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Video retrieval is increasingly based on image content. A number of studies on video retrieval have used
low-level pixel content related to statistical moments, shape, colour and texture. However, it is well
recognised that such information is not enough for uniquely discriminating across different multimedia
content. The use of semantic information, especially which derived from spatio-temporal analysis is of
great value in multimedia annotation, archiving and retrieval. In this review paper, we detail how the
use of spatiotemporal semantic knowledge is changing the way in which modern research the conducted.
In this paper we review a number of studies and concepts related to such analysis, and draw important
conclusions on where future research is headed.
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1. Spatio-temporal information for video retrieval

Content-based video retrieval is a very important area of
research and several practical systems have been developed
over the last decade with the aim of improving retrieval per-
formance and tested on large-scale databases such as TRECVID
http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html. Video
classification and retrieval problems can be hierarchically cate-
gorised with a taxonomy, an example of which is presented by
Roach et al. [1]. A key characteristic of video data is its associated
spatial and temporal information that delivers semantically coher-
ent narrative. Temporally consecutive frames have explicit spatial
constraints with object inheritance, spatial relationships and mo-
tion information from their previous frames. Temporal trajectories
of spatial relations among objects are as important as temporal
object trajectories to represent object activities and reveal semantic
evolution of spatial properties over time. The holy grail of almost
all content matching-based video retrieval systems is to improve
precision and recall metrics both through the process of improved
content representation and use of good quality similarity metrics
[2], as well as using a range of relevance feedback architectures and
algorithms to allow the system to learn with time what is and is
not a good match [3-6].

Unfortunately, temporal and spatial characteristics have not been
adequately addressed in most video retrieval systems despite their
obvious importance. In such systems, retrieval techniques work on
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indexing video by treating video sequences as collections of still im-
ages, extracting relevant key-frames, and comparing their low-level
features. Over the past years, the representation of spatio-temporal
data has been extensively discussed. It has inspired the development
of mathematical foundations to represent spatio-temporal logic (STL)
and reasoning [7], spatio-temporal database models and query lan-
guages for the description and manipulation of spatio-temporal ob-
jects [8,9], the temporal extension of current spatial data models
within GIS [10,11], and a new generation of spatio-temporal video
retrieval systems [12]. Spatiotemporal information in video deals
with the evolution of spatial objects that change over time. Spatio-
temporal modelling in video retrieval is a crucial step for using
semantic information on image object relationship to improve the
quality of content-based video retrieval. Such information can be
used to tag video content and used as the basis for similarity com-
putation between query and database videos. The similarity metrics
and matching approaches depend heavily on the representation of
spatio-temporal information, e.g., motion feature, spatio-temporal
relations, object trajectory, video transition, etc. However, how to
effectively model and represent spatio-temporal information is not
straightforward. A spatio-temporal model usually first partitions the
video into physical meaningful units (shots). This is followed by mod-
elling the spatial relationships among objects in each frame. A final
step analyses the temporal evolution of spatial relationships among
objects over temporal intervals in each shot as well as in the whole
video sequence. More importantly, a spatio-temporal model should
suggest a practical solution for effective indexing and comparison.
In summary, a spatio-temporal model should provide for:

(a) Representation of the structural elements of video data such as
frame, shot, and sequence at different levels of abstraction.
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(b) Description of the spatial composition among video objects in
each frame including directional and topological relations, and
temporal composition among frames within shot and sequences.

Spatial and temporal compositions are two important aspects for
the representation of a spatio-temporal model. There are two main
approaches for modelling such information:

(a) Anintegrated approach where objects, their spatial relationships
and events are considered as a 3D (three-dimensional) volume
with time being the third axis. One can construct a volume of
spatio-temporal data in which objects in consecutive images are
stacked to form a third temporal dimension. In this approach, the
video events can be represented by the analysis of this 3D space
based on object trajectories, shape analysis and motion analysis.
A sequence of frames (f.fo, ... fy) is represented by a volume in
(x,y,t) space, where (x,y) are the discrete spatial coordinates in
each frame (fi), and time (t) is a discrete temporal coordinate
that specifies frame number. The key benefit of this representa-
tion is that objects’ spatial and temporal continuity is explicitly
and conjointly provided. Shape and position change of a video
object over time (t) is considered in terms of translation, scaling,
and rotation of the object. A semantic scene can be delivered as
variances of visual appearance from sequence to sequence. This
is sequence-to-sequence indexing model. Spatio-temporal infor-
mation relating to object movement is identified by tracing the
trajectories of objects in this 3D (x,y,t) space. The motion trajecto-
ries of objects are defined as a physical change in the geographic
position of the objects in the video. The trajectories are derived
from changing the location of particular points on the objects,
or from tracking contours of the objects over time. The former is
trajectory slice model, whereas the latter is called trajectory vol-
ume model. In this model, time (t) is a critical component. The
representation of this model is highly time dependent. Therefore,
using different time scales will impact on the representation of
this model, and further impact on the final results of indexing
and matching. For instance, when we try to match two actions
under different time scales by shape comparison, the solution is
not straightforward. This complexity is mainly due to the camera
motion which induces a global motion in the video in addition to
the object’s motion during performance of an action. Addition-
ally, it may be due to the action performed at a different speed
or the object motion probably observed at different time instants
with different temporal extents and under different viewpoint.
The representation of a video sequence as a volume in (x,,t)
space was first pioneered in Buxton and Buxton [13], in which a
spatio-temporal gradient scheme is introduced for motion com-
putation and inferring a static scene’s depth information. Aldel-
son and Bergen [14] more explicitly proposed a motion sequence
represented as a single pattern in x-y-t 3D space. Since then,
the spatio-temporal volume has been predominantly studied
in image processing. Bolles et al. [15] first investigated slices
of the spatio-temporal volume to recover geometrically static
scene structure from motion. Later they exploit spatio-temporal
volume for object tracking [16]. Following this idea, other re-
searchers have studied spatio-temporal helix [17], temporal slice
analysis [18], oriented energy measurements [19], etc., and ap-
plied these concepts to spatio-temporal analysis of video se-
quences. We give details on this in Section 4.

A separate modelling of spatial relationships (based on spatial
logic relations) between object pairs, from temporal modelling
based on how these relationships might vary, change in cam-
era position or object movements, position of change in scenes
(cut), change in illumination, colour, texture and shape across
frames, etc. The information gathered is now fused together
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either by concatenating spatial and temporal vectors, or through
a weighted combination. One option is to keep the informa-
tion separate once extracted and the SQL type query can be
applied—the video that matches the query on the majority
of the spatio-temporal features is chosen as the best match.
An example is SEMCOG system [20], which represents spa-
tial constraints among objects by using 2D (two-dimensional)
string and describes temporal action by using Allen’s [21] 13
temporal logic relationships along with distance constraints.
Queries use a semantic language—CSQL and VCSQL, which is
similar to the standard SQL. These two types of information
fusion models can deal with very complicated cases of video re-
trieval. However, the former is not addressed properly, whereas
the latter does not support a comparison by using similarity
metrics.

In this paper, we review the state-of-the-art spatial and temporal
models with the aim of using these for image and video retrieval.
This paper is organised as follows. In the rest of Section 1 we give
an overall brief review of spatiotemporal models for video retrieval.
Section 2 reviews spatial modelling of video and image data. In Sec-
tion 3, we discuss research on temporal modelling. Finally, in Section
4, we present a brief review on spatiotemporal information fusion.

2. Spatial information modelling in multimedia retrieval
2.1. Spatial representation

Spatial information can be formulated with the following two
methodologies:

o The first approach is to use weak spatial constraints and capture
spatial local information to represent low-level texture features.
Examples include Gabor wavelets [22], local histograms [23], co-
occurrence matrices [24], colour correlograms [25], composite re-
gion templates (CRTs) [26], etc.

o The second approach is to represent global qualitative spatial re-
lations that support high-level semantic textual queries. Examples
include symbolic projections [27,28], spatial logic [29], 0-R repre-
sentations [30], etc.

We are more interested in the second type of spatial representa-
tion. Spatial qualitative relations between objects are very important
for video and image retrieval to support effectively high-level spatial
queries. An overview of the major qualitative spatial representation
and reasoning techniques is available in Cohn [31]. In the following
three sections we discuss three major representation models: (a) 2D
strings and its variants (Section 2.1.1); (b) spatial logic (Section 2.1.2)
and (c¢) other models (Section 2.1.3). A number of these models have
been inspired by the initial work of Allen [21].

Allen [21] introduced an interval-based temporal logic, which
considered objects/events along a 1D (one-dimensional) time axis as
a set of temporal intervals based on comparative relations. This dif-
fers from point-based approaches, prevalent at that time in the logic
and reasoning literature. Allen [21] defined 13 mutually exclusive
relations which hold between two intervals: {before, meets, overlaps,
during, starts, finishes, and their inverse relations, and equal}. Allen’s
13 relations can be expressed in terms of at most three order op-
erators (<, >, =). The elegance and simplicity of Allen’s tempo-
ral interval algebra has inspired several further developments both
in temporal and spatial reasoning. It has been formalised as topo-
logical relations in 1D spatial domain. It promotes development of
symbol projection for spatial image indexing. Lee and Hsu [32,33],
for example, represented 13 types of topological relations in 2D-
C string, shown in Fig. 1, using the principles of Allen’s temporal
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(HA<B (2)AIB
6)B[A (7)A=B
(11)B/A (12) BIA

(3)A/B

] ]

B)A[B

“HA]IB (5)A%B

(10)BTA

(13)B/A

Fig. 1. The 13 types of spatial relations in one dimension for the 2D C-string.

interval logic. Chang and Jungert [34] proposed 2D string by pro-
jecting object centroids onto the two axes of a Cartesian coordinate
system and deriving spatial relations from spatial order of objects
similar to the temporal case along x- and y-axes. Two spatial relation
strings are used to depict spatial configurations of object position
for 3D scenes.

2.1.1. 2D string and its variants

Two-dimensional string provides a simple representation of spa-
tial image properties in the form of two 1D strings and provide an
efficient way to derive spatial queries from symbol projection image
by arranging visual icons.

The 2D string associated with iconic representation is used to in-
dex the spatial layout of images, and the retrieval query is executed
by string-substring matching [35]. To construct a 2D string, the im-
age must be first segmented into disjoint regions or objects and an
associated logic representation “symbolic image” is built. The posi-
tions of objects in a symbolic image represented by their centroids,
projected on both x and y axes, and object labels are also projected
on the two axes. Relationships among objects are specified along the
x and y directions resulting in two 1D strings. The 2D string is the
most common data structure that is used for representing positional
relations. The 2D string uses simple “left/right”, and “below/above”
relationships between objects to represent the semantic or structural
image content. The spatial relationship between two objects is de-
noted by one of the following symbols, { =, <, :}, where the symbol
“="* *“<” and “:” denote the spatial relation “located at the same
position”, “either left/right or below/above”, “falling in the same grid
square”, respectively. A query such as “find all images having a tree
to the left and to the bottom of a house” can be represented by the
string (tree < house, tree < house). The problem of content-based re-
trieval of images becomes one of 2D string subsequence matching.
To match the 2D string, it is first simplified into a reduced 2D string
with the ‘ <’ operator only. Then subsequence exact matching be-
tween two reduced 2D strings is applied by exhaustively enumerat-
ing and storing all combinations of spatial relations of images for a
query image and images in the database.

The 2D strings are mostly applied where images contain objects
which are mutually disjoint and have rather simple shapes. The
spatial relationships between overlapping objects cannot be clearly
identified by the projection of object centroid, and therefore, the
2D strings as a representation of symbolic images are insufficient
to provide the expressive power to describe an image of arbitrary
complexity. To deal with such situations, various extensions of the
original representations of the 2D strings have been proposed, such

as 2D E-strings [36], 2D G-strings [37], 2D C-string [32,33], 2D B-
strings [38], 2D C*-strings [39], “expanded 2D strings” [40,41], and
2D RS-strings [42].

Two-dimensional G-string [37] still adopts the 2D string point-
based representation. In the 2D G-string, there are three spatial op-
erators { =, <, |}. Different to the 2D string, the 2D G-string in-
troduces an operator ‘|" instead of ‘" 2D string operator to denote
“adjoin” or “edge to edge relation”. To solve the problem of object
overlapping, the 2D G-string uses a cutting mechanism to split ob-
jects into simple, non-overlapped sub-objects to specify spatial re-
lationships between overlapped objects. Once this has been done,
object structures are not longer simple and unified. With increasing
number of sub-object pieces after cut, matching complexity will in-
crease as well. As a result of this, the concept of 2D C-string was put
forward by Lee and Hsu [33].

In the 2D C-string representation, Lee and Hsu [32,33] reduced
the number of cuts required by introducing new spatial operators
to represent images with arbitrary complexity. In the 2D C-string
spatial relationships of overlapping objects are expressed as of three
types: “disjoint”, “same position” and “connection from edge to edge”
by using bounding projection line. The string expressions of the 2D
C-string are shorter than that of 2D G-string. Since the 2D C-string
adopts a reduced cutting mechanism to split overlapped objects and
a mechanism of interval-based projection, it does not reduce im-
age indexing complexity much, in comparison with the 2D G-string.
More importantly, no efficient techniques for indexing the 2D C-
strings and the 2D G-strings have been developed. According to the
bounding interval-based projection of the objects, in the 2D C-string,
there are 13 types of spatial relations between two 1D intervals (see
Fig. 1), seven spatial operators with symbols (<, =, |, %, [, ], /)
(see Table 1). The key advantage of 2D C-string is that it has very
strong expressive power. It can represent 169 types of spatial rela-
tionships between two minimum bounding rectangles (MBRs) in 2D
space [32]. These 169 relations consist of five types of relationships:
disjoint (48), joint (40), part-overlap (50), contain (16), and belong
(16). Except for the problems of complexity and indexing, the 2D
C-string has a substantial problem in that it easily includes noise in
its spatial relationship representation, since it tries to retain details
of the object boundary. Thus, the 2D C-string does not produce very
effective spatial representation.

Two-dimensional B-string [43] attempts to reduce the com-
plexity of the 2D C-string. It is an interval-based representation.
The 2D B-string considers any object as a compact MBR without
using a cutting mechanism. In 2D B-strings, objects are repre-
sented by start- and end-bounding projections, which list all object
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Table 1

The definition of spatial operators in the 2D C-string

Notation Condition Meaning

A<B end(A) < begin(B) A disjoins B

A=B begin(A) = begin(B), end(A) = end(B) A is the same as B

A|B end(A) = begin(B) A is edge to edge with B

A%B begin(A) < begin(B), end(A) > end(B) A contains B and they have not the same bound
A[B begin(A) = begin(B), end(A) > end(B) A contains B and they have the same begin-bound
AlB begin(A) < begin(B), end(A) = end(B) A contains B and they have the same end-bound
A/B Begin(A) < begin(B) < end(A) < end(B) A is partly overlapping with B

The internal boundary
information at this point C—
ignored by 2D B-string

<—MBR

k

Fig. 2. Spatial configuration of objects A and B.

start-bounding positions in ascending order and followed by listing
the end-bounding position ranked in ascending order along the x-
and y-axis, respectively. There is only one spatial operator “="
used in the 2D B-string. It is used to specify that the projection of
objects have the same bounding projection line or that start or end
boundaries are projected at the same location. The advantage of the
2D B-string is that its expressions are simple. However, the problem
with the 2D B-string is that it ignores the internal boundary details
and has insufficient expressive power to describe topological rela-
tionships between objects with complex shapes, such as objects ‘A’
and ‘B’ as shown in Fig. 2. In Fig. 2, object ‘A’ and ‘B’ are not even
partially intersecting. Unfortunately, it is interpreted by the B-string
that the object ‘A’ is completely included in the object ‘B’. Similar
to the 2D C-string, the B-string does not have enough spatial con-
straints to eliminate noise effects because of using interval-based
projection.

A number of applications for indexing and retrieving images and
videos based on 2D strings and its variants have been developed.

For image retrieval SaFe system, Smith and Chang [44] provide
an example application for searching and comparing images by us-
ing the 2D string. Multiple regions can be queried by absolute or
relative locations of their spatial layout. For instance, a spatial query
is specified by constructing symbolic images. SaFe also introduced
a simple extension of the 2D string for projection and approximate
rotation invariance around the image centre point with 0°, 45° and
90° image rotation and region projection. The 45° rotated 2D string
was extracted by the projecting objects onto the diagonal of the im-
age. Image rotation by 90° was provided by swapping the x and y
projections.

Further extensions of the 2D string and its variants used for rep-
resenting 3D scenes of video sequences can be found in Costagliola
et al. [45]; Chang et al. [35]; Bimbo et al. [46], 3D-list [47], 3D C-
string [48], 2D C-trees [49], and 3D string [47].

Hsu et al. [49] proposed 2D C-trees, which improve upon 2D C-
string [33] for video retrieval. A video sequence could then be rep-
resented and indexed by a temporal set or an ordered set of 2D C-
trees. Video retrieval was treated as the problem of video sequence
matching by computing the minimum cost of matched frames. Each
frame was constructed as two representative 2D C-trees along the
x- and y-axis. The 2D C-tree was organised with spatial operators
associated with the links of the tree. Each node with a label, or sym-
bol name, represented an object in the image. The links connecting
two nodes were signed with the relation operators. A set-node was

a multi-label node consisting of objects that had the same begin-
bounding and end-bounding.

Liu and Chen [47] extended the 2D string [28] to a 3D string con-
cept and proposed a data structure to represent video. The knowl-
edge structure of 3D string used the projections of video objects to
represent spatial and temporal relations between them. The basic
idea was to project the video objects onto the x-, y-, and time-axis
to form three strings representing the relative positions of the pro-
jections in the x-, y-, and time-axis, respectively. A video object is
represented by its centroids and starting frame number. Two opera-
tors “/p” and “ = " are introduced in the 3D string representation. The
operator “/” denotes that the two objects are adjacent and have the
distance n between them, whereas “ =" denotes the same position.
However, similar to 2D string, they only use position relations. Also
the 3D string ignores topologic relations between the video objects.

Lee et al. [48] extended 3D-list [47] and 2D C*-string [39] ap-
proach and proposed a 3D C-string data structure to represent video
by using the projections of objects to represent their spatial and tem-
poral relations in a video. Moreover, it can keep track of the motion
and size changes of the objects in a video.

2.1.2. Spatial logic and systematic derivation of spatial relations

There are various extensions to the 2D string concept discussed
earlier to deal with the situation of overlapping objects with com-
plex shapes based on direct point- or interval-based projection com-
parison between objects.

Qualitative description of object relationships is important not
only for computer vision but also for other cognitive tasks, such
as GIS, databases, and other physical and engineering applications.
The question here is what distinctions are necessary to qualitatively
describe object relationships. In the following, a brief review of some
important spatial models using spatial logic is given.

Allen’s temporal interval algebra expresses topological relations
in 1D space. A variety of studies on qualitative spatial reasoning have
exploited and extended Allen’s [21] temporal reasoning logic. Exam-
ples include Refs. [29,50], Pullar and Egenhofer (1988) and Guesgen
(1989). These studies extend concepts of Allen’s temporal interval
algebra to spatial logic in order to represent geometric ordering rela-
tionships between the projections of the objects in 1D or 2D spaces.

Egenhofer and Franzosa [29] specify eight fundamental topolog-
ical relations between two objects: {disjoint, contains, inside, meet,
equal, covers, covered-by}. These relations are based on the discus-
sion of intersections over the boundary and interior point sets be-
tween two objects. Egenhofer and Al-Taha [50] emphasise that the
internal relationships are important to represent the closeness of
topological relations after studying gradual changes to topological
relations over time. Vazirgiannis et al. [51] extended the topologi-
cal relation definition of Ref. [50] by giving spatial relations a more
complete and systematic description with directional relationships,
topological relationships, and of the distance characteristics. Simi-
lar to Vazirgiannis et al. [51], Cohn [31] considered spatial relations
of topology, orientation, shape, size and distance. Furthermore, Pa-
padias et al. [171] investigated topological relationships within the
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context of MBRs. Li et al. [52] classified directional relations into the
following three categories: strict directional relations (north, south,
west, and east), mixed directional relations (Northeast, southeast,
northwest and southwest), and positional relations (above, below,
left, and right).

At least two important factors determine the relative position of
objects in 2D space: the topological relations and directional rela-
tions between objects. Topological relations address how the bound-
aries of two objects relate, express topological extension of two
object boundary, and describe neighbourhood and incidence (e.g.,
overlap, disjoint). It is an interval-based representation. Directional
relations address where the objects are placed relative to one an-
other, express relative orientation of two objects and describe spa-
tial order along the x and y directions. It is a point-based repre-
sentation based on the comparison of two object centroids. In com-
parable projection space, distance relations address qualitative or
quantitative distances between objects, and express relative space
range between objects (e.g., far, near). However, if videos or images
in databases are collected from different sources and are captured
under different resolutions or at different viewpoints, quantitative
value of distance between two objects does not have a physical
meaning.

Spatial logic has explored definition of spatial relations from
mathematical theories of points, intervals, and sets. Its development
led to the mathematical foundation used to interpret and recognise
spatial configurations for cognitive science. However, spatial logic
does not provide a practical solution for effectively indexing and
storing these spatial relations.

The spatial models given by spatial logic have been applied in the
database and knowledge-based spatial domain. For example, Liang et
al. [53] formulated video object spatial relations via 13 types of topo-
logical relations and directional relations called R-strings, includ-
ing {disjoins, touches, intercepts, starts, is-inside, finishes, is-equal-to,
is-finished-by, contains, is-started-by, is-intercepted-by, is-touched-by,
and is-disjoined-by}. User queries are transformed into a structured
video query language (Video SQL). STARS video indexing system [54]
also computed spatial relationships based on MBRs. STARS repre-
sented 12 directional and eight topological relations. Directional re-
lations consist of {north, south, west, east, northeast, southeast, north-
west, southwest, above, below, left, and right}, while topological rela-
tions include {covers, covered by, inside, contains, equal, overlap, touch,
and disjoint}.

Knowledge-based spatial models have been extended to capture
more detailed spatial description for medical image retrieval and face
recognition, where image information is expressed based on spatial
relationships between regions of interest. For example, the spatial re-
lationship for a lesion that is near another object can be captured us-
ing the distance of the centroids of the two contours on the x- and y-
axis, the angle of coverage (the angle for viewing a contour from the
centroid of another contour), and the ratio of object area to classify
the spatial relationship. Hsu et al. [55] proposed a knowledge-based
spatial model (KSIM) for medical image matching. KSIM takes into
account qualitative topological relations. For example, “disjoined” is

", ows

further sub-categorised as “far-away” and “nearby”; “joined” is fur-

ther categorised as “bordering”, “invading”, and “circumjacent” and
had a corresponding set of parameter measures.

2.1.3. Other spatial models for image retrieval

Apart from the 2D string and its variants, some other spatial
models are also used in computer vision. These models have gained
less popularity but none the less offer a novel and fresh perspec-
tive for solving the problem of image and video retrieval, such as
2D projection interval relationships (2D-PIR) [56], the nine direc-
tion low triangular (9DLT) matrix [27], qualitative pairwise salient
region patch [57], CRTs [26], attributed relational graphs (ARGs)

[58-61], O-R representations (also called spatial orientation graph)
[30,62], and mixed directional relations-based quadtree represen-
tation [63].

Some studies compare spatial relationships in a weak manner
based on spatial partition of the image without image segmenta-
tion, such as weighted five fuzzy regions [23], 2D tagging 5x5 grid
scheme in CAETI Internet multimedia library [64] and the entities
and attributes model [65,66].

Most approaches compare spatial relationships using segmented
images. In this case, regions (or objects) are taken as basic units of
analysis. MBRs are used to represent the extracted regions for ef-
ficient computation and comparisons. Thus, in query comparisons,
the similarity between colour regions in the images can be mea-
sured based on user-specified query rectangles. Examples include
ImageSearch System [67], Hsu et al. [68], Netra [69], QBIC [70], and
VisualSEEk [71].

In the above discussion we discussed the different spatial rep-
resentation models that can be applied for image and video anal-
ysis. The basic idea is to encode spatio-temporal information in a
format that can be compared across two different image sequences.
The quality of match will depend on two key factors: (i) quality of
spatio-temporal information encoded; and (ii) the similarity match-
ing approach used. In the following section we address similarity
matching approaches which have a major impact on the quality of
video retrieval.

2.1.4. Similarity metrics and spatial indexing

A number of similarity metrics are used for comparing two spa-
tial relationships. Some representative examples of similarity met-
rics and associated spatial indexing approaches with a reference to
studies include:

Chang et al. [28] and Chang and Lee [27] used subsequence exact
matching for 2D-string, and Smith and Chang [71] in VisualSEEk
used 2D-string indexing.

Messmer [59] used edit distance for ARGs, and Hsu et al. [49] using
edit distance for 2D C-trees.

Petrakis et al. [60] in ImageMap system used R-tree matching for
ARGs.

Smith and Li [26] used co-occurrence matrix comparison for count-
ing the difference in colour frequencies of sequential spatial re-
gions.

Nabil et al. [56] used Euclidean distance for 2D Projection Interval
Relationships (2D-PIR).

Gudivada and Raghavan [30] and Li and Ozsu [54] used Cosine
metric for O-R representations.

Stricker and Dimai [23] used weighted distance for partitioned
region grids.

Lipson [57] used template matching pairwise region patches to de-
fine spatial scene layout.

Yu and Wolf [64] used LOST language for query matching for CAETI
Internet multimedia library.

Rodrfguez and Jarur [72] used a genetic algorithm for searching
spatial configurations.

Although a number of studies have worked towards spatial rep-
resentation using qualitative spatial logic in the literature, most of
them only use SQL-like or other query languages to perform match-
ing. A few studies have employed qualitative similarity metrics of
computer vision or pattern recognition for similarity comparison. An
example can be found in Hsu et al. [55] who suggest a knowledge-
based spatial model for medical images representation and retrieval.
Unfortunately, their spatial model only supported SQL-like query
language matching.
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2.2. Temporal relations

Temporal relations are explicit or inferred coherence relations
that are used to depict events or states ordered with respect to
time. These relations can be expressed by using beginning and
ending bounds of intervals, time sequence (before, after), or the si-
multaneous relations. Allen [21] proposes temporal interval algebra
for representing and reasoning about temporal relations between
events represented as intervals. Allen’s work [21] on temporal in-
tervals lays the foundation for further research concerned with
time intervals. For example, Freksa [73] presents a generalisation
of Allen’s temporal interval reasoning approach based on semi-
intervals (beginnings or endings events). He introduces an impor-
tant notion of “conceptual neighbourhood” for qualitative temporal
relations. Events corresponding to neighbouring relations “can be
directly transformed into one another” by continuous “deformation”
operations (i.e., moving in time, shortening and lengthening due to
duration varying). An application example can be found in Hamameh
et al. [74]. These neighbourhoods not only lead to increase tempo-
ral reasoning inferencing efficiency but also to prompt systematic
development and effective representation of topological relations in
spatial logic.

Similar to Freksa [73], Vazirgiannis and Hatzopoulos [75] extend
Allen’s interval algebra by defining a set of operators to implement
Allen’s temporal relations logic representation. This set of operators
can be used to present the semantics of a synchronisation mecha-
nism.

Further developments of temporal reasoning for manipulat-
ing multimedia data can be found in Little and Ghafoor [76] and
Hjelsvold et al. [77]. Ref. [76] apply Allen’s temporal interval alge-
bra to represent time-dependent multimedia data. They introduce
two interval-based conceptual temporal hierarchy models for cap-
turing these timing relationships and managing them as part of a
database. They define n-ary and reverse temporal relations along
with their temporal constraints, whereas Weiss et al. [78] propose a
system implementing video algebra operations for video access and
management such as composing, searching, navigation, and playing
back. They define 12 video algebra operations {concatenation, union,
intersection, difference, parallel, parallel-end, conditional, loop, stretch,
limit, transition, and contains} to describe video temporal relation-
ships between video segments. In addition, Hjelsvold et al. [77]
also consider video as time dependent data. Video production is
thought of in terms of three interval-based operations {intersection,
union, and difference}. They suggest that indexing videos should be
based on these interval-based temporal relationships. Videos can
be queried with different time scales by mapping video objects
between different time coordinate systems.

Typically, nowadays temporal relations commonly adopted are
still using Allen’s [21] original definition which contains 13 rela-
tions {before, during, overlaps, starts, ends, equal and their inverses
(does not apply to equal)}. These 13 temporal relations contain con-
siderable discriminatory power. However, it is not trivial to capture
temporal characteristic of a video and determine temporal relations
in an implicit manner for effective retrieval analysis. In the OVID
system, Oomoto and Tanaka [79] introduce a temporal model using
algebraic operators to define video objects relationships. Similar to
OVID, video database systems such as the VideoSTAR [80], the VIQS
[81], SEMCOG [20] and the common video object tree (CVOT) [82]
are also focused on temporal intervals. All query the temporal prop-
erties of video data and locate video objects or video segments based
on their temporal relationships.

A representative example of building a temporal video manage-
ment system and retrieval from videos by using interval temporal
relations is the CVOT [82]. The CVOT scheme builds a tree based on
the common salient objects in a set of clips. In CVOT, the leaf nodes
are ordered from left to right by their time intervals. An interval

node represents a set of common salient objects, which appear in all
of its child nodes. The only node that can have an empty common
salient object set is the root node or a node of the clip with an
empty salient object set. Every node (including internal, leaf, and root
node) has a time interval and a set of salient objects which appear
during this time interval. Traversing the tree from the leaf nodes to
the root, shrinks the cardinality of the common object set. In CVOT,
however, all videos are modelled based on user viewpoints with
manual frame annotation. No image understanding is performed in
the CVOT scheme.

These systems are based on knowledge-based formalisms for
event specification of video data. The problem with such systems is
that manually annotating temporal intervals is time-consuming and
may cause semantic heterogeneity due to inconsistent perceptions
by different users.

2.3. STL representation

There are several approaches using STL that model and represent
video data. Day et al. [83] perform spatio-temporal indexing based
on generalised n-ary relations and corresponding interval constraints
[76]. This framework allows data modelling and semantic abstraction
of video data. Video objects are manually annotated. The specified
spatial and temporal relationships between objects are represented
using STL. Multi-level indexing and searching mechanism analyses
information at various levels of granularity.

Another attempt is to express scenes and sequences in a formal
logic language supported by symbolic projection and STL, Bimbo
et al. [7]. In their study, temporal characteristics of video data are
captured with temporal logic in 1D time axis to represent the spatial
constraints of the objects in a scene. This approach uses boolean
connectives and temporal ordering relationships. In their model, a
video scene could be searched and browsed from three levels to
assert and interpret the spatial relationships between object pairs
on x-axis projections. The first level is to distinguish “before”, “after”
and “overlapping” conditions. The second level includes adjacency
conditions and overlapping with either complete inclusion or partial
intersection. Finally, the third level distinguishes all of the 13 possible
distinct mutual positions between two objects. However, the key
shortcoming of this approach is that the language used does not
support qualitative comparison; the same is true for the models
proposed by Bimbo et al. [7] and Vazirgiannis et al. [51].

Finally it is worth mentioning the work of Vazirgiannis et al. [51].
Their model integrates the following three important concepts to
define the spatio-temporal composition and explore the specification
of spatio-temporal relationships for video data:

(a) temporal logic operators [75] based on Allen’s temporal interval
algebra [21],

(b) topological relationships [29],

(c) directional relationships [84].

This work provides a framework for spatio-temporal query language
of video databases, where spatial and temporal information can be
independently extracted.

Pissinou et al. [85] give a more detailed specification of query
representation based on spatio-temporal composition of objects in
video sequences. They project 3D scenes on three 2D planes. In each
plane, a video object is represented by MBRs. For the spatial part,
each object-pair in each plane is labelled using one of the 169 direc-
tional and topological relationships, the projection value of closest
distance and centroid distance in the horizontal and vertical axes.
For temporal analysis, the operators proposed by Little and Ghafoor
|76] are used to represent the binary temporal relationship between
two temporal intervals. The main weakness of this model is its high
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computational complexity. These spatio-temporal representations
supported by logic language or operators are only suitable for video
search and retrieval using an SQL type language.

Salembier et al. [86] presented a set of description schemes (DS)
dealing with video programs, users and devices. The physical video
structure was described by the temporal organisation of the se-
quences (segments), the spatial organisation of images (regions) as
well as the spatio-temporal structure of the video (regions with mo-
tion). The semantic description is built around objects and events.
Finally, the physical and semantic descriptions are related by a set of
links defining where or when instances of specific semantic notions
could be found.

The above retrieval works focus on spatio-temporal representa-
tion for browsing video databases or as query language. However,
they do not provide a solution on how to index and compare the
similarity of two videos. Only a few researchers have explored the
use of spato-temporal logic for video indexing as discussed below.

Hsu et al. [49] extend 2D string [28] iconic approach to video data
indexing and propose 2D C-trees to represent the spatial content
within individual frames. A video sequence can then be represented
by a temporal ordering set of 2D C-trees. The video frame sequence
matching (VFSM) problem is solved by computing the minimum
editing distance of 2D C-trees. A tree-matching algorithm is used in
deciding the editing distance.

Ren and Singh [87] proposed R-String representation to formu-
late position relation and topological relations of objects into binary
string. Image frame sequences were described through discrete se-
quential feature point sets in hyperspaces. They apply two different
approaches to address video indexing problem: firstly, by finding
minimum cost flow in a bipartite network, and secondly by search-
ing nearest neighbours in sequential feature vectors.

In the above discussion, we have detailed the state-of-the-art re-
search in the area of spatio-temporal representation. We presume
that image objects and their positions are known, and this forms the
basis of a representation that can be matched. However, this is not
the only form of spatio-temporal representation. Image object be-
haviour across image frames based on motion and trajectory anal-
ysis can also be used for matching. With another approach, video
sequences can be initially described by a sequence of feature values
and these can be used to compute the similarity between image se-
quences. In Section 3 we discuss these methods of spatio-temporal
information representation and matching.

3. Visual appearance-based representation and recognition

Spatio-temporal motion-based recognition has the wide spec-
trum of applications in surveillance, automation, health and medical
systems, etc., through perceptual identification of biometrics, activ-
ity recognition. For example, motion analysis can be used in sports
and athletic training, e.g., analysing tennis strokes. For instance, the
discrimination between different tennis strokes is investigated by
Yamato et al. [88]. Motion-based recognition can be employed in
obstacle avoidance of moving objects for robots, and satellite mon-
itoring of weather disturbances. Motion plays an important role in
the human visual system, such as recognising a distant walking per-
son by his/her gait, cyclic motion, dance steps, analysing gait to find
clinical abnormalities, distinguishing flying birds and airplanes, in-
terpreting lipreading, and hand gestures. Motion perception helps us
recognise different objects and their motion in a scene, infer high-
level semantic events or actions, etc.

As described in Section 1, another type of spatio-temporal infor-
mation representation or models is based on visual appearance that
are analysed using pattern recognition techniques. The discussion
on these is subdivided into motion trajectory-based method (Section
3.1) and sequence-to-sequence-based matching (Section 3.2).

3.1. Motion trajectory-based representation and recognition

Spatio-temporal recognition can be typically categorised as either
trajectory-to-trajectory-based approach or sequence-to-sequence-
based approach. The former attempts to estimate object motion tra-
jectories to recognise moving objects’ behaviour, activities, human
gait, etc. The latter performs inference based on pixel changes frame-
by-frame. There are four significant research trends for analysing ob-
ject trajectory: slice of trajectory volume, trajectory volume, shape-
from-motion (SfM), and multi-camera tracking with view invariance.
These approaches are discussed in the following sections.

3.1.1. Slice of space-time trajectory volume

Spatio-temporal (x,t) slices from the image sequence volume
(x,y,t) are very popular for video event description because they are
relatively simple to extract, and their interpretation is obvious. Both
the intrinsic properties of the objects represented by image regions
with colour, shape and texture and their dynamics represented
by the motion trajectories are used to describe events. Knowledge
about an object and its motion can be used to construct models
of object behaviour. Usually, moving objects absorb the most at-
tention. Most research on motion trajectory recognition relies on
spatio-temporal image processing. Examples such as Ricquebourg
and Bouthemy [18] exploit (x,t) slices to interpret typical trajec-
tory patterns associated with articulated motion such as human
gait. They address the problem of tracking the apparent contours
of a moving articulated structure for analysing human motion in
video. They claim that this paradigm can lead to a simple trajectory
recognition scheme that can be used for analysing human gait. An
extensive treatment of this topic can be found in Jahne [89].

Motion trajectory matching based on spatio-temporal slice com-
parison is the most common method for spatio-temporal video anal-
ysis and retrieval. Of course, actual approaches are implemented in
several different ways. A good survey can be found in Aggarwal and
Cai [90]. The following Sections 3.1.1.1-3.1.1.8 describe individual
recognition methods.

3.1.1.1. Curvature representation and matching. The trajectory of an
object can be considered as a 2D curve on a plane. The problem of
representing motion is translated into the problem of representing
curves. Numerous approaches to represent curves have been devel-
oped. Polygonal approximations and spline approximations are the
most commonly used techniques for this task.

Polygonal approaches are used to approximate the shape bound-
ary using the polygonal line. These methods are based on the use of
the minimal error as approximation criteria. One of the most popular
methods in this group is the split and merge algorithm [91]. Splines
are also very popularly used for the interpolation of functions and
the approximation of curves [92]. Especially, B-splines have the ad-
vantage that the local function value change does not spread to the
rest of the intervals.

Both approaches agree on the significance of high curvature
points for visual perception. Extraction of critical points with high
curvature as feature points for shape recognition has been previ-
ously investigated [93-97]. For example, Chen and Su [95] adopt a
maximum curvature approximation to derive feature points. Little
and Gu [96] use the trajectory path and speed curve for motion
representation. The path curve records the position temporal infor-
mation of the object and the speed curves records the magnitude
of its velocity. The maximum curvature of feature points, angles
between successive segments, and the relative lengths of adjacent
segment are calculated. A warping method is adopted for matching
this curve. Hierarchical search is used for angle length comparison.
In Bashir and Khokhar's [93] study, spatio-temporal curvature is
used to represent the trajectories. Dominant inflection points from
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the curvature are simultaneously extracted at multiple levels of
scale revealing the structure at varying levels of details. These inflec-
tion points, the maxima of curvature scale space (CSS), are then use
for indexing and retrieval. Representation of the CSS is computed
by convolving a path-based parametric representation of the curve
with a Gaussian function, as the standard deviation of the Gaussian
varies from a small to a large value. Object trajectory indexing and
retrieval inspire shape matching for CSS image analysis. A ranked
list of sorted trajectories with query trajectory is output.

Wai and Chen [98] also attempted to solve the problem of
curve matching with sketch query of object trajectory. High cur-
vature points are extracted as feature points. Sub-matching and
approximate-matching is performed by aligning these feature
points.

3.1.1.2. Model based and pdf-based matching. This approach aims to
train and build a knowledge-based model to recognise motion tra-
jectory through mapping the spatial information in each frame or the
differences in spatial information between successive frame-pairs
into a temporal sequence of features. It attempts to estimate a set of
model parameters to minimise fitness errors or modelling costs from
the video data and use them to recognise the activity. State space
models have been widely used for prediction, estimation, and de-
tection of discrete spatio-temporal data. One representative model
is the hidden Markov model (HMM), which can be summarised as
a hidden Markov chain with a finite set of output probability dis-
tributions [99,100]. Each state is connected by probabilities to other
states or its own, and an observation is derived from each state. HMM
uses the Baum-Welch (forward-backward) algorithm for maximum
likelihood estimation of the model parameters. HMM has been used
widely in speech recognition. HMM has also been adopted for the
recognition of motion sequences to model temporal structure of ac-
tion such as learning object or camera movement and behaviour
models [88,101], gesture recognition [102], and more recently activ-
ities segmentation from continuous surveillance videos [103].

Yamato et al. [88] employed a HMM probabilistic model for the
classification of different human motions. They use a sequence of
symbols, one per frame, derived from a mesh feature at the image
level. Example sequences are used to train HMMs to match an un-
known sequence with a trained model by analysing the probability
distribution.

Ariki and Sugiyama [101] developed a TV news retrieval system
which could automatically classify articles using a keyword spotting
technique. The keyword spotting technique can extract a keyword
sequence with their probabilities and the extracted keywords are
attached to the article for retrieval. The TV news article can be clas-
sified into topics such as politics, economy, and science and so on
by integrating acoustic keyword probability and topic contribution
probability of the keyword, which is the probability to show how a
keyword contributes to classify the article. TV news is retrieved by
speech including the keywords attached to the articles. They employ
normalised Viterbi method which computes the word probability by
forward heuristics only.

Psarrou et al. [102] describe a statistical dynamic framework to
model and recognise temporal structures of human activities based
on prior learning and continuous propagation of density distribution
of behaviour patterns. In their approach, prior knowledge is learned
from training sequences using HMMs and density models are tem-
porarily augmented by current visual observations. In their study,
walking motions and gestures are recognised.

Yacoob and Black [104] propose a framework for modelling and
recognition of temporal activities. The modelling of sets of exemplar
activities is carried out by parameterising their representations in
the form of principal components. Recognition of spatio-temporal
variants of modelled activities is carried out by parameterising the

search in the space of admissible transformations that the activities
can undergo.

Xu et al. [105] used a probability approach to characterise the
motion patterns based on these features obtained from energy re-
distribution of the motion vector field to classify basketball videos
into 16 events such as team offence at left court and fast break to
left, etc. In their basketball analysis system, they consider these se-
mantic events and trained a HMM model for each event. Shots in
basketball video can be considered as sentences composed of those
events. They automatically build the semantic net through training
data to add knowledge rules in recognition. Finally, Viterbi algorithm
is used to segment and recognise events in shots. A classification
rate of 75% is obtained. Similarly, Petkovic and Jonker [106] also use
HMMs to recognise events in tennis videos.

A few other studies have used probability distribution function
(pdf)-based distance to compare similarity. Fablet and Bouthemy
[107] rely on a statistical approach for motion-based object indexing
and retrieval. The local motion of polygon regions marked by users is
extracted. The motion of the marked object is modelled using a ker-
nel density estimator. Similarity comparison is based on computing
Kullback-Leibler divergence.

3.1.1.3. Distance- and classification-based comparison. Distance-
based comparison is the most common approach for motion trajec-
tory matching. When spatio-temporal information is represented as
feature vectors, usually a similarity distance is calculated between
a model and an unknown input feature vector, such as Petajan
et al. [108], Finn and Montgomery [109], JACOB [110], VideoQ
[111] and Ioka and Kurokawa [112]. The model with the small-
est distance is taken to be the class of motion to which the input
belongs.

Dagtas et al. [113] use a trail-based model for video retrieval. The
motion of salient objects over a sequence of frames is traced. The trail
image is generated to use for the trajectory comparison. The authors
use three methods to compare trajectory images: the first one is
absolute search by finding the summary value of normalised dot
product between a query image and database trajectory images; the
second one is spatial-invariant-search by finding maximum value of
normalised dot product between a Fourier transformed query image
and database trajectory images; the last one is scale-invariant-search
using a Mellion transform by finding minimum value of normalised
Euclidean distance between Mellion coefficients.

Stefanidis et al. [17] and Eickhorst et al. [114] model an object
trajectory and its outline as a helix representation with 3D spatio-
temporal point trajectory (x,y,t). Similarity comparison is performed
by computing Euclidean distance at each node of the helixes to de-
termine whether both are exhibiting similar behaviours.

Once spatio-temporal features are extracted from motion trajec-
tory slice as feature vectors, they can then be clustered for mapping
to spatio-temporal similarity. For example, Nelson and Polana [115]
assume that similar motion trajectories would generate similar fea-
ture vectors, which could be classified using a nearest centroid clas-
sifier, or any other classifier. Dimitrova and Golshani [116] use mac-
roblock tracing and clustering to derive trajectories, and dynamic
programming to determine similarity between trajectories.

Goddard [117] uses neural networks to map temporal similar-
ity. This representation consists of an ordered sequence of events
which are coordinated by temporal and motion events. A hierarchy
representation is used: at the low-level, the presence of a low-level
feature triggers an event which is sent to the higher layer. Com-
bination of events at the this level trigger other events at higher
levels, and so on, until the coordinated sequence of events of a
body in motion could trigger one motion model up to the out-
put level, representing the global motion of walking, running or

skipping.
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3.1.1.4. Template matching-based comparison. This approach requires
building a set of templates in advance. Comparison is performed by
finding the maximum correlation between the existing templates
and the current test pattern. For gesture recognition to identify ac-
tions, Martin and Shah [118] use dense optical flow fields over a
region, and compute correlation between different sequences for
matching. Niyogi and Adelson [119,120] use temporal matching tra-
jectory slices (or called as the xt plane) for gait recognition based on
reciprocating path traced by a walking person’s shoe to reveal the
special braded pattern generated by walking in space-time. Polana
and Nelson [121] recognised repetitive motion activity by matching
spatio-temporal templates of motion feature, such as total motion
magnitude, to classify the activity into one of several known classes.
Efros et al. [122] built a smoothed and half wave rectified motion
descriptor for recognising low resolution object actions. Normalised
correlation is computed to compare the similarity of actions.

More recently, Briassouli and Ahuja, [123] applied the short-term
fourier transform (STFT) to capture and recognise repetitive actions.
They created a frequency-modulated (FM) signal in x and y projec-
tion for STFT of object action and compute the corresponding time-
varying power spectrum of each FM signal. Thereafter, they deter-
mine the correlation between their templates and an inputted object
action.

3.1.1.5. Multi-resolution matching. The match of motion trajectory
should be executed in multi-resolution to get good fitness of the
curve. Scale-space of motion trajectories has been analysed in differ-
ent ways. Rangarajan et al. [124] compute the diffused scale-space
of speed and direction of different points extracted from their tra-
jectory. They argue that for similar motions, the scale-space would
be similar, such that the point by point difference between the scale
space of the speed and direction curves from different points un-
dergoing similar motion would be much smaller than of points with
very different motions.

Sahouria and Zakhor [125] analysed surveillance videos based
on wavelet analysis of object trajectories in x and y directions
X =[x1,X2,....xn] and Y =[yq1,y2,...,yn]. The first eight coefficients
of the Haar wavelet transform are stored for matching.

Multi-scale analysis is also performed to represent trajectories
for both spatial and spatio-temporal dimensions by Chen and Chang
[126]. The motion is presented with trajectory signals (x(t)y(t)).
Wavelet analysis is applied to partition them into sub-trajectories.
The raw object trajectory is decomposed into a hierarchy of coeffi-
cients at different scales. The coarsest scale components are adopted
to approximate a smoothed trajectory and the finer scale compo-
nents are used to partition the global motion into sub-trajectories.
Each sub-trajectory is then modelled as a feature vector. Mahalanobis
metric is used to calculate distance between feature vectors.

Multi-scale pyramid tracking based on the Mean-Shift algorithm
is used by Wexler et al. [127] for video completion or inpainting
missing data with small object or local portion of object. The process
involves three steps of moving object alignment, inpainting of miss-
ing object portions, and background texture synthesis. Feature points
are characterised by pixel (R,G,B) value, horizontal motion, and ver-
tical motion. Logarithm function of similarity between feature points
is computed by L2-norm distance. To simplify object modelling, they
adopted a mounted camera and without camera motion is consid-
ered.

3.1.1.6. Chain code-based comparison. Chain code approximates ob-
ject trajectory by using a set of orientation primitives and represents
each segment of trajectory with a directional primitive. The direc-
tional primitives quantise the space into eight basic directions with
symbols from 0-7. The distance between two symbols (a) and (b)
of chain code is min(|a—b|,8—|a—b|). On the other hand, differential

chain code approximates the trajectory with piecewise linear seg-
ments and codes each segment with a directional primitive that is
relative to the last segment with respect to direction (left or right)
and segment length.

Chain codes describe the trajectory through a sequence of unit-
size line segments with a given orientation [128]. Several video re-
trieval studies represent spatio-temporal trajectory in the form of
chain codes, such as Lee and Kao [129], Yoshitaka et al. [130], Li
et al. [131]. Examples of video retrieval systems using chain code-
based trajectory comparison include VideoRoadMap [132] and VIO-
LONE [130]. Similarly, Lee and Kao [129] present a qualitative de-
scription which enables subsequence query matching by using chain
code representation. Object motion is represented using a combina-
tion of the 12 primitive motion types for translation, translation in
depth, rotation, and rotation in depth.

3.1.1.7. Autocorrelation-based matching. Autocorrelation-based
matching can be used to detect a variety of periodic and repetitive
motion trajectories. It seems reasonable and sensible to use Fourier
transforms to emphasise self-similarity and detect repetitive mo-
tion. Furthermore, it is more robust to uncorrelated noise, and it
possesses several desirable invariances, for instance to spatial and
temporal translation and scale.

Tsai et al. [133] introduced the spatio-temporal curvature for cy-
cle detection. The 2D trajectory of a point on an object that performs
cyclic motion is used to compute curvature as a function of time.
Autocorrelation is calculated to emphasise self-similarity within the
curvature function. Fourier transform is finally applied to detect the
presence of cycles and their period. A high impulse indicates the
presence of cycles and their fundamental frequency. Albu et al. [134]
found the temporal segmentation of cyclic human motion by com-
puting periodicity score through comparing the corresponding max-
ima of autocorrelation of a non-ideal periodic signal of average pe-
riod with the one of an ideal periodic signal of exact period. Then
iteratively merge coherent neighbour individual segments based on
the periodicity score into a global segmentation.

3.1.1.8. Other methods of motion trajectory matching. Motion tra-
jectory modelling based on simple chain-code or B-splines does
not completely capture the motion trajectory characteristics [126].
The motion trajectory-based approach is sensitive to noise and
time-scale. No matter which technical approach is taken, motion
trajectory-based approaches are highly dependent on time, whereas
most spatial relations remain consistent during the movement of
video objects. Hence, combination of recognition of motion trajec-
tory with analysing evolution of spatial relations for video retrieval
can make video retrieval approaches more robust against time-scale
dependency.

Li et al. [131] presented a novel scheme for matching the tra-
jectory of a single moving object by comparing the moving object’s
directional and topological relation difference for each moving step.
They store the object movement, directional relation and topologi-
cal relation in a linked list. The topological rationale is based on the
closeness of these relations when they evolve from one into the other
within a time interval. Extending Egenhofer and Al-Taha’s [50] qual-
itative definition of eight typological relations, they further elabo-
rated on the qualitative representation of eight differential/distance
of direction relations and of four positional relations, when these
relations evolve from one to the other.

Wai and Chen [98] proposed the second approach for curve query-
ing. The motion trajectory is modelled as a sequence of peaks by ex-
tracting high curvature points. The orientation of the peak is coded
by chain code or modified chain code. The angle of the peak is
binned by dividing 0°-180° into eight partitions. The temporal in-
formation “time” records the total number of frames in which the
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symbol object moves through the peak. With each peak characterised
by its orientation, angle and temporal information, the motion track
is transformed into a string of code triples. Consequently, the curve
matching problem is converted into a string matching problem. A
finite automata-based matching method is used for efficient query
processing.

3.1.2. Space-time trajectory volume representation and matching

In contrast to the analysis of trajectory slices that only exploit
a small portion of the available video data, space-time trajectory
volume is more attractive due to its rich information content. Recent
research trend has been to unify the analysis of spatial and temporal
information by building a volume of spatio-temporal data in which
consecutive images are stacked to form a temporal dimension. A
sequence of such 2D moving object contours with respect to time
generates a spatiotemporal object trajectory volume in (x,y,t) space
which can be treated as a concatenation of object silhouettes. The
frame intervals are assumed to be sufficiently short to allow treating
3D trajectory as a continuous-time 3D shape as well as to allow
derivatives to be calculated. The full benefits of analysing this volume
are realised when the images are frequently sampled sufficiently to
preserve spatial and temporal domains continuity. In such a scenario,
the complexity of feature correspondence is significantly reduced,
and occlusion events are made much easier to untie and detect.

Existing approaches of matching 3D shapes can be divided into
two categories: volumetric feature- and model-based. Feature-based
approaches are inherently more general-examining raw pixel data
(x,y,t) at the expense of higher sensitivity to noise. A video sequence
can be represented as a feature vector, with straightforward index-
ing, and retrieval can be implemented efficiently using nearest neigh-
bour search. Shapes can be compared quickly by computing their
distance in this space. Alternatively, a classifier can be trained with
priori knowledge to identify an unseen sequence. Further data anal-
ysis can assist with pre-processing, such as normalisation, rotation,
scale, translation to increase the discriminative abilities.

Local descriptor-based approaches build an interest point detec-
tor, then identify local structures in space-time where the pixel val-
ues (x,y,t) have significant local variations in both space and time,
and finally construct the correspondence among interest points and
associated events or gestures. The technique assumes that one can
reliably detect a sufficient number of stable interest points in the
video sequence. In the spatial domain, interest points are the points
with a high local intensity gradient, such as corners and edge points.
Interest points detection have been extensively investigated in the
past with successful applications for image indexing, object tracking
and recognition. These space-time interest points will be spatial in-
terest points with a distinct temporal location corresponding to an
instance characterised by variations of object motion in magnitude
or direction in local spatio-temporal vicinity. There points should
be distinctive enough to reliably identify the local spatio-temporal
change. In the video sequence volume, if there are the points where
an object rapidly changes its direction of motion, an instance of crit-
ical events can be reported. For example, consider scenes with a
car crash event or with a person walking. Of course, local descrip-
tors should also be robust to geometric perturbations and noise. Lo-
cal descriptors also have the advantage of trajectory alignment with
properties of free-viewpoints and robustness to temporal extents.

Laptev [135] extend the notion of interest points of image into
the spatio-temporal domain. A scale-invariant Harris-Laplace inter-
est point detector is derived by using a second moment matrix in-
tegrated over a Gaussian window over space and time (x,y,t). They
show that analysis of “space-time” corner feature pointers can gen-
erate an understanding of events and actions in video data.

Yilmaz and Shah [136] generate 3D action trajectory volume
by contour tracking cross time interval. Their contour tracking is

performed based on the correspondence between contour points by
computing the maximum matching of the weighted bipartite graph.
Subsequently, high curvature points extracted from the surface of
the action volume that are used for matching two actions. At the end,
matching is performed by computing the correlation between two
matrices composed by high curvature point sets, respectively. The
observation matrix is constructed using coordinates of high curva-
ture points from the two matrices. The smallest singular value (the
ninth eigenvalue) of the observation matrix corresponds to the best
match of trajectories. A similar method is also studied by Rao et al.
[137], in which 3D epipolar geometry constraint for view-invariant
alignment is used.

Unfortunately, since only the points from the contour are used
for tracking, these techniques fail to detect actions when insufficient
useful space-time interest points are available, in situations where
the smooth motions contain no sharp extrema, or such points are
missing or have errors due to occlusions, changing illumination, re-
flectance, shadows as well as noise. It is quite possible that there
are so few such points in a typical motion, it is difficult to trace
these interest points to support event recognition. In order to solve
the problem of actions with very few feature points, an approach of
space-time patches (ST-patches) template comparison for register-
ing two action video clips is presented in Shechtman and Irani [138].
They attempt to match two space-time patches (ST-patches) on gra-
dient of motion fields by examining the rank-increase measure of
their joint matrix. Finally, multiple templates are correlated against
the same video sequence to detect multiple different activities.

A number of other volumetric feature-based approaches have
been used in literature. Examples include Lihi and Irani (2001), Ke
et al. (2005), Weinland et al. [139], and Gorelick et al. [140]. Zelnik-
Manor and Irani [141] regard an event as a stochastic temporal pro-
cess associating an empirical distribution of space-time gradients,
which are generated from an entire video volume. Weinland et al.
[139] compute the Fourier magnitudes from the motion history vol-
ume as the descriptors for human action recognition. They adopt
cylindrical coordinates, centered on bodies, to express motion view
invariance to locations and rotations around the z-axis. Their work
assumes stationary multi-camera and static background scenes, and
that similar actions only differ by rigid transformations.

In Gorelick et al. [140], human action is considered to be a motion
history volume derived from a continuous silhouette sequence of
a moving torso and protruding limbs. The moving silhouette and
time axis constitute space-time volume and represent it as a shape
trajectory. Human activity recognition problem is expressed as the
task of comparing two 3D shapes by solving the Poisson equation
for each point in the silhouette stack. A set of features are extracted
to identify space-time saliency of moving parts and locally judge
the orientation and rough aspect ratios of the space-time shape. The
nearest neighbour and a variant of the median Hausdorff distance
are used for action classification and recognition.

A drawback of volumetric feature-based approaches is that partial
shape matching is not supported, because features are extracted from
the whole of 3D shape. In contrast, model-based methods are well
suited for partial shape matching. Geometry model-based methods
such as skeletons take into account approximate topology matching.
Model-based approaches generally resort to either fitting a prede-
fined structure to a 3D trajectory volume, or matching against pre-
defined motion models [142].

Since the structures of the spatio-temporal volume are inher-
ently non-rigid, an alternative popular approach is to model the
space-time volume, i.e., to construct a deformable model for itera-
tive evolvement to fit a 3D spatio-temporal surface. A good exam-
ple of this is Hamameh et al. [74], who extend the principle of 2D
active shape model (ASM) to build a deformable spatio-temporal
shape model by incorporating a priori knowledge of object shape.
The statistical shape model is defined by the constraints from a set
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of landmark points picked from the associated 3D trajectory volume.
A 2D object shape varying with time evolves dynamically to approx-
imately fit the real geometry of the 3D object trajectory. An energy
function is minimised through the object shape deformed iteratively
by using dynamic programming until the energy function converges.

Similar studies have been performed by Niyogi and Adelson
[119,120] and Baumberg and Hogg [143]. Baumberg and Hogg de-
rive a deforming model for fitting 3D trajectory shape surface to
recognise human gait. They use unconstrained second order sys-
tem identification technique to automatically learn physics-based
‘vibration modes’ for localising and tracking a specific deformable
object. The nxn second order system allows to be decoupled into n
independent second order systems. Each pedestrian contour shape
is represented by a B-spline with 40 uniformly spaced control points.
A 3D eigenshape-based generic walk deforming model is built from
a set of training data for recognising non-rigid motions. The signal to
noise ratio is calculated based on the nodal displacements relative
to the mean shape over the whole training set.

Hsieh et al. [144] introduce triangulation-based skeleton mod-
elling scheme to analyse human behaviour by tracking silhouette se-
quences. Triangulation-based skeleton and the centroid context (CC),
as two key features, are extracted to perform coarse-to-fine search
for posture recognition. The skeleton is built from triangular meshes
and is used for spanning tree-based pruning and search. CC descrip-
tor utilises a polar labeling scheme to label every triangular mesh
with a unique number. Finally, a silhouette sequence is coded into a
semantic symbol string. Weighted edit distance is used to measure
the similarity between posture strings for posture identification.

A drawback of the model-based approach is that an elaborate
model must be constructed for each object motion to be tracked.
Despite that 3D spatio-temporal volume is more informative than
2D spatio-temporal slice for classifying activities or postures, these
approaches are is of limited use for real-time applications due to
the inherent correspondence problem and high computational cost
[144]. Moreover, the presence outliers or noises from shadow, clut-
ter, or occlusion, et al. restrict the accuracy of space-time shapes. A
more detailed survey on 3D shape matching can be found in Tan-
gelder and Veltkamp [145].

3.1.3. SfM representation and recognition

Motion features are generally extracted within a shot by match-
ing consecutive frames through pixel blocks-based search. Motion
information can be classified as global or dominant motion, and
region motion. Global motion is statistically identified as camera
motion, such as pan, tilt and zoom, whereas region motion is char-
acterised as object motion. Using global information, object motion
can be isolated by compensating for the global motion. Motion in-
formation can be used for quantifying objects within the video se-
quence and tracking trajectories of objects. Temporal information,
usually addressed in the context of motion detection, can provide
extra cues about the content, shape, structure, and other high or low
level information present in a shot for video retrieval.

Motion vectors and optical flow are two commonly used meth-
ods for extracting 2D motion information. Motion vectors are ap-
proximated based on the movement of macroblocks in MPEG, while
optical flow consists of the computation of the displacement of each
pixel between frames in uncompressed videos. Motion vectors pro-
vide a rough and sparse approximation to real optical flows. Frame-
based motion is used to identify camera motion, whereas region-
based motion indicates object movement.

The SfM approach tries to capture 3D geometry from relative
motion information between a camera and an object. Motion-based
object segmentation is based on the understanding that pixels asso-
ciated with an object tend to move in a coherent fashion. The mo-
tions reveal the contour of a shape. Three-dimensional shape can

be perceived and inferred from motions. SfM recovers a shape from
motion-induced spatial and temporal changes occurring in an im-
age sequence. The techniques exploit the relative motion between
camera and scene. SfM methodology addresses two subproblems:
feature correspondence and shape and structure reconstruction.

Several solutions have been proposed to tackle the SfM problem.
One of the most influential of these was proposed by Tomasi and
Kanade [146]. They recovered a shape matrix from image sequences
with the use of the singular value decomposition for rigid objects. Vi-
dal and Hartley [147] also introduced a geometric approach in three
perspective views to recover 3D multiple rigid-body motions from
point correspondences by ranking trilinear constraints and comput-
ing its associated multi-body trifocal tensor.

These methods are limited to rigid objects or/and static scenes,
whereas there are many applications with the scenarios of non-rigid
or dynamic objects in the real world. Examples include a walking per-
son, moving vehicles, human faces expressions, lip movements, etc.
Since the shape of non-rigid object deformation varies from frame
to frame, minimising the registration error is a more difficult task
than that of the rigid ones. Several extensions have been proposed
to relax the rigidity constraint. For example, Bregler et al. [148] de-
tail how to rebuild the non-rigid shape by using factorisation. They
express a 3D shape of non-rigid object as a weighted linear com-
bination of a set of shape bases that define the principal modes of
object deformation under weak perspective viewing conditions. In
Torresani et al. [149], an algorithm is presented from learning the
time-varying shape instance from the motions of 2D tracking points
by estimating a Gaussian distribution in each frame. The non-rigid
object’s motions are supposed to consist of a rigid component plus a
non-rigid probabilistic shape deformation. Prior information on the
motion or shape is introduced to avoid ambiguities.

Unlike previous work that analyses 2D deformations, recently
Wang and Wu [150] assume that the non-rigid object is composed
of a rigid part and a deformation part. They address the problem of
3D reconstruction of non-rigid object parts by using a deformation
weight constraint for non-rigid factorisation and using constraint
power factorisation (CPF) on an uncalibrated affine camera model.
Their algorithm recovers the structure in affine space and separates
the rigid features from the deformed ones, before estimating the
transformation from affine to metric space.

3.1.4. Multi-camera tracking with view invariance

Recently significant research effort has focused on understand-
ing object activities under multi-camera systems for surveillance,
security and industry assembly purposes (e.g., Ref. [151] used fixed-
location multiple cameras to detect unusual events by thresholding
optic flow histogram distance for either its direction or magnitude).
The understanding of object activities can form the basis of under-
standing video content which is key to video retrieval and similarity
matching. A detailed survey on multi-camera tracking is given by
Stoykova et al. [152]. With multiple cameras, an action may be ob-
served from different viewpoints simultaneously. For object activity
analysis using multiple cameras, a widely used approach to achieve
view invariance is to use the fundamental matrix between two dif-
ferent views of an action to solve the correspondence problem. By
imposing geometric constraints, the geometrical relationships across
cameras between the motion trajectories of each object are recon-
structed. At the same time, the geometric error function is minimised
by imposing temporal consistency in terms of a motion model.

Estimating the fundamental matrix from a set of point corre-
spondences to express the constraint relationships among pixel co-
ordinates, camera orientations and positions has been suggested
earlier by Hartley and Zisserman [153], Rao et al. [137], and Yil-
maz and Shah [154]. These approaches can be classified into lin-
ear and nonlinear methods. The most common linear methods are
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the normalised eight-point algorithm [155], and the rank theorem
[146,156,157].

A number of approaches have addressed how to track human and
other object actions in videos, especially by considering kinematic
constraints using inherent landmarks of human body (e.g., 13 articu-
lated joints). Example studies include Parameswaran and Chellappa
[158], Yilmaz and Shah [154], and Gupta et al. [159]. Yilmaz and
Shah [154] track trajectories of 13 articulated joints of human body
with two moving camera views. Action recognition is performed by
modelling camera motions and recovering scene geometry for each
video frame. View invariance is achieved by estimating a temporal
fundamental matrix of the epipolar geometry between two different
views of an action.

Similarly, Gupta et al. [159] unify of constraints, including the
kinematic constraints, the occlusion between body-parts and ap-
pearance consistency across body-parts, to track human skeleton for
multi-view occluded human pose estimation. For body search ini-
tialisation, epipolar constraints are applied to match across views
to obtain a rough localisation of faces in 3D. The posterior of each
body-part is optimised by using non-parametric belief propagation.

One of the key difficulties in analysing multi-camera systems is
the dependence of the analysis on viewpoint. Viewpoint invariance
can be achieved by extracting view invariant features from the video.
Parameswaran and Chellappa [158] use five body joints as the land-
mark points aligned into a plane in 3D to extract a set of projective
invariants for actions matching. Another strategy is to achieve invari-
ance is through transformation, rotation and translation an object
of individual views to a new coordinate system associated cameras,
and then performing feature extraction and normalisation. Wein-
land et al. [139] align actions in variety of viewpoints around the
central vertical axis of the human body using Fourier transform in
cylindrical coordinates.

3.2. Video sequence-to-sequence-based matching

Unlike trajectory-based approaches that track moving objects
only, sequence-to-sequence-based matching takes video frames
as input and the analysis is based on all pixels in video frames.
Trajectory-based approach can align temporal video sequences with
different background and viewpoints by using explicit geometric
constraint. The main limitation of tracking trajectory-based ap-
proaches is that its accuracy is affected heavily by false alerts due to
tracking failure or creation of false targets (fragmentation of targets,
shadows, self-occlusion, clutters, etc). Since sequence-to-sequence-
based approach uses low-level information without the need for
tracking, it is simple, direct and suitable to general purpose video
retrieval. Within the overall umbrella of sequence-to-sequence
matching methods, motion-based comparison, string matching and
knowledge-based modelling are the three key approaches.

Video similarity can be computed based on motion feature com-
parison. For instance, Polana and Nelson [160] compute several fea-
tures from the normal flow (component parallel to the gradient) of
the whole image. One of them is the average flow magnitude divided
by its standard deviation. In Dimitrova and Golshani [161], motion
trajectories are obtained by tracing the position of a macroblock.
The trajectory of a macroblock is computed from forward and back-
ward motion vectors that belong to the macroblock. The position
of a macroblock in a P-frame is computed using block coordinates
and forward motion vectors. The position of a macroblock in a B-
frame is computed by averaging the positions obtained from (1) the
next predicted block coordinates and the backward motion vector
and (2) the previous block coordinates and forward motion vector.
Each trajectory can be thought of as an n-tuple of motion vector. The
macroblock trajectories are feature vectors used for indexing. Virage
Video Engine [162] also includes motion as an indexing feature. They

have four descriptors for motion description: motion content, mo-
tion uniformity, motion panning, and motion tilting. Motion content
is defined as the total amount of motion within a given video. Mo-
tion uniformity is used to capture the smoothness of the motion as
a function of time. Motion panning and motion tilting are used to
compute the horizontal and vertical motion components of the mo-
tion within a video sequence. Motion query is performed by ranking
a collection of videos based on the motion properties of choice. JA-
COB [110] is a colour- and motion-based video search engine. The
user is asked to choose global motion orientation and magnitude
within each quadrant of the frames. Motion-based descriptors are
based on the optical flow field of the r-frame. VideoQ [111] empha-
sises motion as a key attribute in searching video databases and uses
optical flow. Object colour regions are segmented and tracked over
the duration of a video shot. Motion estimation uses a hierarchical
block matching method. During the tracking process, global motion
compensation algorithms are applied so that the final object trajec-
tory is independent of camera motion. Similarly, loka and Kurokawa
[112] propose a method for retrieving image sequences by using mo-
tion information. Motion information is derived from motion vectors
from the image sequences using block matching. After aggregation
analysis, several representative motion vectors are generated and
their representative trajectories are stored in the database to use for
video retrieval.

The principle of the string matching is to find the longest common
sub-sequence across two videos [49,163,164]. For this purpose, min-
imum editing distance is determined for video sequence matching.
The method is quite flexible and can be used to compare different
length video sequences.

Adjeroh et al. [163] propose a method called v-string matching.
The video sequence is initially described by a sequence of feature
values and transformed into a sequence of symbols which is a string
representation—called vstring. Edit distance is used on this to cal-
culate the distance between two vstrings. The similar study is also
investigated by Yazdani and Ozsoyoglu [164].

Knowledge-based modelling approaches have been successfully ap-
plied in spatio-temporal sequence-to-sequence matching. They rely
on rules derived from training data and can provide better predic-
tive performance when the training set is large and comprehensive.
These methods include the use of recursive techniques, either as an
estimation fusing mechanism or as a state estimator.

Rui and Anandan [165] address the problem of detecting action
boundaries in a video sequence containing unfamiliar and arbitrary
visual actions. Their approach is based on detecting temporal discon-
tinuities of the spatial pattern of object region motion which corre-
spond to the action temporal boundary to capture the action. They
represented frame-to-frame optical flow in terms of the coefficients
calculated from all of the flow fields in a sequence, after principal
components analysis to determine the most significant flow fields.
The temporal trajectories of those coefficients of the flow field are
analysed to determine locations of the action segment boundaries
of video objects.

Naphade et al. [166] introduced a method for video annotation
using Gaussian mixture model for frame object recognition based
on visual appearance features. Bayes rule was applied temporally in
image sequence forward and backward directions.

Smith et al. [167] use knowledge-based approach to learn action
or pose configurations from training images. They track human ac-
tivities for office sign language recognition by using a boosting clas-
sifier to temporally group individual frame classifiers, which acquire
actions by considering spatial tracks of hands and head regions in
all views as features.

Nguyen et al. [168] introduced a multi-target tracking approach
where the distribution of targets in current frame are statistically
measured with an incrementally learning PPCA (probabilistic prin-
cipal component analysis) from the targets’ past PCA appearance
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models. Temporally updates are performed upon the arrival of new
classification results against local spatial context.

Non-parametric model-based approaches have also been investi-
gated in video indexing. Fablet and Bouthemy [169] propose an ap-
proach for non-parametric motion analysis in video sequence. This
method relies on the statistical modelling of distributions of local
random walks. The local motion-related measurement is a weighted
local average of the normal flow. Drawback of this typed approach
lies in that recursively update estimation from frame to frame may
fail catastrophically if visual ambiguities caused by noises or occlu-
sions persist over several consecutive frames [170].

4. Spatio-temporal video indexing systems

An integrated system for spatio-temporal video retrieval is Lu-
centVision. LucentVision [12] was developed at the Visual Communi-
cations Research Department within Bell Labs. It was effectively used
for tennis video indexing through spatio-temporal activity maps.
This system analyses video from multiple cameras in real-time and
captures the activity of the players and the ball in the form of mo-
tion trajectories. The system stores these trajectories in a database
along with video, 3D models of the environment, scores, and other
domain-specific information. LucentVision enhances live television
and Internet broadcasts with game analyses and virtual replays. Lu-
centVision uses eight cameras placed around a tennis stadium to
track the players and the ball. Real-time analysis of video from these
cameras determined the motion trajectory for each player and the
ball. For a query on tennis match, selection includes score-based
queries (e.g., all points won by a player against opponent’s serve),
statistics-based queries (e.g., distances run by players on average) or
space-based queries (e.g., all points at the net) and historical queries.
Each query could be refined further using a time constraint, for ex-
ample limiting it to one set, one game, or even any particular match
period (e.g., the first 30s of the second set). LucentVision stores 250
videos of international tennis matches in its database. Each data se-
lection generates an SQL query to the database. Retrieved motion
trajectories can be viewed using a number of visualisation and ani-
mation choices, such as coverage maps of motion trajectories, end-
position maps, and speed charts (the speeds of the players). End-
position maps are created by mapping the last node of a player’s
trajectory onto the virtual court.

5. Conclusions

Video retrieval is essentially the task of finding the most sim-
ilar video based on a query video. Traditionally, text-based labels
attached to videos were used for matching. Since the 1980s, signif-
icant research into image analysis opened up the possibility of ex-
tracting image content information from these videos which could
form the basis of matching, ranking and retrieving them. Over the
recent years, it has been recognised that raw pixel information and
basic statistical features of colour distribution are not enough in
discriminating video content and consequently video retrieval qual-
ity is severely affected. Advancements in the areas of image con-
tent understanding and pattern recognition approaches have now
made it possible to recognise image objects, model their behaviour
and use spatio-temporal change information in the retrieval process.
Our review has focused on how best the spatio-temporal informa-
tion can be extracted from videos, represented and matched for im-
proving video retrieval measures of precision and recall. We hope
that this has provided the reader with an overview of the wide-
ranging research efforts in this area and will help focus their own
research.
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