in Fig. 10.
Among p2, p3, and p4, picture p4 is most dissimilar
to p1 because p4 has an additional object O3 as
compared to the other three pictures. The results
obtained from our similarity measures defined in
this section are consistent with the human visual
system.
6. Experimental results

In this section, we present the simulation results
to demonstrate the effectiveness of our similarity
retrieval system based on the image representation
scheme proposed in Section 3 and the similarity
measures described in Section 5. In our experi-
mental system, the image database contains 3600
pictures with each picture contains four to six
objects. The pictures were randomly generated by
considering all possible directional and topological
relations between objects.

The similarity requirement of a query process is
denoted by a pair (Type-ij, Th), where Type-ij is one
of the 12 types of similarity measures defined in
Section 5, and ThA(0, 1) is a threshold for Type-ij

similarity. The performance of our image retrieval
system was evaluated in terms of recall and
precision. For a given query picture, let a be the
number of all relevant pictures, b be the number of
pictures that are relevant and retrieved, and c be the
number of pictures retrieved. Then, recall ¼ b

a
�

100% and precision ¼ b
c
� 100%.

The experimental results are shown in Tables 4–7,
respectively, according to each of the following four
criteria: (1) no spatial relation is considered; (2) only
topological relations are considered; (3) only direc-
tional relations between centroids of objects are
considered; (4) both topological relations and
directional relations are considered. In each table,
the recall and precision of image retrieval for the
following three situations are listed: (1) without
considering object’s span; (2) considering object’s
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Table 5

Recall and precision for type-10, type-11 and type-12 similarity

Type-10 Type-11 Type-12

Th Rec.

(%)

Pre.

(%)

Rec.

(%)

Pre.

(%)

Rec.

(%)

Pre.

(%)

0.3 100 8.3 99.9 35.7 99.3 45.5

0.4 100 8.3 99.7 44.6 96.1 56.0

0.5 100 8.3 97.2 53.4 90.2 70.0

0.6 100 8.6 91.1 66.1 81.2 83.9

0.7 99.9 14.1 81.2 82.8 69.0 95.1

Table 6

Recall and precision for type-20, type-21 and type-22 similarity

Type-20 Type-21 Type-22

Th Rec.

(%)

Pre.

(%)

Rec.

(%)

Pre.

(%)

Rec.

(%)

Pre.

(%)

0.3 100 14.0 99.9 42.2 98.5 50.9

0.4 100 21.3 99.1 51.4 94.3 64.9

0.5 100 29.8 95.4 64.3 87.7 78.1

0.6 100 33.9 88.2 78.7 78.8 90.5

0.7 100 40.0 77.1 90.9 64.8 97.2

Table 7

Recall and precision for type-30, type-31 and type-32 similarity

Type-30 Type-31 Type-32

Th Rec.

(%)

Pre.

(%)

Rec.

(%)

Pre.

(%)

Rec.

(%)

Pre.

(%)

0.3 100 14.4 99.8 42.8 97.9 51.7

0.4 100 21.9 98.3 52.3 92.9 66.2

0.5 100 30.4 93.6 65.7 86.2 80.2

0.6 99.9 35.1 86.1 81.0 76.1 92.0

0.7 99.3 41.6 74.2 92.4 62.5 97.8

Table 4

Recall and precision for type-00, type-01 and type-02 similarity

Type-00 Type-01 Type-02

Th Rec.

(%)

Pre.

(%)

Rec.

(%)

Pre.

(%)

Rec.

(%)

Pre.

(%)

0.3 100 8.3 100 35.0 99.6 44.7

0.4 100 8.3 99.9 43.9 97.0 54.8

0.5 100 8.3 98.4 52.2 91.9 68.3

0.6 100 8.3 93.4 64.1 83.4 81.8

0.7 100 13.8 84.3 79.9 71.6 93.6
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span in 8-direction areas; (3) considering object’s
span in 16-direction areas. Since all similarity
measures are normalized within the range from
0 to 1, we recorded the image retrieval results
using thresholds Th from 0.3 to 0.7 with increment
of 0.1.

In these four tables, we can easily see that they
have the same following trend: when Th is increas-
ing, recall is decreasing and precision is increasing
too except the recall rate in the type-00 case. These
results are consistent with the information retrieval
principle that a lower threshold implies a higher
recall rate and a lower precision rate while a higher
threshold implies a lower recall rate and a higher
precision rate. The reason why the recall rates stay
at 100% for all thresholds in the type-00 case is
because two pictures are considered as similar as
long as they have the same set of objects and this
criterion for measuring similarity is too loose. We
can also see another trend in each of these four
tables, that is, the recall rate is decreasing and the
precision rate is increasing from type-00 to type-01,
then from type-01 to type-02 for any given Th. The
occurrence of this trend is quite reasonable because
the similarity criterion of type-02 is more rigid than
that of type-01 which in turn is more rigid than
type-00. The third trend that we can see from
Tables 4–7 is that, for any given Th, the recall rate is
decreasing and the precision rate is increasing from
type-0i to type-1i, from-type 1i to type-2i, then from
type-2i to type 3i (for i ¼ 0 or i ¼ 1 or i ¼ 2). Such a
trend is due to the fact that type-3i must consider
both topological and directional relations, type-2i

only considers directional relations (which are more
sensitive than topological relations from human’s
perception), type-1i only considers topological
relations, and type-0i considers no spatial relations
at all.

As shown in the last two columns in Table 7, our
system can achieve a 97.8% precision rate while still
maintaining a 62.5% recall rate in one extreme case.
In the other extreme case, our system can achieve
97.9% recall rate while maintaining a 51.7%
precision rate. On an average, a good performance
with 81.2% recall rate and 86.1% precision rate can
be simultaneously achieved if a threshold is well
adjusted.

7. Conclusions

Content-based image retrieval is the current trend
of designing image database systems and the binary
spatial relationships between objects are the im-
portant features reflecting the content of a picture.
Thus, an appropriate knowledge representation
for spatial relations plays an important role in
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designing a CBIR system. In this paper, we
presented a novel image representation method
based on a triangular partition model to capture
the information about the spatial relationships
between any two objects in a picture. The capability
of representing a picture by our proposed method is
more powerful than all other previous methods in
terms of accuracy, flexibility, the discriminating
power of differentiating pictures, and the ability of
handling special relations which are rarely discussed
in the literature. Our method also provides different
degrees of granularity for reasoning about direc-
tional relations between objects. In particular, our
method can use the same image representation of a
picture to infer the directional relationships between
objects in that picture either in the 8-direction
reference frame or in the 16-direction reference
frame depending on user’s different requirements.
In similarity retrieval, our system provides 12 types
of similarity measures to support flexible matching
between the query picture and the database pictures
and this capability is highly desired for meeting
user’s different requirements. By exercising a
database containing 3600 pictures, we successfully
demonstrated the effectiveness of our image retrie-
val system based on the image representation
method proposed in this paper. Experiment results
show that 97.8% precision rate can be achieved
while still maintaining 62.5% recall rate; and 97.9%
recall rate can be achieved while still maintaining
51.7% precision rate. On an average, 86.1%
precision rate and 81.2% recall rate can be achieved
simultaneously, and this result is considered as a
very good performance to any information retrieval
system including the image database system.
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