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中文摘要 

一個影像資料庫儲存了大量的影像資料與相關的資訊，這些影像資料

與資訊是由真實的影像圖片與相對應的符號圖片所組成。影像資料庫

系統的相似程度擷取的應用當中，空間關係是一個相當重要的參考因

素。為了能夠從影像資料庫中尋找出有興趣的資料，必須有能力推論

組成圖片的物件彼此之間的空間關係。隨著數位相機和影像處理軟體

的普及，許多的影像資料可以輕易地旋轉或翻轉。也就是說，這些影

像可以被旋轉到特定的角度、水平翻轉或垂直翻轉。一個穩固的影像

相似擷取架構，可以辨識出各種影像轉換，例如：變形、放大縮小、

旋轉、或任意的轉換組合。目前已發表的空間相似擷取演算法可以歸

納成三種類型：符號圖像投射類型、幾何空間類型、與圖學技術比對

類型。符號圖像投射可以保留物件中與空間有關的重要資訊，例如：

長度、寬度、以及座落位置。然而，許多以符號圖像投射為主的物件

索引技術對於圖像的翻轉與旋轉相當敏感。因此，以空間關係搜尋圖

像時，如果指定的空間關係方位和資料庫中儲存不一致，搜尋的結果

會遺漏符合條件的影像。為了解決這個問題，學者們整理出影像轉換

後，空間關係變化的規則。並提供一組條件式，將空間關係對應到轉

變後的結果。然而，這組條件式由一系列的條件判斷所組成，導致運

算沒有效率。在這本博士論文中，首先，我們將上述的條件式分成三

種類型。根據這樣的分類，細心地為每一個空間關係指定一個 16 位

元長度的位元字串。這樣的對應，可以將空間關係的轉換根據我們提

出的位元運算—intra-exchange—來完成。此位元運算的時間複雜度為

O(1)的 CPU 運算時間。除此之外，我們設計了一個物件索引技術來

儲存物件之間的空間關係。此索引技術稱為 Unique Bit Pattern 

Matrix。處理影像相似擷取時，我們不需要從索引中推導出原來的影

像，再透過旋轉或翻轉此影像來獲得相對應的索引。然後根據推導出

來的索引做相似度比對。相反地，透過位元運算和矩陣運算，我們的

索引技術可以直接推導出影像旋轉或翻轉之後相對應的索引。透過推

導出的索引來做相似度比對，可以保證我們設計的索引機制不會遺漏

符合使用者條件的影像。在效能評估中，首先分析我們設計的索引機

制在進行相似度擷取的時間複雜度。接著，我們呈現透過模擬測試效

能的結果。結果顯示，我們的索引機制的效能表現，遠比以條件式為

主的索引機制還要優異。依據影像中所包含的物件個數的不同，效能

的提升介於 13.64% 和 53.23% 之間。 
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CHAPTER 1

Introduction

Content-based image retrieval (CBIR), a technique which uses visual contents to

search images from large scale image databases according to users’ interests, has been

an active and fast advancing research area since the 1990s. During the past decade,

remarkable progress has been made in both theoretical research and system develop-

ment. However, there remain many challenging research problems that continue to

attract researchers from multiple disciplines.

Early work on image retrieval can be traced back to the late 1970s. In 1979, a

conference on Database Techniques for Pictorial Applications [3] was held in Florence.

Since then, the application potential of image database management techniques has

attracted the attention of researchers [11, 12, 18, 21]. Early techniques were not gener-

ally based on visual features but on the textual annotation of images. In other words,

images were first annotated with text and then searched using text-based approach

from traditional database management systems. Comprehensive surveys of early text-

based image retrieval methods can be found in [13, 72]. Text-based image retrieval

uses traditional database techniques to manage images. Through text descriptions,

images can be organized by topical or semantic hierarchies to facilitate easy naviga-

tion and browsing based on standard Boolean queries. However, since automatically

generating descriptive texts for a wide spectrum of images is not feasible, most text-

based retrieval systems require manual annotation of images. Obviously, annotating

images manually is a cumbersome and expensive task for large image databases, and

1



is often subjective, context-sensitive and incomplete. As a result, it is difficult for the

traditional text-based methods to support a variety of task-dependent queries.

In the early 1990s, as a result of advances in the Internet and new digital image

sensor technologies, the volume of digital images produced by scientific, educational,

medical, industrial, and other applications available to users increased dramatically.

The difficulties faced by text-based retrieval became more and more severe. The ef-

ficient management of the rapidly expanding visual information became an urgent

problem. This need formed the driving force behind the emergence of content-based

image retrieval techniques. In 1992, the National Science Foundation of the United

States organized a workshop on visual information management systems [50] to iden-

tify new directions in image database management systems. It was widely recognized

that a more efficient and intuitive way to represent and index visual information would

be based on properties that are inherent in the images themselves. Researchers from

the communities of computer vision, database management, human-computer inter-

face, and information retrieval were attracted to this field. Since then, research on

content-based image retrieval has developed rapidly [5, 28, 32, 35, 79]. Since 1997, the

number of research publications on the techniques of visual information extraction,

organization, indexing, user query and interaction, and database management has in-

creased enormously. Similarly, a large number of academic and commercial retrieval

systems have been developed by universities, government organizations, companies,

and hospitals. In the past decade, a few commercial products and experimental

prototype systems have been developed, such as QBIC [32], Photobook [62], Virage

[40], VisualSEEK [71], Netra [60], SIMPLIcity [74]. Comprehensive surveys of these

techniques and systems can be found in [34, 67, 70, 78].

Content-based image retrieval, uses the visual contents of an image such as color,

shape, texture and spatial layout to represent and index the image. In typical content-

based image retrieval systems, as shown in Figure 1.1, the visual contents of the

images in the database are extracted and described by multi-dimensional feature

vectors. The feature vectors of the images in the database form a feature database.

To retrieve images, users provide the retrieval system with example images or sketched
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Figure 1.1 Process of the content-based image retrieval system

figures. The system then changes these examples into its internal representation of

feature vectors. The similarities or distances between the feature vectors of the query

example of sketch and those of the images in the database are then calculated and

retrieval is efficient way to search for the image database. Recent retrieval systems

have incorporated users’ relevance feedback to modify the retrieval process in order

to generate perceptually and semantically more meaningful retrieval results.

Eakins et al. [29] mentioned three levels of queries in CBIR.

Level 1: Retrieval by primitive features such as color, texture, shape or the spatial loca-

tion of image elements. Typical query is query by example, “find pictures like

this”.

Level 2: Retrieval of objects of given type identified by derived features, with some degree

of logical inference. For example, “find a picture of a flower”.

Level 3: Retrieval by abstract attributes, involving a significant amount of high-level

reasoning about the purpose of the objects or scenes depicted. This includes
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retrieval of named events, of pictures with emotional or religious significance,

etc. Query example, “find pictures of a joyful crowd”.

Levels 2 and 3 together are referred to as semantic image retrieval, and the gap be-

tween Levels 1 and 2 as the semantic gap. More specifically, the discrepancy between

the limited descriptive power of low-level image features and the richness of user

semantics, is referred to as the “semantic gap” [27]. Users in Level 1 retrieval are

usually required to submit an example image or sketch as query. But what if the

user does not have an example image at hand? Semantic image retrieval is more

convenient for users as it supports query by keywords or by texture. Therefore, to

support query by high-level concepts, a CBIR systems should provide full support

in bridging the “semantic gap” between numerical image features and the richness

of human semantics [82]. A comprehensive survey of the high-level semantic-based

image retrieval can be found in [59].

1.1 Image Content Descriptor

Generally speaking, image content may include both visual and semantic content.

Visual content can be very general or domain specific. General visual content includes

color, texture, shape, spatial relationship, etc. Domain specific visual content, like

human faces, is application dependent and may involve domain knowledge. Semantic

content is obtained either by textual annotation or by complex inference procedures

based on visual content. This dissertation concentrates on general visual contents

descriptors, especially spatial relationships.

A good visual content descriptor should be invariant to the accidental variance

introduced by the image process. That is the variation of the illuminate of the scene.

However, there is a tradeoff between the invariance and the discriminative power of

visual features, since a very wide class of invariance loses the ability to discriminate

between essential differences. Invariant description has been largely investigated in

computer vision (like object recognition), but is relatively new in image retrieval [4].
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A visual content descriptor can be either global or local. A global descriptor uses

the visual features of the whole image, whereas a local descriptor uses the visual

features of regions or objects to describe the image content. To obtain the local

visual descriptors, an image is often divided into parts first. The simplest way of

dividing an image is to use a partition, which cuts the image into tiles of equal size

and shape. A simple partition does not generate perceptually meaningful regions but

is a way of representing the global features of the image at a finer resolution. A better

method is region segmentation algorithms that have been extensively investigated in

computer vision. A more complex way of dividing an image is to undertake a complete

object segmentation to obtain semantically meaningful objects, such as tree, lake, and

bird. Currently, automatic object segmentation for broad domains of general image

is unlikely to succeed.

1.2 Spatial Relationship

Regions or objects with similar color and texture properties can be easily distin-

guished by imposing spatial constraints. For instance, regions of blue sky and ocean

may have similar color histograms, but their spatial locations in images are differ-

ent. Therefore, the spatial location of regions (or objects) or the spatial relationship

between multiple regions (or objects) in an image is very useful for searching images.

Spatial relationships may be classified into directional and topological relation-

ships. The frequently used directional relationships are the strict directional rela-

tionships: north, south, east, and west. Some researchers add the mixed directional

relationships: northeast, northwest, southeast, and southwest. Others use the po-

sitional directional relationships: left, right, above, and below. On the other hand,

some researchers specify the directional relationship between two objects as the slope

of the line joining their centroids.

Egenhofer et al. [30, 31] pointed out that there are eight fundamental topolog-

ical relations that can hold between two planar regions. These relations are dis-

joint, contains, inside, meet, equal, covers, covered-by, and overlap. This model is
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called the four-intersection model. A refinement to this model was proposed in [31]

to distinguish between topologically distinct configurations whose empty/nonempty-

intersection values are the same.

Directional relationships are not sufficient for characterizing spatial similarity be-

cause they only consider the spatial orientation of an object while ignoring its spatial

extent. In some cases, directional relationships do not exist, while in other cases

directional relationships may be identical in two images in spite of the fact that the

images are not spatially identical. In addition, directional relations are not rotation

invariant.

Topological relationships, on the other hand, always exist between any two objects

[56]. Also, topological relationships are mutually exclusive, i.e., there is one and

only one topological relationship between any two objects in an image. Another

interesting feature of topological relationships is that they are preserved under perfect

translation, scaling, or rotation transformations.

1.3 Retrieval by Spatial Similarity

Retrieval by spatial similarity (RSS) deals with a class of queries that is based

on spatial relationships among the domain objects. RSS queries may be utilized in

applications such as

• Interior design: retrieve the floor layout designs in an archive that are spatially

similar to a given floor design.

• Real estate marketing: retrieve the houses which have a swimming pool and a

tennis court in the middle of a garden.

• Diagnostic medical imaging: retrieve all brain MRI images, treatment, and

outcome for all studies that have a tumor in the same location as the one in the

query image.

• Geographic information systems (GIS): retrieve all areas where a gas station

and a bank are on the opposite sides of a road.
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Spatial relationship is a fuzzy concept and is thus often dependent on human

interpretation. A spatial similarity function assesses the degree to which the spatial

relationships in a database image conform to those specified in the query image.

A spatial similarity algorithm provides a ranked ordering of database images with

respect to a query image by applying the spatial similarity function between the

query image and each database image [36].

There are three major query types: (1) spatial reasoning, (2) pictorial query, and

(3) similarity retrieval. Spatial reasoning means the inference of a consistent set of

spatial relationships among the objects in an image. A pictorial query allows the

users to query images with a specified spatial relationship. For example, “display all

images with a lake east of a mountain.” The target of similarity retrieval is to retrieve

the images that are similar to the query image.

A robust spatial similarity framework should be able to recognize image variants

such as translation, scaling, rotation, and arbitrary variants. Image variants may be

perfect or multiple. In a perfect image variant, the same transformation is applied

to all image objects by the same magnitude. Otherwise, the variant is a multiple

variant. Most current spatial similarity algorithms [9, 20, 21, 48, 57, 55, 56] recognize

translation and scaling variants but not rotation variants. A few algorithms [45, 38,

37] has certain constraints. Even fewer algorithms attempt to recognize multiple

rotation variants [39].

Current RSS algorithms may be classified into symbolic projection methods, ge-

ometric methods, and graph-matching methods. Symbolic projection methods are

based on a 2D image representation called the 2D Strings introduced by Chang et

al. [20]. This representation preserves the object’s spatial knowledge embedded in the

image. A picture query can also be specified as a 2D string. The problem of pictorial

information retrieval then becomes a problem of 2D subsequence matching. Various

extensions of 2D strings such as the 2D G-String [14], the 2D C-string [55, 56], and the

2D C+string [48] have been proposed to deal with situations of overlapping objects

with complex shapes. An algorithm for similarity retrieval, based on the 2D string

longest common subsequence (LCS) was proposed by Lee et al. [57]. The 2D string
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LCS problem was transformed to the maximal complete subgraph (clique) problem

that requires non polynomial time complexity. In general, all methods based on 2D

Strings can only recognize translation and scaling image variants but not rotation

variants.

In Chang and Lee [9], each symbolic image is represented as a set of ordered

triplets (Oi, Oj, rij), where Oi and Oj are two symbolic objects and rij is the spatial

relationship between Oi and Oj. All spatial relationships are exhaustively enumerated

and stored in a hashing table. By searching the pre-constructed hashing table for

all (Oi, Oj, rij)s associated with a query, the pictures satisfying that query can be

determined. Similarity is based on exact match which is a severe limitation and it

only recognizes translation and scale variants but not rotation variants.

Geometric methods use the inherent geometric features in the image for image

representation such as those based on the Weighted Center of Mass (WCOM) [45]

and θR-Strings [37]. In Hou et al. [45], the center-of-mass of each individual object is

used to calculate the center-of-mass of the overall image. Each object is then assigned

a feature vector based on its area, the length and the angle from its center to the

image center of mass and neighboring object. Object indexing was incorporated

using existing indexing structure techniques. To avoid the high dimensionality, only

the first four significant objects were considered for indexing. This might lead to true

dismissals if one of the significant objects is not present in the query image. Another

geometry-based image representation, the θR-String was proposed [37]. Each image

was represented by a set of objects where each object has an id, centroid, left and

right neighbors and left and right distances. Objects are ordered by the angle between

the edge joining their centroid to the image center-of-mass and the x-axis (Θ) and by

their distances from the image centroid (R) in case of ties.

Graph-matching methods represent domain objects included in an image and their

spatial relationships by a graph called the spatial orientation graph (SOG). The nodes

of that graph represent the domain objects while the edges carry the spatial relation

between object pairs. Examples of these methods are SIMR [39] in which the edges

carry the slope of the edge connecting each object pair and the SIMvs algorithm [38]
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Figure 1.2 Comparison of transformation-variant strategies

which uses Hamiltonian Cycles to represent the order of the objects in the image.

Spatial similarity is quantified in terms of the number and the extent to which the

edges of the SOG of the database image conform to the corresponding edges of the

SOG of the query image. SIMR can deal with translation, scaling, and perfect

rotation image variants. To recognize multiple rotation variants, SIMR determines

the largest subimage that has rotated as a unit using a clustering approach. Rotating

all objects in the database image in a direction opposite to that of rotation of the

largest group and by equal magnitude would align the database image spatially closer

to the query image to yield maximal similarity.

According to the above discussion, the strategies could be classified into two

groups. One is image transformation variant, the other is image transformation in-

variant. Some representatives in the first and second groups are illustrated in Figures

1.2 and 1.3, respectively.
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Figure 1.3 Comparison of transformation-invariant strategies

There are three different categories shown in Figure 1.2 based on the data structure

used in the strategy. The categories are “linear string”, “hash-oriented”, and “matrix-

based”. 2D strings [20] is the first strategy employing the string-like data structure

to index images. Following are the some variances [10, 21, 54, 56, 7] of the 2D strings.

There are three different kinds of Hash-oriented strategy, they are geometric based

strategy [76], perfect hash based strategy [2], and near perfect hash based strategy

[68]. 9DLT strategy [6] is the first strategy applying matrix structure to record

the spatial relationships. Following is the some extensions [23, 25, 26] of the 9DLT

strategy.

Those strategies which are invariant to image transformation could be separated

into two group according to the object size. One views objects as nonzero sized

ones, the other denotes objects by points based on the centroids of the objects. The

second group could be further divided into two groups. Strategies [41, 43, 65, 66]

belonging to the first group, i.e., triangular relation, using three centroids to define

the spatial relationships. In the second group, i.e., reference point, those strategies
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Figure 1.4 Iconic index: (a) an image picture; (b) the corresponding symbolic repre-

sentation.

[39, 37, 64, 81] applying two centroids to define the spatial relationships. One of the

centroids is called reference point.

1.4 Iconic Indexing Based on Symbolic Projection

Image objects can be represented in various forms. One form is to store significant

points from each object such as the centroid or the corners of the minimum bounding

rectangle (MBR). MBR is the minimum size rectangle that completely encloses a

given object. The MBR is storage efficient and is useful in dealing with image objects

that are arbitrarily complex in terms of their boundary shapes. MBR representa-

tion is efficient in terms of ascertaining certain topological spatial relationships such

as whether or not two objects overlap and whether or not an object is completely

contained in another object.

Tanimoto [73] introduced the concept of the iconic index and the use of picture

icons as picture indices. For example, Figure 1.4-(a) shows an image picture and the

corresponding symbolic representation is shown in Figure 1.4-(b).

The 2D string proposed by S. K. Chang et al. [20] is a compact and well-known

representation of symbolic pictures. C. C. Chang et al. utilized image processing and

pattern recognition techniques to transform images into symbolic pictures. Symbolic
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pictures are represented in terms of their major components, known as icons. In

the icon-based high level spatial reasoning approach, these icons or pictorial objects

become the keywords for the description of the image and can be used for indexing

the database. The pictorial objects can be extracted by projecting their boundaries

in the image onto the x- and y-axes. Consequently, the 2D image is divided into

a set of rectangles formed by the intersection of the projections. Each rectangle

encloses a pictorial objects within itself and is denoted as a minimum boundary

rectangle (MBR). The MBR introduces the concept of encapsulating the positional

information of the pictorial objects. The position of an object can be seen as the

centroid of the enclosing MBR.

However, the 2D string representation is deficient in describing the spatial knowl-

edge of the nonzero sized objects with overlapping. Hence, Jungert [51] and S. K. Chang

et al. [16] proposed the 2D G-string representation which introduced more spatial op-

erators and a cutting mechanism to handle more types of spatial relationships among

objects in image database. But a 2D G-string representation scheme is not ide-

ally economic for complex images in terms of storage space efficiency and navigation

complexity in spatial reasoning, since each overlapping object is partitioned at the

begin-bound or end-bound of the other objects. In order to improve the disadvantage

caused by 2D G-string, Lee and Hsu [54] proposed 2D C-string with more efficient

cutting mechanism. Since the number of subparts generated by this new cutting

mechanism is reduced significantly, the lengths of the strings representing pictures

are much shorter while still preserving the spatial relationships among objects. The

problems of how to infer the spatial relationships between pictorial objects from a

given 2D C-string in spatial reasoning and similarity retrieval are solved by using

the ranking mechanism. But, the procedure for pictorial query is complicated (which

takes O(N 2) time complexity for N nodes). Therefore, Hsu and Lee proposed a 2D

C-tree representation [46, 47], which can provide more efficient procedure for pictorial

query with time complexity O(N) for N nodes.
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In the above various 2D string representations, objects may be partitioned into

subparts in order to obtain the spatial relations among objects, especially for a com-

plex image with overlapping objects. If an object is partitioned into subparts and

stored in the data structure, the several subparts must be treated together as a whole

to infer the knowledge of the object integrally. If there are a large number of subparts,

the storage space requirement is high and processing time is long [56]. Therefore, in

[58], Lee et al. proposed 2D B-string representation to overcome this problem. 2D

B-string preserves all the essential spatial information while at the same time provides

indexes for the images without the need of partitioning of any objects. By using the

ranks of symbols in a 2D B-string, the spatial relationships can be derived easily.

However, it is time-consuming to answer the 13 spatial relationship types question

based on the 2D-B string representation. Therefore, in [7], C. C. Chang and Lee

proposed a new data structure called the Relative Coordinates Oriented Symbolic

(RCOS) string representation to maintain the advantages of 2D B-strings, and to

efficiently check whether a query precisely matches the desired image with one of

the 169 varieties of spatial relations between each two objects based on a decision

tree. From this data structure, the boundaries of each object can be extracted in

linear time. Additionally, one exact type of the 169 possible spatial relationships

can be obtained after tracing through two decision trees, each corresponding to a

one-dimensional space (x or y-axis). For the number of operations for similarity re-

trieval by using the 2D B-string and the RCOS string, the RCOS string is observed

to greatly reduce the number of operations since at most six comparison operations

are needed for RCOS strings while sixteen subtractions and eight multiplication are

required in the 2D B-string algorithm proposed in [58].

As described before, based on 2D string representation, the problem of picture

query turns out to be the matching of 2D subsequence, which takes non-polynomial

time complexity. This makes the picture retrieval method inappropriate for imple-

mentation, especially when the number of objects in an image is large. Therefore, in

[6], C. C. Chang et al. proposed a new approach of iconic indexing by a nine direction

lower-triangular (9DLT) matrix. In this strategy, a pictorial query can be processed

13



by using the matrix minus operations; however, only 9 spatial relationships can be

handled between any two objects.

In the previous approaches to represent pictorial data, as the complexity of rep-

resentation strategy is increased, the more spatial relationships can be represented,

which also results in a more complex strategy for query processing and a limited types

of queries which can be answered. In [24], Y. I. Chang and Yang has proposed a prime-

number-based matrix strategy, which combines the advantages of the 2D C-string and

the 9DLT matrix. Next, Y. I. Chang et al. [23] proposed a unique-number-based strat-

egy in which each spatial operator is represented as a unique number and a range

checking operation is applied to answer a pictorial query.

Based upon the variations of 2D strings or the 9DLT matrix, another data struc-

ture (for indexing 2D-strings/9DLT matrix), a set of triples, to represent the spatial

relationship between each pair of objects in a picture, was proposed [9]. For each

triple, a hashing value is found and stored. Hence, the problem of image matching

becomes a problem of matching hashing value sequences [2, 9, 8, 80]. Moreover, in

order to solve the ambiguity of MBRs, Zhou and Ang [80] combined the topologi-

cal and directional relationships to introduce another spatial relationships which are

hashed in a hashing table to answer the spatial queries. Hash oriented algorithms

for the similar match retrieval of symbolic images with O(n) search time were also

proposed, where n is the number of symbolic images in the database. However, the

database grows unwieldy as the space requirement for the index structure is O(n2)

where n is the number of objects in the database.

On the other way, in [19], S. K. Chang and Li proposed 2D-H strings, which can be

viewed as a combination of quadtrees [69] and 2D strings [20]. Using the 2D-H string,

the hierarchical symbolic pictures can be represented efficiently in terms of space com-

plexity. Although the 2D-H string data structure has been proven to be an efficient

approach to represent and to manipulate symbolic pictures, in [10], C. C. Chang and

Lin has discovered some redundancies existing in those data representations. There-

fore, they proposed another alternative, called adaptive 2D-H strings, for representing

the relationships among the objects in an image [10]. In [10], C. C. Chang and Lin
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has presented an algorithm for converting symbolic pictures of any size into adaptive

2D-H strings. They showed that their adaptive 2D-H string can work well for many

unbalanced non-square small pictures, which frequently exist in our real environment.

In [22], Y. I. Chang and Ann corrected some errors occurring in [10].

1.5 Motivations and Contributions

In the 3D animation field [52, 75], the sequence of images performed by computers

are often operated by a number of basic transformations, e.g., rotation and reflection.

Figure 1.5-(a) is the original image. Figure 1.5-(b) to Figure 1.5-(f) show the results

of five different basic transformations applied to the original one.

As in robotic scenes and virtual reality applications, they require to solve queries

like this: “find those images that are satisfied with a given pattern even if it shows in

a rotation orientation.” However, indexing methods based on symbolic projection are

sensitive to rotation or reflection. If we want to retrieve an image which is rotated

and stored in the database and we have only the index that represent the image

before being rotated, we must have the new index of the rotated image such that we

can retrieve the image. There are two approaches to solve this problem. The first

approach is that we reconstruct the image from the original index, rotate the image

and construct the index of the rotated image as shown in Figure 1.6-(a). In order not

to miss the qualified database images, we need to do steps 2 and 3 five times to derive

the five indexes, i.e., the indexes of the image rotated by 90, 180, and 270 degrees, and

the indexes of the image flipped horizontally and vertically. Figure 1.6-(b) shows the

second approach, in which we find a corresponding strategy such that the new index

of the rotated image can be constructed by the original index. The first approach

is time-consuming as compared to the second approach. Therefore, finding a good

strategy such that we can efficiently get the new index of the adjusted image from

the original index is important.

Petrakis [64] described that one of classes of the spatial image content represen-

tation and matching is symbolic projection. However, strategies based on symbolic
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Figure 1.5 Image transformation: (a) the original image; (b) flipped horizontally; (c)

flipped vertically; (d) rotated by 90◦; (e) rotated by 180◦; (f) rotated by 270◦.
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Figure 1.6 The process for obtaining the rotated or flipped index: (a) the original

three steps; (b) the second approach.

projection, e.g., [17, 49], cannot recognize similarity between two indexes correspond-

ing to an image and one of its possible transformations, e.g., rotation and reflection.

To solve this problem, Nabil et al. [61] and Petraglia et al. [63] proposed a similar

mapping for the rotation and reflection of the spatial relationships. However, the pro-

cess of the index mapping is time-consuming. Thus, in this dissertation, we classify

the mapping into three cases and carefully assign a 16-bit unique bit pattern to each

spatial relationship. Based on the assignment, we can easily do the mapping with

our proposed bit operation, intra-exchange. Moreover, we propose an efficient iconic

index strategy, called Unique Bit Pattern matrix strategy (UBP matrix strategy) to

record the spatial information. In this way, when doing similarity retrieval, we do

not need to reconstruct the original image from the UBP matrix in order to obtain

the indexes of the rotated and flipped image. Conversely, we can directly derive the
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index of the rotated or flipped image from the index of the original one through bit

operations and the matrix manipulation. Thus, our proposed strategy can do simi-

larity retrieval without missing the qualified database images. From our performance

study, we show that our strategy outperforms those mapping strategies [61, 63] based

on different number of objects in an image. The percentage of improvement is between

13.64% and 53.23%.

1.6 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 gives a survey of

the previous proposed representations for symbolic images. Chapter 3 presents our

contributions in detail. In Chapter 4, a simulation study will be made to show that

our proposed strategy is efficient. Finally, concluding remarks are made in Chapter

5.
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CHAPTER 2

A Survey of Iconic Indexing Strategies

In this Chapter, we give a survey of some iconic indexing strategies. These strategies

can be roughly classified into two groups. 2D C-strings [54], 2D B-strings [58], 2D-

PIR [61], Zhou and Ang’s strategy [80], UID matrix [23], Virtual images [63], 2D Z-

string [53], and 9D-SPA [49] belong to the group dealing with nonzero-sized objects.

2D strings [20], 9DLT matrix [6], Triangular spatial relationship (TSR) [41] and it’s

subsequent extensions [43, 65, 66] belong to the group viewing objects as points based

on their centroids. Specifically, we will describe UID matrix, Virtual images, and 2D-

PIR strategies in more details, since these strategies are related to our proposed

strategy.

Table 2.1 summarizes some characteristics of the strategies in the survey. The

first column is the abbreviation name of those strategies which are listed in the order

of the published year. The second column shows which type of the objects in an

image is. “centroid” means the strategy applies the centroids of the objects to define

the spatial relationships. On the other hand, “sized” means the strategy defines the

spatial relationships based on the object’s length and width. In the third column,

it describes whether the spatial relationships among objects are invariant to image

transformation, such as rotation and reflection. There is a special notion “specific

degree” which means the spatial relationships defined in the strategy is invariant

to only the multiple of 90◦ rotation and reflection. There are two types of image

retrieval. One is exact match, the other is similarity retrieval. The fourth column

shows the strategy is suited for which type of image retrieval. The last column shows
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Table 2.1 Comparison of existing strategies

Strategy Object Invariant Match Time

2D strings [20] centroid Not invariant Similarity Non-polynomial

9DLT matrix [6] centroid Not invariant Similarity O(n×m2)

2D C-strings [54] sized Not invariant Similarity Non-polynomial

2D B-strings [58] sized Not invariant Similarity O(n×m2)

2D-PIR [61] sized specific degrees Similarity O(n×m2)

Zhou’s strategy [80] sized Not invariant Similarity O(m2)

UID matrix [23] sized Not invariant Similarity O(n×m2)

Virtual images [63] sized specific degrees Similarity O(n×m2)

2D Z-string [53] sized Not invariant Similarity Non-polynomial

9D-SPA [49] sized Not invariant Similarity O(m2)

TSR [41] centroid Invariant Exact O(lg n)

TSR B-Tree [43] centroid Invariant Similarity O(m3)

TSR Statistics [65] centroid Invariant Exact O(lg n)

Logarithmic strategy [66] centroid Invariant Exact O(lg n)

the complexity of the search time, where m is the number of objects in the query and

n is the total number of images in the database.

2.1 2D Strings

In pictorial information retrieval, we often want to retrieve pictures satisfying a

certain picture query, for example, “find all pictures having a tree to the left of the

house.” S. K. Chang et al. [20] present a new way of representing a picture by a

2D string. A picture query can also be specified as a 2D string. The problem of

pictorial information retrieval then becomes a problem of 2D subsequence matching.
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Figure 2.1 A picture f

This approach thus allows an efficient and natural way to construct iconic indexes for

pictures.

Let V be a set of symbols, or the vocabulary. Each symbol could represent a

pictorial object (a named object such as “house”, “tree”, etc.) or a pixel. Let A be

the set {“ =′′, “ <′′, “ :′′}, where “=”, “<” and “:” are three special symbols not in V .

These symbols will be used to specify spatial relationships between pictorial objects.

For example, consider the picture shown in Figure 2.1. The vocabulary is V =

{a, b, c, d}. The 2D (x, y) string representing the above picture f is as follows:

({a} = {} = {d} < {a} = {b} = {} < {} = {c} = {},

{a} = {a} = {} < {} = {b} = {c} < {d} = {} = {}).

Where the symbol “<” denotes the left-right or below-above spatial relationship,

and the symbol “=” denotes the spatial relationship “at the same spatial location

as.”

The corresponding absolute 2D string is as follows:

(a == d < a = b =<= c =, a = a =<= b = c < d ==).

The corresponding normal 2D string is as follows:

(ad < ab < c, aa < bc < d).

The same procedure can be applied to pictures whose “slots” may contain multiple

objects (i.e., object sets). For example, if in Figure 2.1, another object e is added to

the same slot with d, then the corresponding normal 2D string with sets is as follows:

(ad : e < ab < c, aa < bc < d : e).

Where the symbol “:” denotes the relationship “in the same set as.”

The corresponding reduced 2D string is as follows:
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(ade < ab < c, aa < bc < de).

A picture is defined to be ambiguous if there exists a different reconstructed

picture g from its 2D string representation (x, y). To reduce the ambiguity, the

permutation function p is included in the augmented 2D string representation. The

corresponding augmented 2D string of the picture f is as follows:

(ade < ab < c, aa < bc < de, 145623),

(ade < ab < c, 14 < 56 < 23).

2.2 2D C-Strings

Although 2D G-strings can represent the spatial relationships among objects in

pictures and spatial reasoning can be carried out effectively on generalized 2D strings

using a set of reasoning rules, there still exist some problems. One important ob-

servation is that the number of segmented subparts of an object is dependent of the

number of bounding lines of other objects which are completely or partly overlapping

with this targeted object. For the cases of objects with overlapping, the storage space

overhead is high and it is time consuming in spatial reasoning if pictures are repre-

sented in 2D G-string. Therefore, to overcome this problem, 2D C-string is proposed

by Lee and Hsu [54]. The same set of spatial operators are employed to perform a

more efficient and economic cutting mechanism, and have a sound and characteristic

description for a picture.

Table 2.2 shows the formal definition of the set of spatial operators, where the

notation “begin(A)” denotes the value of begin-bound of object A and “end(A)”

denotes the value of end-bound of object A. According to the begin-bound and end-

bound of the picture objects, spatial relationships between two enclosing rectangles

along the x-axis (or y-axis) can be categorized into 13 types ignoring their length.

Therefore, There are 169 types of spatial relationships between two rectangles in 2D

space, as shown in Figure 2.3. Basically, a cutting of the 2D C-string is performed

at the point of partly overlapping, and it keeps the former object intact and par-

titions the latter object. The cutting mechanism is also suitable for pictures with
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Figure 2.2 The cutting mechanism of 2D C-string: (a) cut along the x-axis; (b) cut

along the y-axis.

many objects. Furthermore, the end-bound point of the dominating object does not

partition other objects which contain the dominating object. Less cuttings and no

unnecessary cuttings in 2D-C string will make the representation more efficient in

the case of overlapping as shown in Figure 2.2. The corresponding 2D C-string is as

follows:

2D C x-string(f): A](B|D|D)|D%C.

2D C y-string(f): D < B]C]A|A.

2.3 2D B-Strings

In 2D G-strings [51] and 2D C-strings, the cutting mechanism is used for solving

the problems of overlapping by segmenting an object to many subparts. But the

partition process is quite time-consuming and it also creates a large storage overhead

for the spatial reasoning on spatial queries. The 2D B-strings strategy [58], on the

other hand, does not require that the objects be partitioned. The spatial relationships

are derived by using the ranks of symbols in the 2D B-strings.

Let S be a set of symbols. Each symbol could represent the Begin boundary or

End boundary of a pictorial object. The projection of each object is described by its

two boundaries, begin and end boundaries. The only special symbol “=” not in S is
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Figure 2.3 The 169 spatial relationship types of two objects
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Table 2.2 Definitions of Lee et al.’s spatial operators

Notation Condition Meaning

A < B end(A) < begin(B) A disjoins B

A|B end(A) = begin(B) A is edge to edge with B

A/B begin(A) < begin(B) A is partly overlapping with B

< end(A) < end(B)

A]B begin(A) < begin(B) A contains B and they have the same end bound

end(A) = end(B)

A[B begin(A) = begin(B) A contains B and they have the same begin bound

end(A) > end(B)

A%B begin(A) < begin(B) A contains B and they do not have the same bound

end(A) > end(B)

A = B begin(A) = begin(B) A is at the same position as B

end(A) = end(B)

used to specify spatial relationship, when the projections of objects have the same

boundary.

A 2D B-string over S is written as (x, y), where x and y are 1D string over S∪{=}

representing the boundary of the projection of objects along x- and y-axis, respec-

tively. For example, the 2D B-string to represent the picture f in Figure 2.4 is:

x: ABCABC

y: CC=AA=BB

The rank of each symbol in a string x, which is defined as the position of this

symbol minus the number of “=” preceding this symbol in x string. The position of

the first object symbol in 2D B-string is set to 1 and the symbol “=” is not counted

in the calculation of the positions of object symbols. The projection of each object
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is described by two symbols, representing begin and end boundary. Therefore, each

object has two ranks, begin rank and end rank, along x- and y-axis directions, re-

spectively. For example, the ranks of each object in Figure 2.4 are:

x:

rank-begin(A)=1, rank-end(A)=4,

rank-begin(B)=2, rank-end(B)=5,

rank-begin(C)=3, rank-end(C)=6.

y:

rank-begin(A)=2, rank-end(A)=3,

rank-begin(B)=3, rank-end(B)=4,

rank-begin(C)=1, rank-end(C)=2.

Hence, the rank of each object can be represented as (i, j, k, l), where (i, j), (k, l)

represent the ranks of begin boundary and end boundary along x- and y-axis , re-

spectively. Thus, the above example can be written as:

rank(A)=(1, 4, 2, 3),

rank(B)=(2, 5, 3, 4),

rank(C)=(3, 6, 1, 2).
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Figure 2.5 An example p

It can be observed that some symbols in 2D B-string might be omitted and the

spatial relationships between objects still keeps the same. The condition is satisfied

when the projections of objects are disjoin or the projections of objects are at the

same location. In this case, an object can be viewed as a point, i.e., begin boundary

and end boundary meet as one point. For example, the x and y strings

x: ABABCCDD

y: DAADB=CB=C

in Figure 2.5 can be reduced as

x: ABABCD

y: DADB=C

The representation is called reduced 2D B-string. It is worth noting that the

symbol in reduced 2D B-string might represent the boundary of an object or the

object itself depending on the symbol appearing once or twice in the x- or y- string.

There are total 13 kinds of spatial relationships between two objects in one dimen-

sion as illustrated in Figure 2.6. If we consider x- and y- axis directions independently,
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Figure 2.6 13 types of spatial operators in one dimension (horizontal projection)

there are total 169 kinds of spatial relationships between two objects in two dimen-

sion. They can be classified into five spatial categories, disjoin, join, contain, belong,

and partial overlapping. The criterion for the spatial categories is the intersection

area between each two objects. Figure 2.7 shows some examples of those five spatial

categories.

2.4 2D Projection Interval Relationships

A 2D Projection Interval Relationship (2D-PIR) [61] is a symbolic representation

of directional and topological relationships among objects in an image. Allen’s tem-

poral intervals [1] and 2D-strings [20] are adapted and combined in a novel way to

produce the unified representation.

An interval-based temporal representation and a method to derive relationships

between intervals are proposed by Allen [1]. Intervals can be represented by their

endpoints. Based on this representation, 13 temporal relationships (7 relationships

have inverses, one relationship has no inverse) are derived as shown in Table 2.3.

The project concept from the 2D-String representation is applied to 2D-PIR. The

difference from the 2D-string representation is the Allen’s interval relationships is

employed over the projection s of the entire objects along x and y axes. Thus,

instead of a string, a graph is used to represent the relationships among objects in a

picture. A 2D-PIR graph is a connected labeled digraph G(V,R) where V is a finite

non-empty set of symbols representing objects in a picture and R is a set of edges

labeled by 2D-PIR relationships.
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Figure 2.7 Examples of spatial categories: (a) disjoin; (b) join; (c) partial overlapping;

(d) contain; (e) belong.

Relationship Symbol Inverse

X before Y < >

X equal Y = =

X meet Y m mi

X overlaps Y o oi

X during Y d di

X starts Y s si

X finishes Y f fi

Table 2.3 Allen’s interval relationships
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Figure 2.8 2D-projection image

A 2D-PIR between two spatial objects A and B is a triple (δ, χ, ψ). δ is a topologi-

cal relationship from the set {dt, to, ct, in, ov, co, eq, cb}. These represent the topolog-

ical relationships disjoint, meets, contain, inside, overlaps, covers, equal, covered by.

The domain of χ and ψ are {<,=, m, o, d, s, f, >,mi, oi, di, si, f i} which are symbols

for interval relationships. χ represents the interval relationship between objects A

and B projected along the x-axis, and ψ represents the interval relationship between

objects A and B projected along the y-axis.

For example, in Figure 2.8, 2D-PIR between A and B is (dt, <, oi), between A and

C is (dt, <,m), and between B and C is (co, fi, si). Let us consider the relationships

between B and C. The 2D-PIR between B and C among x and y axes are (fi, si).

This means B covers C and C is located on the bottom-right of B. Thus, we can

infer that C is covered by B on the bottom-right. The corresponding 2D-PIR graph

of Figure 2.8 is shown in Figure 2.9.

The degree of similarity between two images represented using 2D-PIR image is

dependent on the degree of similarity between their corresponding 2D-PIR relation-

ships. For example, the degree of similarity between (δ1, χ1, ψ1) and (δ2, χ2, ψ2) is

dependent on the degree of similarity between δ1 and δ2, χ1 and χ2, and ψ1 and ψ2.
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Figure 2.9 2D-PIR graph

Figure 2.10 shows the topological neighborhood graph, and the interval neighbor-

hood graph is shown in Figure 2.11. Based on distance between any two relationships

shown in Figures 2.10 and 2.11, we can use the following formula to determine the

similarity metric between the 2D-PIR relationships to do the similarity retrieval.

D(r1, r2) =
√

D(δ1, δ2)2 +D(χ1, χ2)2 +D(ψ1, ψ2)2

A similarity algorithm which is invariant for matching a image with another image

where the latter image is a rotated version or reflected version of the first image this

strategy is proposed in the 2D-PIR strategy. Suppose A and B are two objects in an

image (I). Let (δ, χ, ψ) be a 2D-PIR relationship between A and B in I. Let ξ be a

function such that

ξ(g) =














































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

















gi if g ∈ {m, o}

g if g ∈ {d, di, =}

h where g = hi and g ∈ {mi, oi}

k where g ∈ {s, si} and k ∈ {f , fi}

l where g ∈ {f , fi} and l ∈ {s, si}

> if g = <

< if g = >
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Figure 2.11 Interval neighborhood graph
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Figure 2.12 Example of the rotation transformation: (a) original image (I); (b) the

270◦ rotated version (Q).

The following statement holds: If (δ, χ, ψ) is a 2D-PIR relationship between two

spatial objects in an image then (δ, ξ(ψ), χ) is the 2D-PIR relationship between objects

in the 90◦ counterclockwise rotated version of the image. For any rotation of a picture

which is a multiple of 90◦ counterclockwise rotation, the interval relationships can be

computed as a composition of 90◦ rotations.

For example, Figure 2.12 shows an image (I) and a version of the image that has

undergone a 270◦ counterclockwise rotation. The 2D-PIR relationships between AB,

AC, and BC in I are (dt, di, <), (ov, o, di), and (dt, <,>), respectively. Transform

these relationships via a 270◦ rotation transformation, i.e., do the 90◦ transformation

three times, the 2D-PIR relationships are (dt, <, di), (ov, di, oi), and (dt, >,>) which

are the 2D-PIR relationships between AB, AC, and BC in Q, respectively.

With respect to reflection, the following statement holds: If (δ, χ, ψ) is a 2D-PIR

relationship between two spatial objects in an image, then (δ, χ, ξ(ψ)) is the 2D-PIR

relationship between the objects in a version of the image that has been reflected in

the x-axis. (δ, ξ(χ), ψ) is the 2D-PIR relationship between objects in the version of

the same image reflected in the y-axis.
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Figure 2.13 Example of the reflection transformation: (a) original image (I); (b)

vertical reflection (Iv); (c) horizontal reflection (Ih).

For example, Figure 2.13 shows an image I and its vertical (Iv) and horizontal

(Ih) reflected versions. The 2D-PIR relationships between A and B, A and Z, and B

and C in I are the same as the those shown in Figure 2.12-(a). If we transform these

relationships by vertical reflection, the 2D-PIR relationships are (dt, di, <), (ov, oi, di),

and (dt, >,>), which are the 2D-PIR relationships between A and B, A and C, and B

and C in Iv, respectively. Similarly, if we transform these relationships by horizontal

reflection, the 2D-PIR relationships are (dt, di, >), (ov, o, di), and (dt, <,<) which are

the 2D-PIR relationships between A and B, A and C, and B and C in Ih, respectively.

2.5 Zhou and Ang’s DT Approach

The approach of iconic indexing by a 2D string for spatial reasoning was proposed

by S. K. Chang et al. [20]. To represent a picture symbolically, the objects in the

original image must be recognized first. These objects are usually then enclosed by

minimum boundary rectangles (MBRs). However, sometimes, it is hard to describe

the spatial relationship of the objects in terms of that between their corresponding

MBRs. In order to avoid the ambiguity problem in visualization caused by MBRs,

Zhou and Ang proposed a new spatial knowledge representation and a hashing table
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Figure 2.14 The 41 types of spatial relations in two dimensions

by combining the directional and topological information into one representation [80].

We call this approach, the DT approach.

There are 41 types of spatial relationships in 2D space displayed in Figure 2.14.

In this approach, a pairwise spatial relationship ri,j (range between 0 to 40) between

two objects Oi and Oj is represented as a triplet (Oi, Oj, ri,j). Then, the algorithm

calculates h(Oi, Oj) = Vi + Vj and hr(Oi, Oj, ri,j) = h(Oi, Oj) + (ri,j/100), where hr

is called symbol hashing value (SHV ). Finally, a hashing table is used to organize

the pictures containing the pairs (Oi, Oj). The hashing function h is used to be the

offset into the table of an entry that points to a tree-like structure with 41 branches

corresponding to the 41 relationships. The branch for ri,j in the tree-like structure is

a linked list of those pictures containing (Oi, Oj, ri,j). The hashing table is shown in

Figure 2.15.

We give an example to illustrate the generation of symbol hashing value and

demonstrate how the similarity retrieval can be done based on it. The symbol set
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Figure 2.15 The hashing table for a pictorial database

of the picture P in Figure 2.16-(a) is {A,B,C,D,E, F}. The triplets of P are {

(A,B,3), (A,C,3), (B,C,17), (A,D,3), (B,D,9), (C,D,33), (A,E,3), (B,E,3), (C,E,3),

(D,E,3), (A,F,3), (B,F,3), (C,F,3), (D,F,3), (E,F,18) }. The values for symbols Oi, h

and hr are shown in Table 2.4.

Assume there are 6 pictures in pictorial database. The hashing table of the

database is shown in Figure 2.17, where picture P has the picture number 1. In

our example, we only show a part of this structure to be referenced in the similarity

retrieval. Given a query Q which is shown in Figure 2.16-(b), its symbol hashing

value set is {5.09, 8.03, 11.03}. According to the algorithm discussed in the DT ap-

proach, for each hri in the above set, let hi = bhric, and r′i = (hri − hi) × 100,

and access through the table entry corresponding to hi and the r′ith branch to ob-

tain the list L[(hi, r
′

i)]. Then, we have L[(5, 9)] = {1, 4, 6}, L[(8, 3)] = {1, 3, 5}, and

L[(11, 3)] = {1}. Finally, we have Answer = {1, 4, 6}∩ {1, 3, 5}∩ {1} = {1}. So only

picture P that matches the query picture Q will be retrieved from the database.
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Figure 2.16 An example : (a) picture P; (b) query picture Q.
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Figure 2.17 Part of the hashing table of the database
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Table 2.4 Symbol hashing value construction

Symbols Symbol value (Vm) Icon pairs rij h hr

A 0 (A,B) 3 1 1.03

B 1 (A,C) 3 2 2.03

C 2 (B,C) 17 3 3.17

D 4 (A,D) 3 4 4.03

E 7 (B,D) 9 5 5.09

F 12 (C,D) 33 6 6.33

(A,E) 3 7 7.03

(B,E) 3 8 8.03

(C,E) 3 9 9.03

(D,E) 3 11 11.03

(A,F) 3 12 12.03

(B,F) 3 13 13.03

(C,F) 3 14 14.03

(D,F) 3 16 16.03

(E,F) 18 19 19.18

h = Vi + Vj

hr = h+ (ri,j/100)
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Function CATEGORY(uidx
A,B, uidy

A,B)

1 if (uidx
A,B > 4) and (uidy

A,B > 4) then

2 if (7 ≤ uidx
A,B ≤ 10) and (7 ≤ uidy

A,B ≤ 10) then

3 return (’C’)

4 else if (10 ≤ uidx
A,B ≤ 13) and (10 ≤ uidy

A,B ≤ 13) then

5 return (’B’)

6 else return (’P’)

7 else if (uidx
A,B > 2) and (uidy

A,B > 2) then

8 return (’J’)

9 else return (’D’)

Figure 2.18 The CATEGORY function

2.6 An Unique-ID-Based Matrix Strategy

Chang et al. [23] proposed an efficient iconic indexing strategy called unique-ID-

based matrix (UID matrix) for symbolic pictures, in which each spatial relationship

between any two objects is assigned with a unique identifier (ID) and is recorded in

a matrix. Basically, the proposed strategy can represent those complex relationships

that are represented in 2D C-strings in a matrix, and an efficient range checking

operation can be used to support pictorial query, spatial reasoning and similarity

retrieval.

Chang et al. assigned each of those 13 spatial operators a unique identifier denoted

by uid as shown in Table 2.5. Thus, the 169 spatial relationships can be arranged

in a way that relationships of the same category are grouped together as shown in

Table 2.6. In this way, given two uids (uidx
A,B, uidy

A,B), to efficiently determine a

category, we can use the algorithm as shown in Figure 2.18. The corresponding

decision tree is shown in Figure 2.19.
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Figure 2.19 Decision tree of the CATEGORY function

Table 2.5 UIDs of 13 spatial operators

operator < <∗ | |∗ / /∗ ] [ % = ]∗ [∗ %∗

UID 1 2 3 4 5 6 7 8 9 10 11 12 13
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Table 2.6 Category table
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Figure 2.20 An example of a symbolic image presented by MBRs

Suppose an image I contains m objects and let V = {v1, v2, ..., vm}. Let R be

the set of 13 spatial operators {<,<∗, |, |∗, [, [∗, ], ]∗,%,%∗, /, /∗,= }. A m×m spatial

matrix S of image I is defined as follows:

S =

v1 v2 · · · vm−1 vm

v1 0 ry
1,2 · · · · · · ry

1,m

v2 rx
1,2 0

. . .
...

...
...

. . . 0
. . .

...

vm−1

...
. . . 0 ry

m−1,m

vm rx
1,m · · · · · · rx

m−1,m 0

where the lower triangular matrix stores the spatial information along the x-axis,

and the upper triangular matrix stores the spatial information along the y-axis.

For the image shown in Figure 2.20,the corresponding spatial matrix S is shown

as follows.

S =

A B C

A 0 < [∗

B / 0 %∗

C < | 0

According to the assignments of the uid values for those 13 spatial operators

shown in Table 2.5, the spatial matrix S of I can be transformed into a UID matrix

T as follows:
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T =

A B C

A 0 1 12

B 5 0 13

C 1 3 0

The lower left triangular area of the matrix M records the spatial relationships

among the x-axis, and the upper right one records the spatial relationships among

the y-axis. For example, the unique identifiers for the objects A and B among the x-

and y-axes are 5 and 1, respectively. Thus, this means that the object B is above the

object A.

2.7 Virtual Images for Similarity Retrieval

Petraglia et al. [63] introduced the concept of a virtual image description of an

image, called virtual image. The virtual image of a real image consists of a set

of objects and a set of binary spatial relationships over the objects. Moreover, a

transformation law was proposed to derive the transformation of the virtual image.

Given a real image S, the virtual image P associated with S is a pair (Ob,Rel),

where:

• Ob = {ob1, ob2, . . . , obn} is a set of objects

• Rel = (Relx, Rely) is a pair of sets of binary spatial relationships over Ob,

where Relx contains the mutually disjoint subsets of Ob × Ob that express

the relationships as shown in Table 2.2 holding between pairs of objects of S

along the x-projection. The Rely has the same definition of Relx except for the

relationships are along the y-projection.

For example, in Figure 2.21-(a), the corresponding virtual image is:

Ob = A,C,E;

Relx = {A|C,A < E,C%E};

Rely = {A/C,E < A,E < C}.
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Figure 2.21 Image S with different observation viewpoint: (a) O′ viewpoint; (b) O

viewpoint.

In real applications, it would be important to deal with the transformation of im-

ages, especially for the change of spatial relationships among objects. As an example,

in Figure 2.21-(a), suppose O is the observer viewpoint. The spatial relationships be-

tween the objects in Figure 2.21-(a) are different from those in Figure 2.21-(b) where

the observer viewpoint is changed to O′. This is because the conventional indexing

methods based on orthogonal projections do not provide simple ways to recognize

similarity between two indexes corresponding to an image and one of its possible

manipulations, say translation, reflection, change of point of view, etc.

When reversing the scanning direction, the begin point of an object is exchanged

with its ending point. This strategy derives the atomic relationships in terms of re-

lationships between couple of objects. Thus, the atomic relationships of a picture re-

versed along a given direction can be easily obtained from those of the original image.

Table 2.7 summarizes the correspondences existing between the atomic relationships

of an image f along the x-direction and the corresponding atomic relationships in an

image g obtained by reversing f along the y-axis.

Let f and g be two images such that g is obtained by reversing f along the x-axis,

and let fvi = (Obf , Relf) with Relf = (Relfx
, Relfy

) and gvi = (Obg, Relg) with Relg

= (Relgx
, Relgy

) be their corresponding virtual images. Then, the virtual image gvi
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Atomic relationship in f Atomic relationship in g

A < B B < A

A = B B = A

A | B B | A

A % B A % B

A [ B A ] B

A ] B A [ B

A / B B / A

Table 2.7 The TX-6 transformation law

is given by

gvi = (Obg, Relg) with Relg = (Relfx
, TX-6(Relfy

))

For example, suppose an image S as shown in Figure 2.21-(b) whose virtual image

with respect to the O′ viewpoint is (Ob,Rel) where

Ob = {A,C,E};

Rel′x = {C|A,E < A,C%E};

Rel′y = {A/C,E < A,E < C}.

When moving the viewpoint from O′ toward O as shown in Figure 2.21-(a), the

virtual image corresponding to the image S can be obtained by applying the TX-6

transformation law to the Relx set as follows:

Ob = A,C,E;

Relx = TX-6(Rel′x) = TX-6({C|A,E < A,C%E})

= {A|C,A < E,C%E};

Rely = {A/C,E < A,E < C}.

45



2.8 2D Z-string

In order to reduce the storage space, Lee et al. [53] proposed the 2D Z-string

strategy. In this strategy, there is no cutting between objects. Thus, the integrity of

objects is preserved and the storage space is bounded to O(n), where n is the number

of objects in an image. The shorter the generated string is, the less execution time is

required for string generation and image reconstruction.

The objects in an image are projected onto the x- and y-axes to form two strings

to represent the spatial relationships between the projections. The locations and

sizes of objects, and the distances between objects are recorded in the 2D Z-string

representation.

There are 13 spatial relationships in the 2D Z-string strategy. The definition

and the corresponding operators of those spatial relationships are the same as which

defined in the 2D C-string strategy. Some metric measurements to the knowledge

structure of 2D Z-string is added. For examples, in Figure 2.22-(a), A6 means the

size of object A is 6. In Figure 2.22-(b), A <3 B denotes the distance associated with

the spatial operator “<” between objects A and B is 3. In Figure 2.22-(c), A%4B

denotes the distance associated with the spatial operator “%” between the objects A

and B is 4. In Figure 2.22-(d), A/7B denotes the distance associated with the spatial

operator “/” between the objects A and B is 7.

The knowledge structure of 2D Z-string is a 5-tuple (O, T , Rg, Rl, “( )”) where

1. O is the set of objects of interest;

2. T is the set of attributes to describe the objects in O;

3. Rg = {“<”, “|”} is the set of global spatial operators;

4. Rl= {“=”, “[”, “]”, “%”, “/”} is the set of local spatial operators;

5. “( )” is a pair of separators which is used to describe a set of objects as a

template object.
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Figure 2.22 Examples of the metric measurements: (a) A6; (b) A <3 B; (c) A %4 B;

(d) A /7 B.

For example, in Figure 2.23, the image contains 6 partly overlapping objects. The

corresponding 2D Z-string is shown as follows:

x-string: (((A2/0.9B2.7)/0.9C3) <1.4 ((D3.4/0.3E4.2)|F3))

y-string: ((((A3.5/1.5B4)/4.5D6)/7(E7.2]F7))/2.8C4.6)

2.9 9D-SPA Representation for Spatial Relation-

ships

Using centroid to represent the position of an object is too sensitive in spatial

reasoning. For example, the spatial relationships between the two objects shown in

Figures 2.24-(a), 2.24-(b), and 2.24-(c) are all different based on the centroid of the

objects. However, they seem not too much different in human visual perception. This

is because objects are often nonzero-sized. In order to overcome the above problem,
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Figure 2.23 Example of the partly overlapping objects

(a) (b) (c)

Figure 2.24 Too sensitive spatial relationship based on centroid: (a) south-west; (b)

south; (c) south-east.
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Hunag et al. proposed the 9-Direction Spanning Area (9D-SPA) strategy [49].

Suppose that there are m objects (O1, O2, . . . , Om) in an image S. Then, the

9D-SPA representation of S can be encoded as a set of 4-tuples:

R = {(Oij, Dij, Dji, Tij)|∀Oi, Oj ∈ S, and 1 ≤ i < j ≤ m}

where Oij is the code for object-pair (Oi, Oj), Dij is the code for the direction-relation

between objects Oi, Oj with Oj as the reference object, Dji is the code for the

direction-relation between Oi and Oj with Oi as the reference object, and Tij is the

code for the topological relation between Oi and Oj.

Let Oi be the ith object in the image database (1 ≤ i ≤ m). The integer i is

assigned to the object Oi as its object number. Then, Oij is called the object-pair

code for object-pair (Oi, Oj). Oij is computed as

Oij =
(j − 1)(j − 2)

2
+ i

Dij represents the value assigned to the directional relationship between objects

Oi and Oj with Oj as the reference object. The value of Dij is calculated by the

following procedure. First, the Minimum Bounding Rectangle (MBR) for reference

object Oj is recognized. The four boundaries of this MBR are extended horizontally

and vertically until they cut the whole picture into 9 neighborhood areas. Each area

is assigned to a binary code as shown in Table 2.8. The value of Dij is determined

by the formula

Dij =
8

∑

k=1

bkwk

where wk is the binary code of neighborhood area k; bk = 1 if object Oi overlaps area

k, otherwise, bk = 0.

The value of Tij indicates the topological relationship between objects Oi and Oj.

Values assigned to the topological relationships are as follows:

• 0 stands for disjoint ;

• 1 stands for meet ;

• 2 stands for partly overlap;
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Area 4: (00001000)2 = 8 Area 3: (00000100)2 = 4 Area 2: (00000010)2 = 2

Area 5: (00010000)2 = 16 Area 0: (00000000)2 = 0 Area 1: (00000001)2 = 1

Area 6: (00100000)2 = 32 Area 7: (01000000)2 = 64 Area 8: (10000000)2 = 128

Table 2.8 Codes for 9 neighborhood areas of MBR of Oj

A


B


8
 4
 2


16
 0
 1


32
 64
 128


(a) (b)

Figure 2.25 Example of 9D-SPA representation strategy: (a) the symbolic image; (b)

overlapping areas.

• 3 stands for cover ;

• 4 stands for contain or inside;

For example, in Figure 2.25-(a), the code for DAB is

(00001000 + 00010000 + 00100000 + 01000000 + 10000000)2 = 248

and the code for TAB is 0. Moreover, from DAB = 248 = (11111000)2, we can easily

determine that object A spans five neighborhood areas of object B, i.e., the northwest,

the west, the southwest, the south, and the southeast neighborhood areas as shown

in Figure 2.25-(b).

A two-level index structure to facilitate image retrieval is incorporated into the 9D-

SPA strategy. An example of such an index structure is shown in Figure 2.26. There

are two levels of indexes in this index structure based on 9D-SPA representation. The

first-level index, called the level -1 index array containing two pointers. One points
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Figure 2.26 Example of index structure for a pictorial database

to a list of directional relation-codes, the other points to an array, called “topological

relation array”. For example, in Figure 2.26, suppose the tuple (4, 14, 64, 1) of the

9D-SPA representation belongs to the image S4. Then, there are links to S4 in the

direction-code list (14, 64) and the topological relation array pointed by the 4th entry

of the level-1 index array.

2.10 9DLT Matrix

In 2D string representation, the problem of picture query turns out to be the

matching of 2D subsequences. Later, Lee et al. [57] suggest that by finding the 2D

strings’ longest common sequences, “similar” pictures can be retrieved. The algorithm

still takes non-polynomial time complexity. This makes their picture retrieval method

inappropriate for implementation, especially when the number of objects in an image

is large. In [6], C. C. Chang et al. propose an approach of iconic indexing by a nine

direction lower-triangular (9DLT) matrix.
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Figure 2.27 The direction codes
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Figure 2.28 9DLT representation: (a) a symbolic picture; (b) the related 9DLT

matrix.

Given a well-constructed symbolic picture, our main concern is how to design a

data structure to store the symbolic picture. Let there be nine direction codes as

shown in Figure 2.27 used to represent relative spatial relationships among objects.

In Figure 2.27, R denotes the referenced object, 0 represents “at the same spatial

location as R”, 1 represents “north of R”, 2 represents “north west of R”, 3 represents

“west of R” and so on. Let us consider a symbolic picture shown in Figure 2.28-(a).

Figure 2.28-(b) is the 9DLT matrix of this picture.
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Figure 2.29 Triangular spatial relationship

2.11 Triangular Spatial Relationship

The triangular spatial relationship (TSR) proposed by Guru et al. [41] is invariant

to object transformations, such as translation, rotation, scaling, and flipping. A TSR

is defined by connecting three non-collinear objects in a symbolic image. For example,

in Figure 2.29, connecting the centroids of the objects, A, B, and C, forms a triangle.

M1, M2, and M3 are the midpoints of the sides of the triangle. The angles labelled as

1, 2, and 3, are the smaller angles subtended at M1, M2, and M3, respectively. The

quadruple, (A, B, C, 3), is the triangle spatial relationship among the objects, A, B,

and C. In a symbolic image, the triangular spatial relationships existing among every

possible combination of three non-collinear objects are computed and represented by

a set S of quadruples. In general, the size of S is O(CT
3 − Nc), where T is the total

number of objects and Nc is the number of triples of objects which are collinear. In

order to minimize the storage requirement, the first principal component vector of

the set S is used to represent the symbolic image. These vectors representing the

symbolic images are stored in a sorted sequence. Thus, this strategy requires only

O(logn) search time in the worst case, where n is the number of symbolic images.
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2.12 Archival and Retrieval Based on The B-Tree

Structure

Guru et al. [43] proposed a strategy based on triangular spatial relationships to

make the representation invariant to image transformations. A unique and distinct

number called key is generated as the representative of the corresponding quadruple

to be stored in the B-tree. Thus, the problem of symbolic image representation

is reduced to the problem of storing those quadruples such that the retrieval task

becomes effective and efficient.

If (A,B,C, θ) is a quadruple, then the corresponding key K is computed as

K = Dθ(A− 1)m2 +Dθ(B − 1)m +Dθ(C − 1) + (Cθ − 1),

where Dθ is the number of slices of the continuous interval [0◦ . . . 90◦] associated

with θ is split into, and Cθ is the slice number to which a specific value of θ belongs.

Let N be the total number of distinct quadruples generated due to all n symbolic

images and let {K1, K2, . . . , KN} be the set of corresponding keys. All these N keys

are stored in a B-tree. Each key value is then attached with a list of image indexes.

The image indexes that are attached to a key value are the indexes of images, which

have the key K as one of the keys in their corresponding key set.

For example, let us consider n = 5 symbolic images shown in Figure 2.30. Accord-

ing to the TSR strategy, the number of quadruples associated with S1 is 4 and they

are, {(3, 2, 1, 67.238292), (4, 3, 1, 71.400327), (4, 3, 2, 84.925637), (4, 2, 1, 48.009121)}.

The fourth component, which is a real value, of each quadruple is mapped into its

slice index. In this example, the interval [0◦ . . . 90◦] has been split into 18 slices of size

5◦. Thus, the quadruples become, {(3, 2, 1, 14), (4, 3, 1, 15), (4, 3, 2, 17), (4, 2, 1, 10)}.

For each distinct quadruple, a distinct and unique key is generated. Hence, S1 can be

described by a set of key values as {2461, 3758, 3778, 3609}. A B-tree of order r = 4

is constructed to store the distinct keys as shown in Figure 2.31. For the key value,

3578, the list obtained is the list containing only the image indexes 1, 2, and 4.
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Figure 2.30 Five symbolic images
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Figure 2.31 B-tree representation
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Figure 2.32 Query image

In similarity retrieval,let Q be a query image and qQ be the number of keys as-

sociated with Q. Accessing through the B-tree to obtain the list of image indexes

corresponding to each query key and then computing the intersection of all those

lists would produce the list of indexes of images similar to the query image Q. It

is required O(qQ logr N) search time to obtain all those lists, where N is the total

number of keys stored in the B-tree and r is the order of the tree.

For example, consider a query image shown in Figure 2.32. The corresponding

key set to describe the query image is {3758, 5075, 5080, 4909}. In order to retrieve

the images similar to the query image, we access through the B-tree in search of each

key and then we extract the list of image indexes attached to them. They are, {1,

2, 4}, {2, 3, 4}, {2, 4}, and {2, 4, 5}. The intersection of the extracted lists give us

only images S2 and S4 that match the query image.

2.13 Archival and Retrieval Based on Statistic Mea-

surements

Punitha et al. [65] proposed a strategy invariant to image transformations based

on the triangular spatial relationships, useful for exact match retrieval. A distinct

and unique key called TSR key is computed. The mean and standard deviation of

the set of TSR keys computed for an image are stored as the representative of that

image. This strategy requires O(logn) search time, where n is the number of images

in the database.
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Figure 2.33 Example of statistic measurement-based strategy

Suppose there are three non-collinear objects, A, B, and C, in the image S.

(A,B,C, θ) is the triangular spatial relationship among these tree objects. Then the

key K corresponding to the quadruple is computed as

K = Dθ(A− 1)m2 +Dθ(B − 1) +Dθ(C − 1) + θ,

where Dθ is the allowable maximum value for θ and here Dθ is 90. The equation

generated the key K is a mapping from the set of TSR quadruples to the set of TSR

keys. Moreover, this mapping is one-one. That is, the TSR keys associated with two

different quadruples are distinct and unique.

Let Pq = {q1, q2, . . . , qN} be the set ofN distinct quadruples and PK = {K1, K2, . . . , KN}

be the set corresponding TSR keys generated for symbolic image S. The size of the

set PK is O(m3) in the worst case, where m is the number of objects in S. To reduce

the storage requirement, the mean µ and the standard deviation σ of the set PK are

computed. Then, the triplet (N, µ, σ) is stored as the representative vector of S.

For example, the set of quadruples preserving the triangular spatial relationship

among the objects shown in Figure 2.33 is Pq0 = {(4, 2, 1, 26.02), (3, 2, 1, 26.02),

(4, 3, 1, 90.00), (4, 3, 2, 90.00)}. For each quadruple in Pq0, the set of computed TSR

key is Pk0 = {18026.021, 12266.021, 18810.00, 18900.00}. The corresponding triplet

is (4, 17000.511, 3180.6383).

For all n images to be archived in the database, the triplets (N, µ, σ) are computed

and stored in a sorted sequence so that binary search can be employed during retrieval.
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This strategy not only reduces the size of the database, but also enhances the efficacy

of the retrieval process requiring only O(logn) search time in the worst case.

2.14 A Logarithmic Search Time Strategy for Ex-

act Match Retrieval

Punitha et al. [66] a strategy for exact match retrieval of O(logn) search time in

the worst case, where n is the total number of images in the database. The spatial

relationships among objects are perceived with respect to the direction of reference

[42] and preserved by a set of triples. A distinct and unique key is computed for each

distinct triple. The mean and standard deviation of the set of keys computed for an

image are stored as the representative of the corresponding image.

Let S be an image consisting of m number of objects. Suppose Op and Oq to be

two objects at the farthest distance, i.e.,

dist(Op, Oq) = max{dist(Oi, Oj)|∀i, j ∈ {1, 2, . . . , m}},

where dist() is a distance function which computes the Euclidean distance between

the centroids of two objects. The line joining the objects Op and Oq is the line of

reference and its direction from the object Op to the object Oq is the direction of

reference for S. If (xp, yp) and (xq, yq) are the coordinates of the centroids of Op and

Oq, respectively, then we defined

α = tan−1

(

yq − yp

xq − xp

)

and

β = sin−1

(

yq − yp

dist(Op, Oq)

)

The direction θ of the line joining Op and Oq is given by
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Figure 2.34 Image with direction of reference

θ =



















α + π if α < 0 and β > 0;

α− π if α > 0 and β < 0;

α otherwise.

Figure 2.34 shows an image consisting of 4 objects with the direction of reference

from Op to Oq, where p = 2 and q = 3.

Suppose Oi and Oj are two objects, then the spatial relationship θij of the contrast

object Oj to the reference object Oi is the relative direction of the line segment joining

Oi and Oj, with respect to the direction of reference θ, and it is preserved by the

a triple (Oi, Oj, θij). Thus, there are m(m − 1)/2 number of triples generated to

represent the image consisting of m number of objects. With the triple (Oi, Oj, θij),

the corresponding key K is computed as

K = Dθ(Oi − 1)m+Dθ(Oj − 1) + (Cθ − 1),

where Dθ is the number of slices the continuous interval type domain [0 . . . 359◦]

associated with θij is split into, and Cθ is the slice number to which a specific value

of θij belongs.

For an image S with m objects, there are O(m2) key values to represent this image.

In order to reduce to storage requirement, the mean µ and the standard deviation

σ of the set of triples are computed, and then to store the vector (N, µ, σ) as the

representative vector of S, where N is the number of triples generated according to

S. Suppose there are n images in the database, the representative vectors are stored
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in a sorted order. For exact match retrieval, the desired image can be retrieved in

O(logn) search time, by employing the modified binary search technique [44].

For example, in Figure 2.33, the direction of reference obtained for the image

is 0◦. There are two candidates for the computation of direction of reference, one

connecting the objects 1 and 3 with 45circ direction and the other connecting the

objects 1 and 4 with −45◦ direction. Upon the triangular law of direction, we have

the direction of reference as 0◦. In this example, the θij-domain is split into 360 slices

of size 1◦. The set of triples preserving the pairwise spatial relationship among the

objects with respect to the direction of reference is

Pt = {(1, 2, 0), (1, 3, 21), (1, 4, 339), (2, 3, 35), (2, 4, 325), (3, 4, 270)}

The the set of the corresponding keys is

Pk = {360, 741, 1419, 2195, 2485, 4320}

Finally, the vector D = (6, 1965.00, 1437.3477) is stored as the representative of the

image.
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CHAPTER 3

The Unique Bit Pattern Matrix Strategy

This chapter is organized as follows. First, the rules of transformation of the spatial

relationships among objects will be described. Next, the concept of the transpose of

a matrix and propose a bit operation will be presented. Then, special bit patterns

to represent the spatial relationships will be proposed. Finally, our proposed index

structure and the relevant algorithms will be presented.

3.1 Rules of Image Rotation and Reflection

To deal with the change of spatial relationships between objects in rotation and

reflection, Nabil et al. [61] introduced the condition function as shown in Figure 3.1.

In Figure 3.1, g(h) is a spatial relationship, and gi(hi) is the inverse of g(h). On the

other hand, Petraglia et al. [63] presented a mapping table as shown in Table 3.1 to

deal with the linear transformation. For example, the transformed operator of the

spatial operator “<” is “<∗”. The operator “]∗” is the transformed operator of the

spatial operator “[∗”. Comparing the condition function with the mapping table, they

obtain the same transformed operator.

Table 3.1 Transformed operators

operator < <∗ | |∗ / /∗ ] [ % = ]∗ [∗ %∗

transformed operator <∗ < |∗ | /∗ / [ ] % = [∗ ]∗ %∗
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ξ(g) =











































gi if g ∈ {<, |, /}

g if g ∈ {%, %∗, =}

h where g = hi and g ∈ {<∗, |∗, /∗}

k where g ∈ {[, [∗} and k ∈ {], ]∗}

l where g ∈ {], ]∗} and l ∈ {[, [∗}

Figure 3.1 The condition function for linear transformations

Table 3.2 Transformed operators divided into 3 cases

Case 1 Case 2 Case 3

operator < | / ] ]∗ % = %∗

transformed operator <∗ |∗ /∗ [ [∗ % = %∗

From Table 3.1, we observe that the transformed operators can be classified into

three cases as shown in Table 3.2. In Case 1, the related transformed operator is the

same as the related inverse operator. For example, in Figure 3.2, “<∗” is both of

the transformed operator and the inverse operator of the spatial operator “<”. In

Case 2, the related transformed operator is different from the related inverse operator.

For example, in Figure 3.3, the transformed operator of the spatial operator “]” is

“[”, but the inverse operator is “]∗”. In Case 3, the related transformed operators

are themselves. For example, in Figure 3.4, the transformed operator of the spatial

operator “%” is itself, i.e., “%”.

When we rotate an image in the clockwise direction as shown in Figure 3.5-(a),

the spatial relationships between objects A and B in the x- and y-axes are mutu-

ally exchanged. Moreover, the beginning and the ending points of any object in the

y-axis are mutually exchanged. Thus, the crossed arrows in Figure 3.5-(a) show the

exchange of the spatial operators in the x- and y-axes. Moreover, the gray arrow

shows the spatial operator, i.e., “A <∗ B”, changes to the related transformed op-

erator, i.e., “A < B”, in the rotated image. When we flip an image horizontally

as shown in Figure 3.5-(b), the beginning and ending points of any object in the
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Figure 3.2 Example of Case 1: (a) A < B vs. A <∗ B (transformed); (b) A < B vs.

A <∗ B (inverse).
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Figure 3.3 Example of Case 2: (a) A[B vs. A]B (transformed); (b) A[B vs A[∗B

(inverse).
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Figure 3.4 Example of Case 3: (a) A%B vs. A%B (transformed); (b) A%B vs.

A%∗B (inverse).
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X ′ (Y ′): The transformed operator of X (Y )

Figure 3.5 Examples of rotation and reflection: (a) rotating 90◦ clockwise; (b) flipping

horizontally; (c) flipping vertically.
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Table 3.3 Rules of transformation: X ′ and Y ′ are the transformed operators related

to X and Y , respectively.

operator

x-axis y-axis

functions X Y

Rotate 90◦ Y X ′

Rotate 180◦ X ′ Y ′

Rotate 270◦ Y ′ X

Flip horizontally X ′ Y

Flip vertically X Y ′

x-axis are mutually exchanged. Thus, the gray arrow in Figure 3.5-(b) shows the

spatial operator, i.e., “A <∗ B”, changes to the related transformed operator, i.e.,

“A < B”, in the horizontally flipped image. When we flip an image vertically as

shown in Figure 3.5-(c), the beginning and ending points of any object in the y-axis

are mutually exchanged. Thus, the gray arrow in Figure 3.5-(c) shows the spatial

operator, i.e., “A/∗B”, changes to the related transformed operator, i.e., “A/B”, in

the vertically flipped image. According to the above observation, we present rules

for transformation (rotation and reflection) as shown in Table 3.3. It is obvious that

rotating an image by 180◦ and 270◦ clockwise are equivalent to rotating the image

by 90◦ clockwise twice and three times, respectively. Thus, it is trivial to derive the

rules of rotating images by 180◦ and 270◦ clockwise.

65



procedure Transpose(M) /* M is an m×m UBP matrix */

1: for i := 1 to m do

2: for j := i + 1 to m do

3: begin

4: temp := M [i, j];

5: M [i, j] := M [j, i];

6: M [j, i] := temp;

7: end

8: return (M);

end procedure

Figure 3.6 Procedure Transpose

3.2 The Matrix Manipulation and the Proposed

Bit Operation

In Table 3.3, we observe that the spatial relationships in x- and y-axes will be

mutually exchanged, when the image is rotated by 90◦ or 270◦ clockwise. Similar to

the UID matrix strategy [23], we will use a matrix, called unique bit pattern matrix

(UBP matrix), to record the spatial relationships among objects. The entry mij in a

UBP matrix is the spatial relationship between objects i and j in x-axis when i > j.

Otherwise, mij is the spatial relationship in y-axis when i < j. Because we use a

matrix to be as the index structure, we introduce the concept of the transpose of a

matrix to deal with the mutual exchange of the spatial relationships in x- and y-axes.

Definition 1 describes the meaning of the transpose of a matrix. Figure 3.6 shows the

procedure to obtain the transpose of a matrix.

Definition 1. The matrix B is the transpose of the matrix A, written B = AT , if

each entry bij in B is the same as the entry aji in A, and conversely [33].
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Suppose M is a UBP matrix, and N is the transpose of the matrix M , i.e., N =

MT . According to the definition of the transpose of a matrix, mij in M is the same

as nji in N . mij is the spatial relationship between the objects i and j in x-axis when

i > j. Then, nji which is the same as mij is to be the spatial relationship between

objects i and j in y-axis. This means that the spatial relationships between the two

objects in x-axis in M are to be the spatial relationships in y-axis in N . As the same

result, the spatial relationships in y-axis in M are to be the spatial relationships in x-

axis in N . In this way, the meaning of the transpose of a UBP matrix is to mutually

exchange the spatial relationships in x- and y-axes.

When doing the rotation or flip operations, we need to change the spatial relation-

ships to their related transformed spatial relationships by following the rules shown

in Table 3.3. Thus, we propose a bit operation and use bit patterns to present those

13 spatial relationships to make the change more efficient.

There are several bit operations, e.g., bit shift, and, or, and exclusive or, etc. We

propose a bit operation, called intra-exchange, as shown in Figure 3.7. The bits Bi

and Bi+1 are mutually exchanged, where i is an even number. Figure 3.8 shows the

procedure to do the intra-exchange operation. W1 and W2 are the bit patterns, where

the odd and even bits are set to 1, respectively.

We use an example as shown in Figure 3.9 to describe the steps of Procedure

Intra Exchange. First, we shift left the bit string “0000 1001” by 1 to obtain Tleft,

i.e., “0001 0010”. Second, we shift right the bit string “0000 1001” by 1 to obtain

Tright, i.e., “0000 0100”. To extract the values of the odd bits in Tleft, we do the AND

operation with Tleft and W1 to obtain Todd, i.e., “0000 0010”. Similarly, to extract

the values of the even bits in Tright, we do the AND operation with Tright and W2 to

obtain Teven, i.e., “0000 0100”. Finally, we do the OR operation with Teven and Todd

to obtain the intra-exchanged bit string, i.e., “0000 0110”.
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Figure 3.7 Intra-exchange of the odd and even bits

procedure Intra Exchange(bit string)

1: Tleft := bit string shift left by 1;

2: Tright := bit string shift right by 1 ;

3: Todd := Tleft AND W1; /* W1 = 101010. . . 10, where |W1| = |bit string| */

4: Teven := Tright AND W2; /* W2 = 010101. . . 01, where W2 = W1 */

5: result := Teven OR Todd;

6: return (result);

end procedure

Figure 3.8 Procedure Intra Exchange
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Figure 3.9 Example of applying Procedure Intra Exchange to bit string 0000 1001

Table 3.4 New order of operators

Case 1 Case 2 Case 3 Case 2

operator < <∗ | |∗ / /∗ ] [ % = %∗ ]∗ [∗

order 1 2 3 4 5 6 7 8 9 10 11 12 13

3.3 Unique Bit Patterns

Chang et al. [23] assigned 13 different numbers, i.e., from 1 to 13, to those 13

spatial operators as shown in Table 2.5. Those operators and their related transformed

operators shown in Cases 1 and 2 in Table 3.1 are adjacent to each other. Although the

related transformed operators of those three operators shown in Case 3 in Table 3.1

are themselves, the order of the last three operators shown in Table 2.5 are changed

to make these three operators of Case 3, i.e., “%”, “=”, “%∗”, be adjacent to each

other. Table 3.4 shows the 13 spatial operators in the new order.

According to the order of the spatial operators shown in Table 3.4, We assign a

unique 16-bit pattern, instead of a unique number, to each spatial operator as shown
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in Table 3.5. The second column shows the spatial operators, and the third column

shows their corresponding bit patterns. The last column shows the decimal numbers,

when the bit patterns are viewed as binary numbers. There is only 1 bit set to 1

in the bit patterns of those operators in Case 1 and 2. However, the bit patterns of

those operators in Case 3 are assigned with two of 1’s. That is why it needs total

(10 × 1 + 3 × 2) bits to represent each spatial operator. In this assignment, the

1’s in the bit patterns are adjacent to each other with the operator and the related

transformed operator. For example, for the operator “<” and its related transformed

operator “<∗”, the bit which is set to 1 is in B0 and B1 bit, respectively, where B0

is the right most bit of a bit pattern. In this way, by applying the Intra Exchange

procedure to the bit patterns of the spatial operators, the result is the bit pattern

of the related transformed operators. For example, in Figure 3.10-(a), doing the

intra-exchange operation on the bit pattern of the operator “<” results in the bit

pattern of the transformed operator, “<∗”. Figure 3.10-(b) shows the example of

doing intra-exchange operation on the operators “]” and “[” which belong to Case

2. In Figure 3.10-(c), the transformed operator of “%” is itself, and doing the intra-

exchange operation on the bit pattern of “%” also generates the bit pattern of itself.

3.4 Spatial Categories

According to the order of our proposed unique bit patterns, Those 169 spatial

relationships in 2D space are arranged into a Category table as shown in Table 3.6.

Those 169 spatial relationships are grouped together into 5 different categories, high-

lighted by the bold lines. For example, the spatial relationships in the first, second

rows and the first, second columns are the disjoin spatial category. Thus, we can

use a range checking algorithm as shown in Figure 3.11 to distinguish the spatial

category between each two objects. The parameters ubpx and ubpy are the unique bit

patterns among x- and y-axes, respectively. The corresponding decision tree is shown

in Figure 3.12.
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Figure 3.10 Three cases of bits intra-exchange: (a) Case 1; (b) Case 2; (c) Case 3.
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procedure Category(ubpx, ubpy)

1: if (ubpx > 8) and (ubpy > 8) then

2: if (64 ≤ ubpx ≤ 3072) and (64 ≤ ubpy ≤ 3072) then

3: return (‘contain’)

4: else if (3072 < ubpx ≤ 32768) and (3072 < ubpy ≤ 32768) then

5: return (‘belong’)

6: else return (‘partial overlapping’)

7: else if (ubpx > 2) and (ubpy > 2)then

8: return (‘join’)

9: else return (‘disjoin’);

end procedure

Figure 3.11 Procedure Category
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Figure 3.12 Decision tree of procedure Category
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Table 3.5 Bit patterns of operators

Case Operator Unique bit pattern Decimal number

1

< 0000 0000 0000 0001 1

<∗ 0000 0000 0000 0010 2

| 0000 0000 0000 0100 4

|∗ 0000 0000 0000 1000 8

/ 0000 0000 0001 0000 16

/∗ 0000 0000 0010 0000 32

2
] 0000 0000 0100 0000 64

[ 0000 0000 1000 0000 128

3

% 0000 0011 0000 0000 768

= 0000 1100 0000 0000 3072

%∗ 0011 0000 0000 0000 12288

2
]∗ 0100 0000 0000 0000 16384

[∗ 1000 0000 0000 0000 32768

3.5 The Unique Bit Pattern Matrix

Similar to previous iconic index strategies [15], we assume that there are at least

two objects in an image. The spatial information between any two objects can be

derived. Thus, we propose a unique-bit-pattern matrix (UBP matrix) to preserve

the spatial information of the objects in an image. Suppose an image I contains

m objects and let O = {o1, o2, ..., om}. Let A be the set of 13 spatial operators

{<,<∗, |, |∗, [, [∗, ], ]∗,%,%∗, /, /∗,= }. An m×m spatial matrix S [23] of the image I

is defined as follows:
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Table 3.6 Category table
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Figure 3.13 Example: (a) an image; (b) the symbolic representation.

S =

o1 o2 · · · om−1 om

o1 0 ry
1,2 · · · · · · ry

1,m

o2 rx
1,2 0

. . .
...

...
...

. . . 0
. . .

...

om−1

...
. . . 0 ry

m−1,m

om rx
1,m · · · · · · rx

m−1,m 0

where the lower triangular matrix stores the spatial information along the x-axis,

and the upper triangular matrix stores the spatial information along the y-axis. That

is, S[oi, oj] = rx
j,i if i > j; S[oi, oj] = ry

i,j if i < j; S[oi, oj] = 0 if i = j, ∀oi, oj ∈ S,

∀rx
j,i, r

y
i,j ∈ A, 1 ≤ i, j ≤ m, where rx

j,i and ry
i,j are the spatial operators between

objects oi and oj along the x- and y-axes, respectively. In this representation, the

relationships between two objects oi and oj are recorded from the viewpoint of object

oi either along the x-axis or along the y-axis, where i < j. Thus, S[oi, oj] = rx
j,i when

i > j. For the image shown in Figure 3.13, the corresponding spatial matrix S is

shown as follows:
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S =

L T Y

L 0 /∗ /∗

T |∗ 0 /∗

Y / < 0

Objects L, T , and Y stand for the lighthouse, the tree, and the person, respec-

tively. According to the assignments of the unique bit patterns for those 13 spatial

operators shown in Table 3.5, we can transform the spatial matrix S of the image

p into a UBP matrix M by replacing each spatial operator with its corresponding

unique bit pattern (in decimal representation) as follows:

M =

L T Y

L 0 32 32

T 8 0 32

Y 16 1 32

Then, the UBP matrix M records the relative position of all objects. Moreover,

the storage space of the matrix M is 32×16 bits. In other words, if an image I contains

m objects, then we use an m×m UBP matrix with m2 × 16 bits of storage space to

index the image I. Note that although the strategies recording spatial information

in a matrix, e.g., [6, 26], require more storage space than the strategies recording

spatial information in strings, e.g., [20, 56], the matrix-based strategies do similarity

retrieval more efficiently than the string-based strategies [23].

3.6 Deriving Indices of The Rotated and Flipped

Images

We propose algorithms to derive the UBP matrices of the rotated and flipped

images from the UBP matrix of the original image. Table 3.7 shows the definition

of the symbols, M 90, M180, M270, MH , and MV . In our proposed algorithms, we
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will use those two procedures as shown in Figures 3.14 and 3.15. Procedures Up-

per Right Triangular and Lower Left Triangular do the intra exchange operation on

each entry in the upper right triangular and the lower left triangular area of a matrix,

respectively. According to the rules of transformation shown in Table 3.3, we describe

the algorithms to derive the matrices M 90, M180, M270, MH , and MV as follows.

1. Matrix M90: When an image is rotated by 90◦, first, the spatial relationships

between any two objects along x- and y-axes are exchanged. The spatial infor-

mation in the matrix MT represents the exchange. Second, the original spatial

relationships along the x-axis are changed to their related transformed spatial

relationships. Because the upper right triangular matrix of MT records the

original spatial relationships along the x-axis, Procedure Intra Exchange is ap-

plied to each entry in the upper right triangular matrix of M T to change the

spatial information to the related transformed spatial information. The details

are described in Procedure M 90 as shown in Figure 3.16.

2. Matrix M180: When an image is rotated by 180◦, the spatial relationships be-

tween any two objects along x- and y-axes are changed to their related trans-

formed spatial relationships. Thus, Procedure Intra Exchange is applied to

each entry of M to change the spatial information to the related transformed

spatial information. The details are described in Procedure M 180 shown in

Figure 3.17.

3. Matrix M270: When an image is rotated by 270◦, first, the spatial relationships

between any two objects along x- and y-axes are exchanged. The spatial infor-

mation in the matrix MT represents the exchange. Second, the original spatial

relationships along the y-axis are changed to their related transformed spatial

relationships. Because the lower triangular matrix of MT records the original

spatial relationships along the y-axis, Procedure Intra Exchange is applied to

each entry in the the lower left triangular matrix of MT to change the spa-

tial information to the related transformed spatial information. The details are

described in Procedure M 270 shown in Figure 3.18.
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Table 3.7 The definition of the matrix symbols

Symbol Definition

I a database image

M the UBP matrix of I

MT the transpose of the matrix M

M90 The UBP matrix of I rotated by 90◦ clockwise

M180 The UBP matrix of I rotated by 180◦ clockwise

M270 The UBP matrix of I rotated by 270◦ clockwise

MH The UBP matrix of I flipped horizontally

MV The UBP matrix of I flipped vertically

4. Matrix MH : When an image is flipped horizontally, the spatial relationships

along the x-axis are changed to their related transformed spatial relationships.

Because the lower left triangular matrix of M records the spatial relationships

along the x-axis, Procedure Intra Exchange is applied to each entry in the lower

left triangular matrix of M to change the spatial information to the related

transformed spatial information. The details are described in Procedure M H

shown in Figure 3.19.

5. Matrix MV : When an image is flipped vertically, the spatial relationships along

the y-axis are changed to their related transformed spatial relationships. Be-

cause the upper right triangular matrix of M records the spatial relationships

along the y-axis, Procedure Intra Exchange is applied to each entry in the upper

right triangular matrix of M to change the spatial information to the related

transformed spatial information. The details are described in Procedure M V

shown in Figure 3.20.

We use five examples to show how the above matrix-deriving algorithms work. In

Figure 3.21, the UBP matrix M is the index of the image on the top of Figure 3.21.

Then, the rotated image by 90◦ clockwise is shown on the bottom of Figure 3.21.
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procedure Upper Right Triangular(M) /* M is an m×m UBP matrix */

1: for i := 1 to m do

2: for j := i + 1 to m do

3: M [i, j] := Intra Exchange(M [i, j]);

4: return (M);

end procedure

Figure 3.14 Procedure Upper Right Triangular

procedure Lower Left Triangular(M) /* M is an m×m UBP matrix */

1: for i := 1 to m do

2: for j := i + 1 to m do

3: M [j, i] := Intra Exchange(M [j, i]);

4: return (M);

end procedure

Figure 3.15 Procedure Lower Left Triangular

procedure M 90 (M) /* M is a UBP matrix */

1: MT := Transpose(M);

2: M90 := Upper Right Triangular(MT );

3: return (M90);

end procedure

Figure 3.16 Procedure M 90
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procedure M 180 (M) /* M is a UBP matrix */

1: M180 := Upper Right Triangular(M);

2: M180 := Lower Left Triangular(M 180);

3: return (M180);

end procedure

Figure 3.17 Procedure M 180

procedure M 270 (M) /* M is a UBP matrix */

1: MT := Transpose(M);

2: M270 := Lower Left Triangular(MT );

3: return (M270);

end procedure

Figure 3.18 Procedure M 270

procedure M H (M) /* M is a UBP matrix */

1: MH := Lower Left Triangular(M);

2: return (MH);

end procedure

Figure 3.19 Procedure M H
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procedure M V (M) /* M is a UBP matrix */

1: MV := Upper Right Triangular(M);

2: return (MV );

end procedure

Figure 3.20 Procedure M V

According to Table 3.3, the spatial relationships along x- and y-axes are mutually

exchanged in the rotated image. Moreover, the spatial relationships along the y-axis

of the rotated image are the transformed spatial relationships along the x-axis of the

original image. Thus, first, the transpose of the matrix, MT , is obtained to exchange

the spatial relationships along the x- and y-axes. Then, procedure Intra Exchange is

employed to the upper right triangular area of the matrix MT to change the original

spatial relationships to their corresponding transformed spatial relationships. Finally,

the index of the rotated image is generated, i.e., the matrix M 90.

In Figure 3.22, the UBP matrix M is the index of the image on the top of

Figure 3.22. Then, the rotated image by 180◦ clockwise is shown on the bottom

of Figure 3.22. According to Table 3.3, the spatial relationships along x- and y-

axes are changed to the related transformed spatial relationships, respectively. Thus,

procedure Intra Exchange is employed to the upper right triangular and lower left

triangular area of the matrix M to change the original spatial relationships along the

x and y-axes to their corresponding transformed spatial relationships. Finally, the

index of the 180circ-rotated image is generated, i.e., the matrix M 180.

In Figure 3.23 to describe the steps of deriving the matrix M 270. The UBP matrix

M is the index of the image on the top of Figure 3.23. Then, the rotated image by 270◦

clockwise is shown on the bottom of Figure 3.23. According to Table 3.3, the spatial

relationships along x- and y-axes are mutually exchanged in the 270◦-rotated image.

Moreover, the spatial relationships along the x-axis of the 270◦-rotated image are the

transformed spatial relationships along the y-axis of the original image. Thus, first,
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Figure 3.21 Process of deriving the matrix of rotated image by 90◦
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the transpose of the matrix, MT , is obtained to exchange the spatial relationships

along the x- and y-axes. Then, procedure Intra Exchange is employed to the lower

left triangular area of the matrix MT to change the original spatial relationships

to their corresponding transformed spatial relationships. Finally, the index of the

270◦-rotated image is generated, i.e., the matrix M 270.

In Figure 3.24, the UBP matrix M is the index of the image on the top of Fig-

ure 3.24. Then, the horizontal-flipped image is shown on the bottom of Figure 3.24.

According to Table 3.3, the spatial relationships along x-axis are changed to the re-

lated transformed spatial relationships. Thus, procedure Intra Exchange is employed

to the lower left triangular area of the matrix M to change the original spatial re-

lationships along the x-axis to their corresponding transformed spatial relationships.

Finally, the index of the horizontal-flipped image is generated, i.e., the matrix MH .

In Figure 3.25, the UBP matrix M is the index of the image on the top of Fig-

ure 3.25. Then, the horizontal-flipped image is shown on the bottom of Figure 3.25.

According to Table 3.3, the spatial relationships along y-axis are changed to the re-

lated transformed spatial relationships. Thus, procedure Intra Exchange is employed

to the upper right triangular area of the matrix M to change the original spatial re-

lationships along the y-axis to their corresponding transformed spatial relationships.

Finally, the index of the vertival-flipped image is generated, i.e., the matrix M V .

3.7 Similarity Retrieval

Similar retrieval is to retrieve the images that are similar to the query image.

In this Section, we will describe the similar types and the corresponding similarity

retrieval algorithm based on our UBP Matrix strategy. We apply the same definition

of the similarity measures [56], which is described in Definition 2, to determine the

similarity degrees among images.

Definition 2. Picture f ′ is a type-i unit picture of f , if

1. all objects in f’ are also in f,
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Figure 3.23 Process of deriving the matrix of rotated image by 270◦

85



 

 

 


 


 


 

 

 


 


 


 


0
4
1


12288
0
16


32768
1
0


C


B


A


M


C
B
A


Intra_Exchange


 

 

 


 


 


 

 

 


 


 


 


0
8
2


12288
0
32


32768
1
0


C


B


A


M


C
B
A


H


lower left

triangular


A


B
 C


A


B
C


Figure 3.24 Process of deriving the matrix of horizontal-flipped image

86



 

 

 


 


 


 

 

 


 


 


 


0
4
1


12288
0
16


32768
1
0


C


B


A


M


C
B
A


Intra_Exchange


 

 

 


 


 


 

 

 


 


 


 


0
4
1


12288
0
16


16384
2
0


C


B


A


M


C
B
A


V


upper right

triangular


A


B
 C


A


B
 C


Figure 3.25 Process of deriving the matrix of vertical-flipped image

87



2. for any two objects A and B, the spatial bit patterns among x- and y-axes between

the objects A and B in f and f ′ are represented as (ubpx, ubpy) and (ubpx′, ubpy′),

respectively, then

type-0: Category(ubpx, ubpy) = Category(ubpx′, ubpy′);

type-1: (type-0) and (ubpx = ubpx′ or ubpy = ubpy′);

type-2: ubpx = ubpx′ and ubpy = ubpy′.

where Category(ubpx, ubpy) denotes the spatial category.

Then, some definitions which will be employed in our similarity retrieval algorithm

are given as follows.

Definition 3. Given a m×m matrix M , a matrix operator P is defined as follows:

Let M∗ = (M)P , where MP (i, j) = M(i, j) ∗M(j, i) , ∀ 1 ≤ i ≤ m, 1 ≤ j < i.

Definition 4. Given two m×m matrices M1 and M2, a matrix operator ⊗ is defined

as follows:

Let M = M1 ⊗ M2, where







M(i, j) = 0 , ∀ M1(i, j) = M2(i, j)

M(i, j) = 1 , ∀ M1(i, j) 6= M2(i, j)

Definition 5. Given a m × m UBP Matrix M , the corresponding spatial category

matrix C is defined as follows.











































C[i, j] = 1, if Category(M [i, j],M [j, i]) = “Disjoin”, where 1 ≤ i < j ≤ m;

C[i, j] = 2, if Category(M [i, j],M [j, i]) = “Join”, where 1 ≤ i < j ≤ m;

C[i, j] = 3, if Category(M [i, j],M [j, i]) = “Contain”, where 1 ≤ i < j ≤ m;

C[i, j] = 4, if Category(M [i, j],M [j, i]) = “Belong”, where 1 ≤ i < j ≤ m;

C[i, j] = 5, if Category(M [i, j],M [j, i]) = “Part Overlap”, where 1 ≤ i < j ≤ m;

That is, C[i, j] = 1, 2, 3, 4, 5 if the relationship between objects oi and oj is of

the disjoin, join, contain, belong and part overlap category, respectively, by calling

procedure Category.
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Based on the two new matrix operators, P and ⊗, the following three algorithms,

type-0, type-1, type-2 are used to determine whether two images are of type-0, type-1,

type-2 similarity, respectively, given two UBP Matrices M1 and M2.

Algorithm (type-0)

1. Following the procedure Category, find the category matrix C1 and C2 corre-

sponding to the two matrices M1 and M2, respectively.

2. C = C1 ⊗ C2. If C is zero in the lower triangular matrix, these two images are

of type-0 similarity; otherwise, there is no match.

Algorithm (type-1)

1. Algorithm (type-0) passed.

2. M = M1 ⊗ M2.

3. M∗ = (M)P .

If M∗ is zero in the lower triangular matrix, these two images are of type-1

similarity; otherwise, there is no match.

Algorithm (type-2)

1. M = M1 ⊗M2. If M is a zero matrix, these two pictures are of type-2 similarity;

otherwise, there is no match.

For example, to find an image where there is a tree beside a lighthouse (type-

0 similarity), the query may be issued by the symbolic representation as shown in

Figure 3.26. The corresponding UBP matrix Q generated by the system is as follows:

Q =

L T

L 0 32768

T 8 0

Following procedure Category as shown in Figure 3.11, the spatial category be-

tween the tree and the lighthouse in the matrix Q is Category(8, 32768), i.e., join.
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T

L


Figure 3.26 Symbolic representation of a query

Then, the spatial category between the two objects in the corresponding matrix M of

the image shown in Figure 3.13 is Category(8, 32), i.e., join. Thus, the image shown

in Figure 3.13 qualifies the query in type-0 similarity based on the Definition 2.

Now, we take one more complex example to show how the type-0, type-1, and

type-2 algorithms work. Consider the images as shown in Figure 3.27.

(Step 1) Find the spatial matrices S1 and S2 and the UBP matrices M1 and M2

representing the two images I1 and I2, respectively.

S1 =

A B C D

A 0 /∗ <∗ /∗

B <∗ 0 /∗ %

C %∗ < 0 <

D <∗ %∗ <∗ 0

M1 =

A B C D

A 0 32 2 32

B 2 0 32 768

C 12288 1 0 1

D 2 12288 2 0
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S2 =

A B C D

A 0 %∗ <∗ %

B <∗ 0 % %

C %∗ < 0 <

D <∗ / <∗ 0

M2 =

A B C D

A 0 12288 2 768

B 2 0 768 768

C 12288 1 0 1

D 2 16 2 0

(Step 2) Following the category rules, compute the corresponding category matri-

ces, where 1, 2, 3, 4 and 5 mean the disjoin, join, contain, belong and

part overlap relationship, respectively.

C1 =

A B C D

A

B 1

C 1 1

D 1 5 1

C2 =

A B C D

A

B 1

C 1 1

D 1 5 1

(Step 3) Check type-0 similarity. Since C = 0 in the lower triangular matrix, these

two pictures are of type-0 similarity.

C = C1 ⊗ C2 =

A B C D

A

B 0

C 0 0

D 0 0 0
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(Step 4) Check type-1 similarity. Since T ∗ = 0 in the lower triangular matrix, these

two pictures are of type-1 similarity.

M = M1 ⊗M2 =

A B C D

A 0 1 0 1

B 0 0 1 0

C 0 0 0 0

D 0 1 0 0

M∗ = (M)R =

A B C D

A

B 0

C 0 0

D 0 0 0

(Step 5) Check type-2 similarity. Since M 6= 0, these two pictures are not of type-2

similarity.

M = M1 ⊗M2 6=

A B C D

A 0 0 0 0

B 0 0 0 0

C 0 0 0 0

D 0 0 0 0
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Figure 3.27 Example of Images: (a) I1; (b) I2.
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CHAPTER 4

Performance Study

In this chapter, first, we will analyze the time complexity of our proposed strategy.

Then, we show the simulation results and discuss the properties of the results. In this

simulation, we consider the CPU-time and the average search time as our performance

measures. The CPU-time is the time to generate the corresponding index of the

rotated or flipped image. The average search time is the time to find all qualified

database for one query. Finally, we present a system prototype based on our proposed

strategy.

4.1 Analysis

First, we analyze the complexity of generating the matrices, M 90, M180, M270,

MH , and MV . Then, we analyze the complexity of searching a database image, when

the query is issued in the orientation different from that of the database image.

There are two basic operations to generate the above matrices. One is procedure

Intra Exchange, the other is to obtain the transpose matrix, MT . In procedure In-

tra Exchange, from step 1 to step 5, each step is a CPU bit operation, the complexity

is O(1). Thus, the complexity of procedure Intra Exchange is 5×O(1) = O(1). Sup-

pose M is an m×m matrix, there are m2 entries. To get the transpose matrix MT ,

we go through a loop, as shown in Figure 3.6, to exchange the content of the entries,

mij and mji. The complexity of the exchange is O(1). The number of the exchange

is m2/2. Thus, the complexity of obtaining the matrix MT is m2/2×O(1) = O(m2).
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According to the algorithms to obtain the matrices M 90, M180, M270, MH , and MV ,

we list the complexity as follows.

1. M90: First, to obtain the transpose matrix MT , the complexity is O(m2). Then,

the complexity of employing procedure Intra Exchange to each entry in the

upper right triangular matrix of MT is m2 × O(1) = O(m2). Finally, the total

complexity is O(m2) +O(m2) = O(m2)

2. M180: The complexity of employing procedure Intra Exchange to each entry of

the matrix M is m2 × O(1) = O(m2).

3. M270: First, to obtain the transpose matrix MT , the complexity is O(m2).

Then, the complexity of employing procedure Intra Exchange to each entry in

the lower left triangular matrix of MT is m2 ×O(1) = O(m2). Finally, the total

complexity is O(m2) +O(m2) = O(m2)

4. MH : The complexity of employing procedure Intra Exchange to each entry in

the lower left triangular matrix of M is m2/2 ×O(1) = O(m2).

5. MV : The complexity of employing procedure Intra Exchange to each entry in

the upper right triangular matrix of M is m2/2 × O(1) = O(m2).

Chang et al. [23] have proved that to answer a query of similarity retrieval, the

complexity of matching the index of the query with the index of a database image

is O(m2), where m is the number of objects common to the database image and the

query. Similarly, if the query is issued in the different orientation, in order not to

miss the qualified database images, we need to compare another five indexes, i.e., the

matrices M90, M180, M270, MH , and MV , with the index of an image. Thus, the

complexity is O(m2) + 5 × O(m2) = O(m2).

4.2 Simulation Results

We set the number of different objects appearing in the database be 100. For

each object, the width and height of which are bounded between 1 and 100,000 units.

95



Table 4.1 The percentage of the improvement of our proposed algorithm as compared

to the condition function

10 objects 20 objects 30 objects 60 objects 90 objects

rotated by 180◦ 23.56% 36.45% 44.21% 47.29% 53.23%

flipped horizontally 13.64% 22.45% 28.82% 31.83% 36.72%

We generate images with 10, 20, 30, 60, and 90 objects which are randomly chosen

from those 100 different objects. In each case, 100,000 images are generated. Thus,

we use 500,000 images to calculate the average CPU-time of obtaining the index

of the rotated and flipped images. Nabil et al. [61] and Petraglia et al. [63] used a

condition function as shown in Figure 3.1 to deal with the linear transformation. This

function does not show a straightforward way to change the spatial relationship to its

related transformed spatial relationship. When we implement this function, we need

to use conditional statements, such as if-then-else, to deal with the transformation.

Thus, when the number of spatial relationships which need to be changed to its

transformed one is huge, the process of this function is time-consuming. Instead of

using the condition function, our strategy employs the intra-exchange bit operation

to change the spatial relationship directly. In the following five cases, Rotate in 90◦,

Rotate in 180◦, Rotate in 270◦, Flip horizontally, and Flip vertically, we will compare

the average CPU-time with different number of objects in an image. We show the

two cases of the improvement of our proposed algorithm in Table 4.1. The more the

number of objects in an image, the better improvement of our proposed algorithm is.

Our proposed algorithm can reach more than 50% improvement as compared to those

strategies based on the condition function, when there are 90 objects in an image.

The average search time is the time to search all the qualified images for one

query. To evaluate the average search time, we prepare 100,000 images for each of the

following cases in the database. We consider cases of 10, 20, 30, 60, and 90 different

objects randomly chosen with the uniform distribution to appear in each image,

respectively. There are 1,000 query images which contains 2 different objects. Each
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Table 4.2 The average search time (in seconds) of different combinations

10% 20% 50%

10 objects 6.80 6.85 6.85

20 objects 17.53 18.34 18.30

30 objects 32.80 32.62 32.76

60 objects 105.63 103.28 104.80

90 objects 219.45 217.08 219.50

query is a sub-image randomly chosen from the database images. Each query image

with 10%, 20%, and 50% probability to be given in the rotation ordination or the

reflection direction. Then, we compare the average search time of each combination.

Table 4.2 shows the simulation results. For the same number of objects in a

database image, we observe that no matter what the value of the probability is, the

average search time is almost the same. This is because we have to check the five

cases to prevent from missing the qualified database images. We also observe that

the more the number of objects in a database image, the longer the search time is.

We have shown that the time complexity to do the similarity is O(m2), where m

is the number of objects common to the query and the database image. Thus, the

query time should be the same, when m is 2 in this simulation. However, before

comparing the UBP matrix of the query with that of a database image, we need to

obtain the UBP matrices of the rotated and flipped versions of the original image.

Then, we have to obtain the sub-UBP matrix of the database image with the same

objects information as the query. This is the reason why the more the number of

objects in a database image, the longer the search time is. Note that, in fact, in

the image database searching, the signature strategy [77] will be applied to prune off

many unsatisfied images before comparing the indices of the candidate images with

the index of the query one by one. Thus, the search time will be much less than that

shown in Table 4.2.
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CHAPTER 5

Conclusion

In this dissertation, we proposed an iconic indexing strategy for similarity retrieval

in image database. Our proposed strategy can find out those qualified images in the

database, even though the query is issued in a different spatial orientation of the

qualified images. In this chapter, we give a summary of the dissertation and point

out some future directions.

5.1 Summary

An image database system is concerned with the problem of storage, retrieval, and

manipulation of pictorial data in an efficient manner. There are two major categories

of features: primitive and logical. Logical features are abstract representations of

images at various levels of detail, which contains the spatial relationship features.

Spatial relationships are important ingredients for expressing constrains in retrieval

systems for the image database. Thus, the concept of the iconic index was introduced

and many iconic indexing strategies for iconic image database have been proposed.

In Chapter 2, we have given a survey of previous proposed representation strate-

gies for symbolic pictures, including 2D strings [20], 2D C-strings [54], 2D B-strings [58],

2D-PIR [61], Zhou and Ang’s strategy [80], UID matrix [23], Virtual images [63], 2D

Z-string [53], 9D-SPA [49] 9DLT matrix [6], Triangular spatial relationship (TSR) [41]
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and it’s subsequent extensions [43, 65, 66], respectively. These strategies could be clas-

sified into two different categories. One views objects with extents, the other views

objects as points based on the objects’ centroid.

In Chapter 3, we have presented an efficient iconic indexing strategy, i.e., unique

bit pattern matrix (UBP matrix), to derive the index of rotated and flipped images

from the original index directly. In this way, our proposed strategy will not miss

the qualified images when the query is issued in the different orientation as com-

pared to the database images. By observing the order of the unique identifiers of the

spatial relationships proposed in the UID matrix strategy, we have proposed a new

order for those 13 spatial relationships to make the spatial relationship and its related

transformed spatial relationship be adjacent to each other. Then, we have designed

special 16-bit patterns to represent those spatial relationships. Based on these care-

fully designed bit patterns and our proposed bit operation, i.e., intra-exchange, each

bit pattern can be easily changed to another bit pattern of the related transformed

spatial relationship. Although we reorder the spatial relationships, by viewing the

bit patterns as digital numbers, we can distinguish the spatial category between each

two objects by range checking algorithm.

In Chapter 4, we have shown that our proposed strategy makes a great improve-

ment as compared to the strategies based on the condition function, when deriving

the index of the rotated or flipped image from the original index.

5.2 Future Research Direction

In our proposed strategy, we can answer queries with at least two objects with

their relative position. Future work includes dealing with the query with only one

object and its relative position in the whole image. For example, finding all images

which have a circle at the border.
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