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Abstract
Extracting discriminant, transformation-invariant features from
raw audio signals remains a serious challenge for speech recog-
nition. The issue of speaker variability is central to this prob-
lem, as changes in accent, dialect, gender, and age alter the
sound waveform of speech units at multiple levels (phonemes,
words, or phrases). Approaches for dealing with this variability
have typically focused on analyzing the spectral properties of
speech at the level of frames, on par with frame-level acoustic
modeling usually applied to speech recognition systems. In this
paper, we propose a framework for representing speech at the
word level and extracting features from the acoustic, temporal
domain, without the need for spectral encoding or preprocess-
ing. Leveraging recent work on unsupervised learning of invari-
ant sensory representations, we extract a signature for a word
by first projecting its raw waveform onto a set of templates and
their transformations, and then forming empirical estimates of
the resulting one-dimensional distributions via histograms. The
representation and relevant parameters are evaluated for word
classification on a series of datasets with increasing speaker-
mismatch difficulty, and the results are compared to those of an
MFCC-based representation.
Index Terms: invariance, acoustic features, speech representa-
tion, word classification

1. Introduction
Humans have a truly remarkable ability to identify and recog-
nize speech in adverse conditions and under a range of intrinsic
variations. This is made all the more clear when one looks at
human-machine comparisons in speech recognition [1, 2]. Hu-
man listeners not only demonstrate higher resilience, but they
do so for more complex tasks (e.g., larger vocabularies) and
with less supervision (e.g., exposure to mostly unlabeled speech
during development [3]). A possible explanation for this gap is
the effect of intraclass variability on the complexity of learning
for the recognition task and the role of the speech representa-
tions. It can be shown that representations which are invariant
to identity-preserving transformations can significantly reduce
sample complexity [4], i.e., the number of training examples,
for learning. This observation has made an indelible mark on
the vision community, where invariance to transformations such
as translation, rotation, scaling, and illumination has been lever-
aged to design state-of-the-art features [5, 6, 7, 8, 9].

Speech, as a sensory signal, is also characterized by natural
sources of variability, ranging from extrinsic factors such as re-
verberation and noise, to instrinsic, speaker-specific variations
like speaker identity, age, gender, accent/dialect, and physiol-
ogy; perhaps more generally, there are variations which exist
at an even finer, intraspeaker level, like pronunciation, enun-
ciation, emotional state, and speaking rate [10, 11, 12]. Such

differences are reflected in mismatches between expected and
actual speech variations, e.g., captured in a train/test recognition
set, and thus in the ability of a speech recognizer to generalize.
While there are methods for directly compensating for this mis-
match, such as training separate models for individual speakers
or groups (males/females, adults/children), they usually rely on
additional samples, i.e., increasing the set of expected varia-
tions, to adequately train with model adaptation [11].

In this paper, we propose a memory-based learning frame-
work for extracting representations from the sound waveform,
at a scale larger than conventional speech analysis windows,
which are invariant to identity-preserving transformations. Our
method and model is an extension of a recent theoretical frame-
work for unsupervised learning of invariant sensory representa-
tions [4]. Speech segments are projected onto sets of randomly
selected signal templates and their transformations; the projec-
tion outputs over each template set are pooled using nonlinear
functions, approximating a one-dimensional empirical distribu-
tion which is invariant or quasi-invariant, while still remaining
discriminative, for a sufficient number of templates, for differ-
ent signal classes (Sec. 2). The resulting signature allows the
training of simple classifiers that attain the same generalization
error with less labeled examples.

Interestingly, the sequence of filtering (projection) and
pooling operations is similar to simple-complex cell models,
proposed by Hubel and Wiesel and used as models of early-
processing in computational vision [13], that account for local
feature response invariance. The implication of invariant maps
using similar computational modules for auditory tasks, may
relate to the process of sound and speech representation in the
cortex, and further strengthen the analogies between the cortical
visual and auditory processing [14].

The proposed method can be used to extract an invariant
representation from essentially any low-level feature domain
(e.g., waveforms, spectrograms, cepstral or predictive coeffi-
cients, etc.), and at any scale of the speech signal (frame, phone,
word). We represent entire-word speech segments by extract-
ing a word-level representation from the raw waveform do-
main. Working directly on the waveform, we circumvent the
need for carefully designed, mid-level features adapted to work
well for speech [15]. This can be important for performing
acoustic modeling or building hierarchies on top of unprocessed
low-level inputs [16, 17, 18]. Furthermore, by modeling entire
words, we can better encapsulate long-term dependencies and
obtain more discriminative features that can potentially be ap-
plied to acoustic modeling for word recognition [19, 20, 21].

2. Theory
This section provides a brief overview of the theory that forms
the basis for our approach. The reader should refer to the rigor-
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ous exposition and supplementary information in [4] for more
detail. Even though the theory takes a somewhat strong “vision”
perspective to motivate its core principles, all the ideas can be
applied to more general sensory signals, such as speech.

Our ultimate goal is to map a speech signal, in our case
on the raw waveform domain, to a new representation which
will be unaffected by identity-preserving transformations, even
if these transformations greatly alter the waveform [10]. More
formally, we consider signals in a Hilbert Space X equipped
with a norm and inner product, and as a concrete example, we
can take X = Rd where d is the signal dimension. If x ∈ X is
the waveform of a word, and g is a transformation which pre-
serves the identity of that word (gx ≡ x), we require a map
M with the property M(gx) = M(x). It is also expected that
if x, y ∈ Rd with x 6≡ y, then M(x) 6= M(y), i.e., the map
will not mix word identity. In effect, M should be unique and
invariant to g.

More generally, M should be invariant to a family of trans-
formations (e.g., all time-shifts of a word). In the case that the
set of transformations forms a group G (and in particular, a fi-
nite compact group), we can find such a map M by considering
the actions of G on X [22]. Each g essentially permutes the el-
ements of X in a way that adheres to the group operations (e.g.,
composition of shifts are additive). This simple abstraction pro-
vides us with a very convenient structure, the orbit of a signal x
under G,

Ox = {gx : ∀g ∈ G}. (1)

which is the set set of all realizations of x under the transfor-
mations by G. For example, the word “one” shifted at all time
locations under the action of the translation group.

The orbit provides a unique and invariant (to G) represen-
tation of a signal, as the set of all orbits partitions the space X
under the equivalence relation x ≡ y if and only if gx = y
for some g ∈ G. Effectively, if x and y differ only by a trans-
formation under g, which we assume preserves identity, then
Oy = Ogx = Ox (invariance), and yet if x 6≡ y, thenOx 6= Oy

(uniqueness). In terms of our example, the set of all time-shifts
of “one” is exactly the same, regardless of the initial time; how-
ever, there exists no time-shift of “one” that results in “two”,
and so the orbits of these words remain separate.

A representation defined by the group orbit, i.e., setting
M(x) = Ox, discounts identity-preserving variability while
maintaining interclass separability. In place of directly com-
paring orbits, we rely on two observations for deriving a more
concrete representation. First, we note that the action of G on
X , along with the Haar measure on G, can be used to define a
set of random variables Zx : G → Rd, indexed by the signals
x ∈ X , such that Zx(g) = gx, i.e., the realizations of random
variable Zx are the elements of Ox. It can be shown (see [4]
for a proof) that there is an equivalence between orbits and the
induced probability distributions, so that for signals x and y,

Ox = Oy ⇐⇒ Px = Py, (2)

The corresponding probability distribution to be used for the
map M(x) = Px, is invariant and unique, i.e., x ≡ y ⇐⇒
Px = Py .

The distance in the new representation space will depend on
some metric between the d-dimensional distributions Px. Such
a metric can be approximated by

dK(x, y) =
1

K

K∑
k=1

‖µk(x)− µk(y)‖. (3)

through the one-dimensional distributions µk, of the projections
of x on a finite number K of randomly chosen, unit-norm tem-
plate signals. This follows from the Cramér-Wold Theorem,
and applying concentration of measures [23, 4], on the approx-
imation of an infinite sum of projections on directions of the
unit sphere. Estimations of the one-dimensional empirical dis-
tribution can be computed through a set of N smooth nonlinear
functions, ηn, each computing one bin of the empirical CDF:

µk
n(x) =

1

|G|
∑
g∈G

ηn
(
〈gx, tk〉

)
, (4)

where 〈·, ·〉 is the normalized dot-product in X , and G is a fi-
nite transformation group. Note that we require all actions of G
on x; however, we can rewrite 〈gx, tk〉 as 〈x, g−1tk〉, which al-
lows us to obtain the distribution (per template) by accessing the
transformed templates instead. The final invariant representa-
tion is formed by repeating this computation for all K template
signals and concatenating the results, giving us

M(x) = ({µ1
n(x)}, . . . , {µK

n (x)}) ∈ RNK . (5)

3. Implementation
To compute representations which are invariant to a particular
set of transformations, the theory requires access to a number of
templates and their realizations under these transformations. In
this paper, the samples we wish to classify originate from a dif-
ferent dataset than the templates. We obtain the main train/test
partitions from TI-DIGITS (see Table 1) and the templates from
TIMIT. This is to empirically support the claim that the tem-
plates can be chosen irrespective of the data, scale, and condi-
tions of the learning task.

Our templates are waveform segments of support smaller
than the average word length in our task. A natural choice, co-
inciding with the structure in speech signals, is choosing word
sub-units, such as phones. This implies that the final representa-
tion is a collection of “word parts”, invariant to transformations
of the part-based templates.

For the templates, we chose K random phoneme instances
from the phonetically segmented TIMIT dataset, downsampled
to 8kHz. To each template, we applied three types of trans-
formations: I time shifts (with a stride of 50 samples), J pitch-
shifts (range of -400 to 400 cents, with a step size of 50), and M
tempo changes (adjusted twice, at half speed and double speed)
[24]. For template tk, this yields a set of I × J ×M vectors
{tkijm}, where each tkijm is an instance of the original template
at a particular time shift, pitch, and speaking rate. This is re-
peated for every template, yielding K sets of vectors.

Each word sample x in the train and test set is mapped onto
the representation space defined by the K random templates.
First, for template tk, we compute the normalized dot product
between x and each vector in {tkijm}. We then pool over this
set of projections with a histogram, whose size N (bin count)
is a free parameter. This process is repeated for each template,
resulting in a set of K histograms which are concatenated to
produce the final feature vector of length N ×K.

4. Experiments
To analyze the efficacy of our approach for transformation-
invariant features, we use the extracted features in a set of
restricted-vocabulary, word classification tasks, with an increas-
ing level of of variability and difficulty. Note that since we are
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Figure 1: Digit classification accuracy of invariant features using various numbers of templates and pooling with different numbers of
histogram bins.

extracting a signature for the entire word, we start from varying-
length inputs and result in a fixed-length feature vector used to
assign a label on the entire word [25]. To better understand
the discriminative and invariant properties of the representation,
we use a simple regularized linear classifier with leave-one-out
cross-validation [26].

Aside from testing the resilience of the representation, the
formed datasets provided a way to explore how the system per-
formance depends on the representation parameters, such as the
number of transformations (e.g., simple cells) or the number
of histogram bins and templates (e.g., complex cells). It has
been shown that the selection of even simple parameters, like
the number of hidden nodes in a neural network, or the step-
size between extracted features, can have as much an effect on
performance as the choice of a weight-learning algorithm or the
number of layers for deep networks [27].

Starting from all isolated utterances of the TI-DIGITS set
(downsampled to 8kHz), we form four different partitions of
train and test sets, shown in Table 1, in order to emphasize
different types of train/test speaker mismatch conditions. The
dataset names are meant to convey the type of mismatch.

In the first set, termed “Utterance”, the train and test sets
contain different utterances of exactly the same speakers. This
was used to see how our features handled intraspeaker variabil-
ity, and is expected to be the easiest test of our system. The set
“Speaker” has completely different speakers in the train and test
sets, and anticipated to be more difficult due to the larger differ-
ences from one speaker to another. However, we note that both
train and test sets have members from all main speaker groups
(women, men, girls, and boys).

Next we consider age differences (“Age”) by training on
adults and testing on children. Children have posed many prob-
lems for ASR, largely due to shorter vocal tract and vocal folds
as compared to adults [12]. They also tend to have poorer pro-
nunciation than the typical adult, though this may not have been
an important factor here due to the small vocabulary size. Re-
searchers have largely relied on domain-specific knowledge to
account for this mismatch, as well as methods for adapting the
acoustic features of children to fit models that were trained on
adults [28, 29].

Finally, we consider gender variability (“Gender”) by train-
ing on men and testing on women. Again, a large part of the
speech variation here can be attributed to differences in vocal

tract length, so vocal tract length normalization is usually ap-
plied to compensate for this, along with gender-dependent mod-
els that are regularly used in ASR systems [12]. A breakdown
of the four datasets, including sample size and group mismatch,
is provided in Table 1. Classification accuracy results using the
proposed features on each set, for different numbers of tem-
plates and a varying number of histogram bins, is shown in
Fig. 2.

As a baseline comparison, we computed MFCC features
(with ∆ and ∆∆ features) on 25ms windows (10ms offset) on
each word. To obtain a fixed length representation, we averaged
over thirds of the word and concatenated the results, yielding a
117 dimensional code which we refer to as MFCC3 [30]. Av-
eraging over more parts significantly boosted performance in
some cases, so we additionally include results from a 390 di-
mensional coding obtained from averaging over ten parts of the
word (MFCC10). The MFCC-based features are used with the
same linear classifiers as the proposed features (InvR), and com-
pared on all sets to the best performing template/bin combina-
tion (InvR with 1560 templates, 201 histogram bins).

To address the large discrepancy in the dimensionality of
the invariance-based features (313560) and MFCC-based cod-
ing, we also report results using a reduced dimensionality ver-
sion (InvRPCA). This is designed specifically to match the di-
mension of the MFCC10 vector by projecting the data onto the
first 390 principal components of the training set. It is worth
remarking that the full feature vector (InvR) is extremely sparse
(due to the large number of fixed histogram bins), with an aver-
age 1/3 of the dimensions being zeros on all samples from train
and test.

5. Results
Figure 1 shows the performance on all four datasets measured
by the classification accuracy on isolated digits (averaged across
the 10 digit categories, chance is 0.1). Each feature set differs
with respect to the number of templates (520, 1040, or 1560)
and the number of histogram bins (25-205 with a step-size of
12). Each curve corresponds to the performance of a fixed num-
ber of templates, with a varying number of bins displayed on the
x-axis of the plots.

As is immediately apparent in all sets, increasing either the
number of templates (more simple-complex cells) or the num-

2387



Figure 2: Digit classification accuracy for four sets of features over all four datasets.

Dataset Training Set Test Set

Utterance #Samples 3260 3260
Groups All Speakers (a) All Speakers (b)

Speaker #Samples 3260 3260
Groups 1/2 Speakers (a,b) 1/2 Speakers (a,b)

Age #Samples 4500 2020
Groups All Adults (a,b) All Children (a,b)

Gender #Samples 2220 2280
Groups All Men (a,b) All Women (a,b)

Table 1: Dataset partitions from the subset of TI-DIGITS con-
taining isolated samples of the digits 0-9, spoken by 326 differ-
ent speakers, each providing two utterances of each (labelled a
and b). For example: 1/2 Speakers (a,b) means the collection
of both utterances (of each digit) for half of the speakers.

ber of histogram bins via finer pooling (more complex-cells)
results in improved performance. This would be the equivalent
of increasing the number of nodes on hidden and output lay-
ers of multilayer neural networks. The two parameters can be
increased independently, or in tandem, to yield stronger clas-
sification accuracy. In fact, it was always observed to be the
case that features corresponding to both the largest number of
templates and histogram bins gave the best results.

While these trends are observed across all four datasets,
there is a clear difference in the overall performance among
sets. As expected, the best results were achieved on the low-
mismatch “Utterance” dataset, where the mismatch was limited
to intraspeaker variability. A drop-off is noted in the “Speaker”
dataset, most certainly due to the introduction of the inters-
peaker variations; however, it’s interesting to note that there is
virtually no drop in performance between the “Speaker” and
“Age” datasets, suggesting that the extracted features are ac-
counting for the different sources of mismatch in the two sets
equally well; however, it should be noted that the ratio of train-
to-test sample size is twice as large for the “Age” than the
“Speaker” dataset. Finally, we observe the poorest performance
on the “Gender” set, which is not surprising, considering the
amount of gender-dependent modeling used in modern ASR
systems.

Figure 2 shows comparison results with the MFCC-based
word-features. We note that, similar to the observed trends
for the proposed features, MFCCs do quite well on the “Ut-

terance” dataset, where intraspeaker variability is the biggest
source of mismatch. Most importantly though, the invariance-
based features outperform MFCCs on both the “Speaker” and
“Age” datasets. This is also true when the comparison is made
with the InvRPCA features, which have a dimension equal to
that of the MFCC10 features. Evidently, there is small differ-
ence in performance between InvR and InvRPCA representa-
tions, despite the enormous gap in the dimensionality of the
feature vectors. This supports our theoretical observations that
the derived features are more discriminative, even when embed-
ded in much lower dimensional spaces, and more invariant than
standard features.

6. Conclusions
We presented the design and a potential implementation of a
feature map for word-level speech representations built on the
level of the acoustic waveform. Based on a theory for forming
invariant representations using stored templates and their trans-
formations under compact or locally-compact groups, we pro-
posed an implementation using smaller-support, speech part-
like templates, corresponding to phonetic units from an ex-
ternal database. The method can transform variable-length,
raw waveforms of whole-word segments into a representation
which was empirically shown to be very discriminative for the
purpose of word classification, and yet invariant to common
sources of speaker variability such as identity and age. The
invariance-based feature vectors consistently outperformed an
MFCC-based representation, especially when interspeaker vari-
ability such as age is a strong source of train/test mismatch.
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