Grasping Class-Specific 3D Objects in a Single 2D Image
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Abstract— Our goal is to grasp 3D objects from a single Once a model is learned, the reconstruction mechanism
image, by using prior 3D shape models of classes. The shapecan be built on top of any 2D view-specific recognition
models, defined as a collection of oriented primitive shapes system that returns a bounding box for the detected object.
centered at fixed 3D positions, can be learned from a few /.. . .
labeled images for each class. The 3D class model can then beW'_th'rl the bounding box, we _use a model-based segmen-
used to estimate the 3D shape of a detected object, including tation method to obtain an object contour. We then deform
occluded parts, from a single image. The estimated 3D shape projections of the 3D parts of the class to match the object
is used as input to a robot motion planner, which results in  contour. Based on this fit of the visible parts to the oriented
the robot grasping the object. We provide grasp experiments 3D primitive shapes, we can obtain an approximate recon-
demonstrating our approach estimates precise 3D locationsf . ! .
detected objects, constructs effective 3D shapes for instees struction of the full 3D object. .
vary from the class model, and generates complete 3D object ~ The novelty of our approach is to compute a reasonably
shape from a single image. We show that our 3D shape accurate qualitative 3D shape model for a novel class-Bpeci
estimation is sufficiently accurate for a robot to successlly instance, including its occluded parts, from only a singe 2
grasp the object, even in situations where the partto be grged 546 With a fixed calibrated camera, the 3D estimation is
is not visible in the input image. h N

sufficiently accurate for a robot to estimate the pose of the
|. INTRODUCTION object and successfully grasp it, even in situations whege t

part to be grasped is not visible in the input image.
Experience with instances of a class of 3D objects can

yield enough information to generate effective 3D models of Il. RELATED WORK
individual objects from a single image. Robot manipulators Some systems [5], [15] on planar grasp planning extract
can rely on these generated 3D models to plan their motiaRe contour of the object from a single image, and detect
and compute successful grasps. contact points for grasping directly from the image without

A grasp can be computed directly based on comple®D information. Although in some special cases, when
3D shape information of objects. If an object appears in grasping is done perpendicular to the image plane, grasping
single 2D image, manipulations based on only visible parisan be done without a 3D understanding of the scene,
of the object may fail. As a result, object recognition isrobust manipulation of complex objects requires reliakde 3
required to identify the object’s location and pose, and mformation.
grasp can be computed by fitting a prior shape model to To obtain 3D information for guiding manipulations, many
the object. However, novel instances of a known class @frasping methods [9], [10] focus on detecting and recon-
objects may vary from the prior model. Obtaining accuratstructing surfaces of objects with the aid of stereo vision
3D reconstruction of these new instances becomes a vafystems or laser scanners. These methods are only able
challenging problem in robot manipulation. to reconstruct visible portions of objects. Moreover, aster

In this paper, we describe an approach to reconstruct fudlystems work poorly for objects without texture.
3D shapes from a single 2D image, based on 3D class modelsSome researchers attempt to avoid reconstructing 3D mod-
that are an extension of the Potemkin model [2], [3]. Arels by identifying grasp points of objects directly from rgan
object class is defined as a collection of parts, which haweonocular images across different viewpoints. For example
an arbitrary arrangement in 3D, but it assumes that, fro®axena et al. [17] use supervised learning algorithms to lea
any viewpoint, the parts themselves can be treated as beip@ grasp points in monocular images, by using synthetic
nearly planar. images as training data. They then use two or more images

This model can be efficiently learned from a few partto triangulate the 3D location of the grasp point. The focus
labeled 2D views of instances of an object class fromf these works is to simplify the data source for more
different, uncalibrated viewpoints. It does not requirg/ angeneralized manipulation tasks. They do not consider any
3D training information. 3D shape or 2D geometry information of objects.

More recently, there are two promising works on grasping
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information, their approach cannot manipulate complig¢ate In addition, the 3DP class model contains an estimated
objects. bounding polygon to represent the extent of the 3D part
Collet et al. [4] build a metric 3D model for a real graphically, but this polygon plays no role in reconstroiti
object by using a set of calibrated training images. Givemstead, the part shapes in the part-labeled images for each
a single test image, they can detect multiple instances wiewpoint are used for reconstruction.
the same object, match instances to the stored model, and _ . .
return accurate 6-DOF pose estimations for manipulation.’ Estimating a 3DP model from data
While their work provides reliable 3D information of known  In broad outline, the part centroids are obtained by solving
objects for grasping, they cannot handle new instances tHaf 3D positions that best project into the observed part
vary from the stored model. centroids in the part-labeled images in at least two views. T
3D planes are chosen so as to optimize the match between the
[ll. 3D CLASS MODELS 2D transformations between the boundaries of correspgndin

In this paper, we use a 3D extension of the PotemkiRarts in the part-labeled images. Below, we give a brief
model [2] to represent object classes. The original PotemkPverview of this estimation process; further details can be
model was made up of a set of vertical planar parts, af@und in [1].
was primarily used to transform images of objects from « The view bins are selected. The choice of view bins is
one view to several other views, generating virtual data arbitrary and guided by the demands of the application.
for many viewpoints for multi-view recognition. In previsu In our applications, we have used 12 views bins equally
work [3], we have extended the Potemkin model to allow spaced around a circle at a fixed elevation. The view
parts to be selected from a library of orientations, and bins determine the associated rotation matrices.
demonstrated that the new model was more effective for « The part-labeled images in each viewpoint should be
image viewpoint transformation. In this paper, we further  for similarly-shaped instances of the class (though they
augment the model to support reconstruction of the 3D can be significantly deformed during the recognition
shapes of object instances. process) and two of them must be for the same actual

instance.

» The skeleton locations; are estimated, using Power-

Factorization [8], from the mean and covariance of the

A. Definition

Informally, the 3D Potemkin (3DPglass modekan be
viewed as a collection of 3D planar shapes, one for each coordinates of the centroids of labeled paith the set
part, which are arranged in three dimensions. The model of part-labeled images.
specifies the locations and orientations of these parts in ane Learning the 3D planes is more involved. The process is
object-centered 3D reference frame. In addition, it corgtai trained in two phases: one generic, and one object-class
canonical images with labeled parts, which allow recogniti specific.
results to be decomposed into parts. The view space is The generic phase is class-independent and carried out
divided into a discrete set ofiew bins and an explicit 3D once only. In it, the system learns, for each element of
rotation from the object-centered 3D reference frame to the a set of oriented 3D shape primitives, what 2D image
view reference frame is represented for each view bin. transformations are induced by changes of viewpoint of

The recognition process produces a 3DBtance model the shape primitive. The necessary data can be relatively
which is also a collection of 3D planar shapes arranged in  simply acquired from synthetic image sequences of
three dimensions, corresponding to the parts of the péaticu a few objects rotating through the desired space of
2D instance from which it was constructed. views. Transforms for each primitive between each view

More formally, a 3DP object class model wiffi parts is bin pair are learned by establishing correspondences
defined by: between points on these synthetic training images using

« k view bins which are contiguous regions of the view
sphere. Each view bin is characterized byogation
matrix, 7,, € R3*3, which maps object-centered 3D

coordinates to 3D coordinates in each view reference

frameq;

« k part-labeled imagesspecifying the image regions of
parts of an instance in each view hin

« aclass skeletonsy,..., Sy, specifying the 3D posi-

tions of part centroids, in the object-centered reference

frame; and
o« N 3DplanesQ;,i €1,...,N, specifying the 3D plane

parameters for each planar part, in the object-centered

reference frame;

the shape context algorithm [16], and then using linear
regression to solve for a 2D projective transform that
best models the correspondence data.

The second phase is class-specific. The shape-context
algorithm is used again to match points on the bound-
aries of each part; these matched points are then used to
construct the cross-view transforms for the part across
the labeled views. For each part, the oriented planar
primitive that best accounts for observed cross-view
transforms of the parts in the training set is selected
to represent the part.

In previous experiments [1], we ran a greedy selection
algorithm to select a small set of primitives that would
effectively model four test object classes (chair, bicycle
airplane, car), which together have 21 separate parts.
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Fig. 3. 3DP class model of toy cars, constructed from fout-ladaeled
views.

IV. AUTOMATIC SINGLE-VIEW
RECONSTRUCTION

In this section we will describe how to use 3DP object
class models to reconstruct 3D objects from a single image.
To achieve complete automation of the reconstruction pro-
cess for manipulation, we developed a vision-based system
involving several steps: detection, segmentation, paisfe
tration, and model creation. We will address the details of
each step below.

A. Detection and segmentation

! R Given the input image, we need to detect the object,
Fig. 2. Learned 3DP class model for four-legged chairs indhgct- . . . . . .
centered reference frame, and in each view reference frame. 'dent'fy the viewpoint, and obtain the contour of the Ob-JeCt
In theory, this step can be carried out by using any existing
multi-view object-class recognition system. For example,
Leibe et al.'s car detection system [12], composed of a set
s of th | fractivelv. The orimiti h of seven view-dependent ISM detectors [13], provides rbbus
parts ot Inese classes efieclively. The primitives ChoSeR s on localizing cars (a bounding box and a coarse bbjec

for each par_t qf_ each class are shown in Flgure_ L. segmentation for each detected car) and identifying their
Once the primitives are selected, a small set of image

Viewpoints on test images.
which are a subset of thé part-labeled images in P 9 .
: : In our system, we used the detection method developed
the model, of the same object instance, from any set

of views, as long as each part is visible in at leas y Wang et al. [18]. One advantage of this detection method

. . " IS it needs only a few training instances for each viewpoint
two views, are used to estimate the positions an& y 9 P

: : : - of each object class. To make the detection process more

orientations of the parts for this class. By finding a - .

L 2 “robust and efficient, we stored a background image taken
similarity transform between the actual part outline . . .

. - : ) y the same fixed camera in advance and used this stored

and the projections of the primitives in two different. . . ) :

image to filter foreground regions in the test image. Then

views, and having computed correspondences between . .
. L L . our system only searches over these regions for detecting
the outlines of the projections of the primitives in phas%b.ects

1, we can solve for 3D positions of points on the outline ) ) . . . .

) . Our detection system is able to determine a bounding

of the shape. This allows us to estimate a rough exteBt . ; . . .

. ox for the detected object and to identify the viewpoint
and planar model of the part in 3D, even when ther%. I . ;

. . . in. Within the bounding box, the outline of the detected
is very little data available. We comput@,,...,Qxn . . S X
based on these planar parts object can be obtained by existing model-based segmentatio

' techniques [14], [11]. We use the part-labeled outline ffier t
Figure 2 shows an estimated 3DP class model for chairglentified view bin in our model to initialize the segmen-

It was constructed from two part-labeled images of the saniation process. The segmented contours in our system were

object instance, knowing the view bins but with no furtheobtained by using the publically available implementatién

camera calibration. level-set evolution by Li et al. [14].

These easily-obtained 3DP class models may not be able . .
to capture highly detailed shape information or all of tha-va B. Part registration
ability within a class, but each provides adequate infoimmat  Once an object outline is available, we need to obtain
to represent the basic 3D structure shared by instances ofhe part regions corresponding to the individual parts & th
class. Figure 3 shows two views of the learned 3DP classodel. Our approach is based on the fact that objects in
model of toy cars. the same class, seen from the same view, have similar 2D

Four primitive orientations suffice to model all of the



We proceed in the following stages:

« Recover 3D coordinates of each image point,{, vim)
on the ground region by solving fak, Y, and Z in
the following projection equations.

mi1 Mmi2 M1z Mg

Fig. 4. Given a model instance with labeled parts (blue), ghes of M =1 mo1 ma ma3 mos | . (2)
another instance (red) in the same view can be found by nmatghdints ms31 M32 MM33 M34q
along the boundaries of the instances (middle) and by defigrtme model
instance into the target instance (right). m11X + mi2Y + mi3Z + myy 3)
Tim = .
T mg X 4+ ma2Y +masZ + may
Yim = ma1 X + ma2Y + mosZ + moy @)
T ms X 4 ma2Y +mszZ 4+ may
agX +bY +¢c4Z +dy =0. (5)

o For each planar paitof the 3DP class model, compute
the parametersa(,, b;q, cio) Of the 3D plane@;, in
the 3D reference frame of view bim (identified by the
detector) by applying the 3D rotation matfix, to @Q;.
Note that the scale of parametéy, is unknown.

« Fit a line /, through image points where the detected
object touches the ground region in the image, and get
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Fig. 5. Given the 3DP model of chairs in the view-refereneente (left), the the 3D coordinates of those ground points.

whole region of the partially-occluded leg on the modelanse (middle) in « For each object parj that includes points along the

the same view can be registered based on visible portiontoFakeregion of i ; . _

the partially-occluded leg on the target instance (righéntcan be obtained “ne Lg, estlma}ted]a based on the recovered 3D coor

by deforming the model instance into the target instance. it row only dinates of points on that ground line. Then, solve for

shows visible portion on the model and the instances in theesdew. the 3D coordinates of all 2D points of pajtusing
equations (2)—-(4) and);. (the plane supporting part

_ , _ J)-
arrangements of parts. That is, the centroids of the prejlect , For each part connected via adjoining pixels in the
parts have characteristic arrangements. image to some previously recovered parestimateiy,,

We use the shape context algorithm [16] to match and  pased on the recovered 3D coordinates of those points
deform the boundaries of the stored part-labeled image for  on the intersection of part and partk. Then solve for
the detected view bin into the corresponding boundary of the  the 3D coordinates of all the 2D points of parusing
detected instance, as shown in figure 4. This match induces a equations (2)—(4) and).. (the plane supporting part
deformation of the part-labeled image that is used to ptedic ). Repeat this process until all parts are reconstructed.
internal part boundaries for the detected instance. Wedhken
the regions of non-occluded parts on the detected instancE: Estimating locations of totally-occluded parts

i i ) After we reconstruct a 3D model for the visible parts of
C. Partially-occluded part registration the detected instance in the source image, we are able to

For those parts that are partially-occluded in the parfurther predict approximate 3D coordinates of the totally-
labeled image, we use the 3DP model in the view-refereneecluded parts. We compute a 3D transformation from the 3D
frame to register the whole regions of the parts based ahass model to the reconstructed 3D instance, by mapping 3D
visible portion. Then we apply the deformation on thosegartoordinates between the recovered 3D parts of the instance
from the part-labeled image to the detected instance, and gsd corresponding 3D primitive parts in the class model.
the corresponding regions of parts, as shown in figure 5. Then for each totally-occluded paitof the instance in the

. source image, we apply this 3D transformation to pairt
D. Creating the 3D model the class model.

Now we are able to generate a 3D instance model from Figure 6 shows one example of a completely automated
the segmented parts of the detected object in the input imageconstruction. It involves detection [18], segmentafibf],
using our 3D model of the class. part registration, and finally the reconstructed 3D instanc

In our controlled environment, we calibrated a fixednodel on the ground plane.
cameraM < R3**% in advance, using the Matlab camera The ability to estimate the 3D shape and extent of the
calibration toolbox. Then all objects are randomly placad oentire instance, including parts that are not visible in the
the known 3D ground plan@(a, X +b,Y +c,Z+d, = 0), source image, is very important for robot manipulation, as
a table, within a 1m by 1.2m area, visible from the cameralemonstrated in next section.
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Fig. 6. The processing pipeline for automatic single-viev réconstruction.

V. MANIPULATION EXPERIMENTS and to initialize the segmentation/part-registrationcess of

We use estimated 3D poses of the parts of objects gsetected objects.

mput to a robot motion planner, which galculates a mothg\' 3D localization
trajectory for a robot arm and hand, which should result in _ _
the robot grasping the object. We have used a 7-DOF Barrett!n the first set of experiments, we placed each of the 5
robot arm and 4-DOF Barrett robot hand, together with thést toy cars in 10 different positions and orientationstun t
OpenRave robot motion p|anning System [6] together W"ﬁﬁ.ble, a.nd reconstructed the 3D car from eaCh Input |mage.
the 3DP model estimation outputs (Figure 7), to build a maBecause all toy cars are small and have relatively the same
nipulation system that demonstrates hand-eye coordmatighape, we only take the 3D center location and orientation
in picking objects. for planning the grasp. As the result, the robot successfull

More formally, all manipulation experiments in this sec-9rasped the car in all these 50 trials,
tion were conducted according to the following steps: ) - )

B. Grasping novel class-specific objects

« Place an object to be grasped on a known 3D ground .
plane, a table, within a 1m by 1.2m area, visible from In the second set of experiments, we test our approach
a calibrated fixed camera. Then take a picture of th@n three object classes which require more complicated

object using the camera; grasping strategies. All parts, including both visible and
« Generate a 3D instance model of the object using tHeccluded parts, of the 3D instance model need to be used
picture as described in Section 4; for grasp generation. For each class, we placed each test

. Find a grasp of the object based on the 3D instandgstance in a set of poses (locations/orientations). W too
model and the robot motion planning system; and  the first test instance as the instance to generate demteuastra

. Execute the grasp using the robot arm and hand;  grasps. For each pose of the first test instance, we recorded

several demonstrated grasps. For example, figure 7 shows

To test the utilities of 3DP instance models, we have con- . .
rﬁx\/o demonstrated grasps relative to two different parts of

ducted two sets of experiments. The first set demonstrates . .
P éﬂe first test instance of the stool class. Such demonstrated

accuracy of the estimated 3D locations and orientations ) ;
grasps were ready to be applied to any instance of the

small toy cars, which require very precise 3D localization f | Wi ded the following inf tion f h
successful grasping. The second set shows the effectiyeni@me class. We recorded the foflowing Information for eac

of our 3D instance models for three complex classes (cqole emonstrated grasp:

stools, and watercans). For novel instances vary from thee A set of relative grasp transform to each part (a planar
class models, successful grasps can be achieved even in face) of the object; and

situations where the part to be grasped is not visible in the » An ordered list of part indices. For example, [2,4,1,0,3]

input image. means that the relative grasp transform to Part 2 is more
In sum, the goal of our experiments is to show: preferable than those to other parts.

« The 3DP instance model estimates an object's center Then for a 3D instance model of an object reconstructed

position and orientation with high accuracy; from a test image, we execute a grasp experiment as follow-

« The 3DP instance model provides accurate position afd Steps:
orientation estimations for visible parts of objects that « Get the 3D position/orientation of the most preferable
can vary from the 3DP class model; and part from the 3D instance model;

« The 3DP instance model provides accurate position ande Move the robot hand to the grasp position relative to that
orientation estimations for occluded parts of objects that  part based on the corresponding demonstrated grasp;
can vary from the 3DP class model; « Grasp; and

Figure 8 shows the training instance, the constructed 3DP+ If the grasp fails, repeat the above steps with the next

class model, and the test instances for each of the four Preferable part.
classes used in our experiments. The training instance isWe did the above grasp experiment for each pose of each
used to construct the 3DP class model, to train detectotgst instance of each object class.



Fig. 7. From left to right: The estimated 3D instance is usedhaut to the OpenRave robot motion planning system, wheshilts in two grasps from
different directions.

Fig. 8. For each class, there is one training instance (Frefix the first column), one 3DP class model (the second cgurpnstructed using the
training instance, and 3-5 test instances used in expetimen

We also propose two variations of our 3DP model aparts of the training instance with the same viewpoint to the
control methods for the same grasp experiments. segmented test instance. We then apply this scale factor to

One is called 3DP-Visible models, which are constructeHanS]corm the 3DP .clas's model, which is constructed using
without the step in Section 4.5 and consist of only visibldMages of the training msFance. The transformed 3D.P class
parts of the 3DP models. The grasp process is the samerggdeI becomes th_e resu_ltlng 3DP-Stretch model, which con-
that for 3DP models, except that the grasp only applies ins all the parts (mcludlng occluded parts) as a 3DP rT_JodeI
parts that can be seen in the input image. We predicted t e grasp strategies for 3DP models can also be applied for
if the most preferable part did not exist in the 3DP-Visible P-Stretch models, since both methods reconstruct entire

model, the grasp derived from a less preferred part might n§P shapes of ObjeCtS." I'-|0we\'/er', 3DP-Stretch models cannot
be successful. eal with shape variation within a class. If the shape of

the test instance is very different from the training ins@&n
The other control method is 3DP-Stretch models, whichrasps derived from 3DP-Stretch models may fail.

are transformed 3DP class models. To construct a 3DP-
Stretch model, instead of the part registration step (8ecti
4.2), we compute a scale factor that matches the seen 2D
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