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Abstract— Our goal is to grasp 3D objects from a single
image, by using prior 3D shape models of classes. The shape
models, defined as a collection of oriented primitive shapes
centered at fixed 3D positions, can be learned from a few
labeled images for each class. The 3D class model can then be
used to estimate the 3D shape of a detected object, including
occluded parts, from a single image. The estimated 3D shape
is used as input to a robot motion planner, which results in
the robot grasping the object. We provide grasp experiments
demonstrating our approach estimates precise 3D locationsof
detected objects, constructs effective 3D shapes for instances
vary from the class model, and generates complete 3D object
shape from a single image. We show that our 3D shape
estimation is sufficiently accurate for a robot to successfully
grasp the object, even in situations where the part to be grasped
is not visible in the input image.

I. INTRODUCTION

Experience with instances of a class of 3D objects can
yield enough information to generate effective 3D models of
individual objects from a single image. Robot manipulators
can rely on these generated 3D models to plan their motion
and compute successful grasps.

A grasp can be computed directly based on complete
3D shape information of objects. If an object appears in a
single 2D image, manipulations based on only visible parts
of the object may fail. As a result, object recognition is
required to identify the object’s location and pose, and a
grasp can be computed by fitting a prior shape model to
the object. However, novel instances of a known class of
objects may vary from the prior model. Obtaining accurate
3D reconstruction of these new instances becomes a very
challenging problem in robot manipulation.

In this paper, we describe an approach to reconstruct full
3D shapes from a single 2D image, based on 3D class models
that are an extension of the Potemkin model [2], [3]. An
object class is defined as a collection of parts, which have
an arbitrary arrangement in 3D, but it assumes that, from
any viewpoint, the parts themselves can be treated as being
nearly planar.

This model can be efficiently learned from a few part-
labeled 2D views of instances of an object class from
different, uncalibrated viewpoints. It does not require any
3D training information.
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Once a model is learned, the reconstruction mechanism
can be built on top of any 2D view-specific recognition
system that returns a bounding box for the detected object.
Within the bounding box, we use a model-based segmen-
tation method to obtain an object contour. We then deform
projections of the 3D parts of the class to match the object
contour. Based on this fit of the visible parts to the oriented
3D primitive shapes, we can obtain an approximate recon-
struction of the full 3D object.

The novelty of our approach is to compute a reasonably
accurate qualitative 3D shape model for a novel class-specific
instance, including its occluded parts, from only a single 2D
image. With a fixed calibrated camera, the 3D estimation is
sufficiently accurate for a robot to estimate the pose of the
object and successfully grasp it, even in situations where the
part to be grasped is not visible in the input image.

II. RELATED WORK

Some systems [5], [15] on planar grasp planning extract
the contour of the object from a single image, and detect
contact points for grasping directly from the image without
3D information. Although in some special cases, when
grasping is done perpendicular to the image plane, grasping
can be done without a 3D understanding of the scene,
robust manipulation of complex objects requires reliable 3D
information.

To obtain 3D information for guiding manipulations, many
grasping methods [9], [10] focus on detecting and recon-
structing surfaces of objects with the aid of stereo vision
systems or laser scanners. These methods are only able
to reconstruct visible portions of objects. Moreover, stereo
systems work poorly for objects without texture.

Some researchers attempt to avoid reconstructing 3D mod-
els by identifying grasp points of objects directly from many
monocular images across different viewpoints. For example,
Saxena et al. [17] use supervised learning algorithms to learn
2D grasp points in monocular images, by using synthetic
images as training data. They then use two or more images
to triangulate the 3D location of the grasp point. The focus
of these works is to simplify the data source for more
generalized manipulation tasks. They do not consider any
3D shape or 2D geometry information of objects.

More recently, there are two promising works on grasping
objects from only a single image. Glover et al. [7] learn
generative probabilistic models of 2D object geometry, which
captures the variability of instances within a known class.
The learned models can be used to detect objects based on
visible portion of each object, and then to recover occluded
object contours in a single image. However, without 3D



information, their approach cannot manipulate complicated
objects.

Collet et al. [4] build a metric 3D model for a real
object by using a set of calibrated training images. Given
a single test image, they can detect multiple instances of
the same object, match instances to the stored model, and
return accurate 6-DOF pose estimations for manipulation.
While their work provides reliable 3D information of known
objects for grasping, they cannot handle new instances that
vary from the stored model.

III. 3D CLASS MODELS

In this paper, we use a 3D extension of the Potemkin
model [2] to represent object classes. The original Potemkin
model was made up of a set of vertical planar parts, and
was primarily used to transform images of objects from
one view to several other views, generating virtual data
for many viewpoints for multi-view recognition. In previous
work [3], we have extended the Potemkin model to allow
parts to be selected from a library of orientations, and
demonstrated that the new model was more effective for
image viewpoint transformation. In this paper, we further
augment the model to support reconstruction of the 3D
shapes of object instances.

A. Definition

Informally, the 3D Potemkin (3DP)class modelcan be
viewed as a collection of 3D planar shapes, one for each
part, which are arranged in three dimensions. The model
specifies the locations and orientations of these parts in an
object-centered 3D reference frame. In addition, it contains
canonical images with labeled parts, which allow recognition
results to be decomposed into parts. The view space is
divided into a discrete set ofview bins, and an explicit 3D
rotation from the object-centered 3D reference frame to the
view reference frame is represented for each view bin.

The recognition process produces a 3DPinstance model,
which is also a collection of 3D planar shapes arranged in
three dimensions, corresponding to the parts of the particular
2D instance from which it was constructed.

More formally, a 3DP object class model withN parts is
defined by:

• k view bins, which are contiguous regions of the view
sphere. Each view bin is characterized by arotation
matrix, Tα ∈ R3×3, which maps object-centered 3D
coordinates to 3D coordinates in each view reference
frameα;

• k part-labeled images, specifying the image regions of
parts of an instance in each view binα;

• a class skeleton, S1, . . . , SN , specifying the 3D posi-
tions of part centroids, in the object-centered reference
frame; and

• N 3D planes, Qi, i ∈ 1, . . . , N , specifying the 3D plane
parameters for each planar part, in the object-centered
reference frame;

Qi : aiX + biY + ciZ + di = 0. (1)

In addition, the 3DP class model contains an estimated
bounding polygon to represent the extent of the 3D part
graphically, but this polygon plays no role in reconstruction.
Instead, the part shapes in the part-labeled images for each
viewpoint are used for reconstruction.

B. Estimating a 3DP model from data

In broad outline, the part centroids are obtained by solving
for 3D positions that best project into the observed part
centroids in the part-labeled images in at least two views. The
3D planes are chosen so as to optimize the match between the
2D transformations between the boundaries of corresponding
parts in the part-labeled images. Below, we give a brief
overview of this estimation process; further details can be
found in [1].

• The view bins are selected. The choice of view bins is
arbitrary and guided by the demands of the application.
In our applications, we have used 12 views bins equally
spaced around a circle at a fixed elevation. The view
bins determine the associated rotation matrices.

• The part-labeled images in each viewpoint should be
for similarly-shaped instances of the class (though they
can be significantly deformed during the recognition
process) and two of them must be for the same actual
instance.

• The skeleton locationsSj are estimated, using Power-
Factorization [8], from the mean and covariance of the
coordinates of the centroids of labeled partj in the set
of part-labeled images.

• Learning the 3D planes is more involved. The process is
trained in two phases: one generic, and one object-class
specific.
The generic phase is class-independent and carried out
once only. In it, the system learns, for each element of
a set of oriented 3D shape primitives, what 2D image
transformations are induced by changes of viewpoint of
the shape primitive. The necessary data can be relatively
simply acquired from synthetic image sequences of
a few objects rotating through the desired space of
views. Transforms for each primitive between each view
bin pair are learned by establishing correspondences
between points on these synthetic training images using
the shape context algorithm [16], and then using linear
regression to solve for a 2D projective transform that
best models the correspondence data.
The second phase is class-specific. The shape-context
algorithm is used again to match points on the bound-
aries of each part; these matched points are then used to
construct the cross-view transforms for the part across
the labeled views. For each part, the oriented planar
primitive that best accounts for observed cross-view
transforms of the parts in the training set is selected
to represent the part.
In previous experiments [1], we ran a greedy selection
algorithm to select a small set of primitives that would
effectively model four test object classes (chair, bicycle,
airplane, car), which together have 21 separate parts.
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Fig. 1. 3D shape primitives selected for each part of each class.
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Fig. 2. Learned 3DP class model for four-legged chairs in theobject-
centered reference frame, and in each view reference frame.

Four primitive orientations suffice to model all of the
parts of these classes effectively. The primitives chosen
for each part of each class are shown in Figure 1.
Once the primitives are selected, a small set of images,
which are a subset of thek part-labeled images in
the model, of the same object instance, from any set
of views, as long as each part is visible in at least
two views, are used to estimate the positions and
orientations of the parts for this class. By finding a
similarity transform between the actual part outlines
and the projections of the primitives in two different
views, and having computed correspondences between
the outlines of the projections of the primitives in phase
1, we can solve for 3D positions of points on the outline
of the shape. This allows us to estimate a rough extent
and planar model of the part in 3D, even when there
is very little data available. We computeQ1, . . . , QN

based on these planar parts.

Figure 2 shows an estimated 3DP class model for chairs.
It was constructed from two part-labeled images of the same
object instance, knowing the view bins but with no further
camera calibration.

These easily-obtained 3DP class models may not be able
to capture highly detailed shape information or all of the vari-
ability within a class, but each provides adequate information
to represent the basic 3D structure shared by instances of a
class. Figure 3 shows two views of the learned 3DP class
model of toy cars.
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Fig. 3. 3DP class model of toy cars, constructed from four part-labeled
views.

IV. AUTOMATIC SINGLE-VIEW
RECONSTRUCTION

In this section we will describe how to use 3DP object
class models to reconstruct 3D objects from a single image.
To achieve complete automation of the reconstruction pro-
cess for manipulation, we developed a vision-based system
involving several steps: detection, segmentation, part regis-
tration, and model creation. We will address the details of
each step below.

A. Detection and segmentation

Given the input image, we need to detect the object,
identify the viewpoint, and obtain the contour of the object.
In theory, this step can be carried out by using any existing
multi-view object-class recognition system. For example,
Leibe et al.’s car detection system [12], composed of a set
of seven view-dependent ISM detectors [13], provides robust
results on localizing cars (a bounding box and a coarse object
segmentation for each detected car) and identifying their
viewpoints on test images.

In our system, we used the detection method developed
by Wang et al. [18]. One advantage of this detection method
is it needs only a few training instances for each viewpoint
of each object class. To make the detection process more
robust and efficient, we stored a background image taken
by the same fixed camera in advance and used this stored
image to filter foreground regions in the test image. Then
our system only searches over these regions for detecting
objects.

Our detection system is able to determine a bounding
box for the detected object and to identify the viewpoint
bin. Within the bounding box, the outline of the detected
object can be obtained by existing model-based segmentation
techniques [14], [11]. We use the part-labeled outline for the
identified view bin in our model to initialize the segmen-
tation process. The segmented contours in our system were
obtained by using the publically available implementationof
level-set evolution by Li et al. [14].

B. Part registration

Once an object outline is available, we need to obtain
the part regions corresponding to the individual parts in the
model. Our approach is based on the fact that objects in
the same class, seen from the same view, have similar 2D
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Fig. 5. Given the 3DP model of chairs in the view-reference frame (left), the
whole region of the partially-occluded leg on the model instance (middle) in
the same view can be registered based on visible portion. Thetotal region of
the partially-occluded leg on the target instance (right) then can be obtained
by deforming the model instance into the target instance. The first row only
shows visible portion on the model and the instances in the same view.

arrangements of parts. That is, the centroids of the projected
parts have characteristic arrangements.

We use the shape context algorithm [16] to match and
deform the boundaries of the stored part-labeled image for
the detected view bin into the corresponding boundary of the
detected instance, as shown in figure 4. This match induces a
deformation of the part-labeled image that is used to predict
internal part boundaries for the detected instance. We thenget
the regions of non-occluded parts on the detected instance.

C. Partially-occluded part registration

For those parts that are partially-occluded in the part-
labeled image, we use the 3DP model in the view-reference
frame to register the whole regions of the parts based on
visible portion. Then we apply the deformation on those parts
from the part-labeled image to the detected instance, and get
the corresponding regions of parts, as shown in figure 5.

D. Creating the 3D model

Now we are able to generate a 3D instance model from
the segmented parts of the detected object in the input image
using our 3D model of the class.

In our controlled environment, we calibrated a fixed
cameraM ∈ R3×4 in advance, using the Matlab camera
calibration toolbox. Then all objects are randomly placed on
the known 3D ground planeQg(agX+bgY +cgZ+dg = 0),
a table, within a 1m by 1.2m area, visible from the camera.

We proceed in the following stages:

• Recover 3D coordinates of each image point (xim, yim)
on the ground region by solving forX , Y , andZ in
the following projection equations.

M =





m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34



 . (2)

xim =
m11X +m12Y +m13Z +m14

m31X +m32Y +m33Z +m34

. (3)

yim =
m21X +m22Y +m23Z +m24

m31X +m32Y +m33Z +m34

. (4)

agX + bgY + cgZ + dg = 0. (5)

• For each planar parti of the 3DP class model, compute
the parameters (aiα, biα, ciα) of the 3D planeQiα in
the 3D reference frame of view binα (identified by the
detector) by applying the 3D rotation matrixTα to Qi.
Note that the scale of parameterdiα is unknown.

• Fit a line lg through image points where the detected
object touches the ground region in the image, and get
the 3D coordinates of those ground points.

• For each object partj that includes points along the
line lg, estimatedjα based on the recovered 3D coor-
dinates of points on that ground line. Then, solve for
the 3D coordinates of all 2D points of partj using
equations (2)–(4) andQjα (the plane supporting part
j).

• For each partk connected via adjoining pixels in the
image to some previously recovered partj, estimatedkα
based on the recovered 3D coordinates of those points
on the intersection of partj and partk. Then solve for
the 3D coordinates of all the 2D points of partk using
equations (2)–(4) andQkα (the plane supporting part
k). Repeat this process until all parts are reconstructed.

E. Estimating locations of totally-occluded parts

After we reconstruct a 3D model for the visible parts of
the detected instance in the source image, we are able to
further predict approximate 3D coordinates of the totally-
occluded parts. We compute a 3D transformation from the 3D
class model to the reconstructed 3D instance, by mapping 3D
coordinates between the recovered 3D parts of the instance
and corresponding 3D primitive parts in the class model.
Then for each totally-occluded parti of the instance in the
source image, we apply this 3D transformation to parti in
the class model.

Figure 6 shows one example of a completely automated
reconstruction. It involves detection [18], segmentation[14],
part registration, and finally the reconstructed 3D instance
model on the ground plane.

The ability to estimate the 3D shape and extent of the
entire instance, including parts that are not visible in the
source image, is very important for robot manipulation, as
demonstrated in next section.
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Fig. 6. The processing pipeline for automatic single-view 3D reconstruction.

V. MANIPULATION EXPERIMENTS

We use estimated 3D poses of the parts of objects as
input to a robot motion planner, which calculates a motion
trajectory for a robot arm and hand, which should result in
the robot grasping the object. We have used a 7-DOF Barrett
robot arm and 4-DOF Barrett robot hand, together with the
OpenRave robot motion planning system [6] together with
the 3DP model estimation outputs (Figure 7), to build a ma-
nipulation system that demonstrates hand-eye coordination
in picking objects.

More formally, all manipulation experiments in this sec-
tion were conducted according to the following steps:

• Place an object to be grasped on a known 3D ground
plane, a table, within a 1m by 1.2m area, visible from
a calibrated fixed camera. Then take a picture of the
object using the camera;

• Generate a 3D instance model of the object using the
picture as described in Section 4;

• Find a grasp of the object based on the 3D instance
model and the robot motion planning system; and

• Execute the grasp using the robot arm and hand;

To test the utilities of 3DP instance models, we have con-
ducted two sets of experiments. The first set demonstrates the
accuracy of the estimated 3D locations and orientations on
small toy cars, which require very precise 3D localization for
successful grasping. The second set shows the effectiveness
of our 3D instance models for three complex classes (coolers,
stools, and watercans). For novel instances vary from the
class models, successful grasps can be achieved even in
situations where the part to be grasped is not visible in the
input image.

In sum, the goal of our experiments is to show:

• The 3DP instance model estimates an object’s center
position and orientation with high accuracy;

• The 3DP instance model provides accurate position and
orientation estimations for visible parts of objects that
can vary from the 3DP class model; and

• The 3DP instance model provides accurate position and
orientation estimations for occluded parts of objects that
can vary from the 3DP class model;

Figure 8 shows the training instance, the constructed 3DP
class model, and the test instances for each of the four
classes used in our experiments. The training instance is
used to construct the 3DP class model, to train detectors,

and to initialize the segmentation/part-registration process of
detected objects.

A. 3D localization

In the first set of experiments, we placed each of the 5
test toy cars in 10 different positions and orientations on the
table, and reconstructed the 3D car from each input image.
Because all toy cars are small and have relatively the same
shape, we only take the 3D center location and orientation
for planning the grasp. As the result, the robot successfully
grasped the car in all these 50 trials,

B. Grasping novel class-specific objects

In the second set of experiments, we test our approach
on three object classes which require more complicated
grasping strategies. All parts, including both visible and
occluded parts, of the 3D instance model need to be used
for grasp generation. For each class, we placed each test
instance in a set of poses (locations/orientations). We took
the first test instance as the instance to generate demonstrated
grasps. For each pose of the first test instance, we recorded
several demonstrated grasps. For example, figure 7 shows
two demonstrated grasps relative to two different parts of
the first test instance of the stool class. Such demonstrated
grasps were ready to be applied to any instance of the
same class. We recorded the following information for each
demonstrated grasp:

• A set of relative grasp transform to each part (a planar
face) of the object; and

• An ordered list of part indices. For example, [2,4,1,0,3]
means that the relative grasp transform to Part 2 is more
preferable than those to other parts.

Then for a 3D instance model of an object reconstructed
from a test image, we execute a grasp experiment as follow-
ing steps:

• Get the 3D position/orientation of the most preferable
part from the 3D instance model;

• Move the robot hand to the grasp position relative to that
part based on the corresponding demonstrated grasp;

• Grasp; and
• If the grasp fails, repeat the above steps with the next

preferable part.

We did the above grasp experiment for each pose of each
test instance of each object class.
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We also propose two variations of our 3DP model as
control methods for the same grasp experiments.

One is called 3DP-Visible models, which are constructed
without the step in Section 4.5 and consist of only visible
parts of the 3DP models. The grasp process is the same as
that for 3DP models, except that the grasp only applies to
parts that can be seen in the input image. We predicted that
if the most preferable part did not exist in the 3DP-Visible
model, the grasp derived from a less preferred part might not
be successful.

The other control method is 3DP-Stretch models, which
are transformed 3DP class models. To construct a 3DP-
Stretch model, instead of the part registration step (Section
4.2), we compute a scale factor that matches the seen 2D

parts of the training instance with the same viewpoint to the
segmented test instance. We then apply this scale factor to
transform the 3DP class model, which is constructed using
images of the training instance. The transformed 3DP class
model becomes the resulting 3DP-Stretch model, which con-
tains all the parts (including occluded parts) as a 3DP model.
The grasp strategies for 3DP models can also be applied for
3DP-Stretch models, since both methods reconstruct entire
3D shapes of objects. However, 3DP-Stretch models cannot
deal with shape variation within a class. If the shape of
the test instance is very different from the training instance,
grasps derived from 3DP-Stretch models may fail.
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