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Problem 1: Genetic Encoding and Hand-made Ants

The sensory-motor coordination for the ant can be implemented using a finite state automaton
(FSA). Design a “genetic encoding” representation, specified by a fixed-length bit string, that en-
codes ant sensory-motor FSA transition tables. Then, by hand, try to design the best possible ant
for the John Muir trail. Show the encoding and the corresponding FSA state-transition table and
diagram. What fitness does your ant controller score? Limit yourself to, at most, a 16-state FSA.

The “genetic encoding” representation needs to satify two goals. First, it has to be scalable,
or able to support ant definitions with various numbers of states in their FSAs. Second, it needs
to be fast for use in the simulation program, or, in other words, it should be easy to extract the
necessary information from the encoding. For the aforementioned reasons we decided to use the
genetic encoding shown in Figure 1, representing a general 16-state FSA.

As you can see, the encoding is an array of 17 elements. The first 16 of them represent the
binary-coded State Transition Table for the 16 states of the FSA by encoding the state to which
the ant’s control should go if there is food (state_one)/there is no food (state_zero) in front
of the creature, as well as the action taken upon this transition for both of these cases (act_one,
act_zero): do nothing, turn right, turn right, and move forward.

Each of the elements is a UInt16 (unsigned short int in the C language) shown in
Figure 2. The lower-order two bits [0..1] are used to hold the action taken if there is food in
front; the bits [2..5] are used for the transition if the ant can see the food; the bits [6..7] and [8.:11]
represent the same fields, but in case there is no food in front. The higher-order four bits [12..15]
are unused for the case of a 16-state FSA.

It is straightforward to see why this encoding satisfies the stated goals. It is scalable up to 64-
state FSAs, since the four unused bits can be split into two and two, each concatenated with the
state_zero and state_one fields (which gives 16 x 4 = 64 states). It is also a fast encoding,
since bit extraction from each of these fields takes at most two assembly operations (shift right and
mask using AND).

Now we will address the second half of the question — designing a the best possible ant for the
John Muir trail. Before doing that, we will take a brief look at the anatomy of an ant. The first
thing you will notice in the diagram in Figure 3 is the three main divisions: the head, the trunk,
and the metasoma. Ant bodies, like other insects have an exoskeleton. Their skeleton is on the
outside - not covered by skin, muscles, and tissue like humans.

‘ 0 ——»{ state_zero | act_zero | state_one [ act_one |

1 ——={ state_zero [ act_zero [ state_one [ act_one |

2 ——» state_zero | act_zero | state_one [ act_one |

15 |—m{ state_zero [ act_zero [ state_one [ act_one

16 =|' start_state |

Figure 1. Genetic encoding.
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Figure 2. Packing fields into Ulnt16.
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The head of an ant has several imporatant parts. First the eyes, which are a lot like the facet eyes
of a fly. This structure enables ants to see movement very well. It is important to notice that ants
can’t hear. Also attached to the head of the ant are two feelers. The feelers are special organs of
smell, as well as tactile organs. Ants release pheromones to communicate with each other, and the
feelers receive these smells as three-dimensional signals (ants can smell the 3D direction vector
to an object!). The head also has two strong pinchers which are used to carry food, to dig, and
to defend. Just inside the mouth is a small pocket where ants can store food. They can share this
food with other ants in need, which biologists call tropholaxis. The only other case of animals
exhibiting tropholaxis is observed in wolves (Canis lupus).

The trunk of the ant is where all six legs are attached. At the end of each leg there is a sharp
claw that helps ants climb and hang onto things. The metasoma of the ant is a poison sack. Ants
are closely related to wasps and other stinging insects. Many types of ants have stingers and can
inflict a very painful sting. This is a useful way to defend against the many predators ants have.

Inside ants do not have lungs. Oxygen enters through tiny holes all over the body, and Carbon
Dioxide leaves through the same holes. There are no blood vessels. The heart is a long tube
that pumps colorless blood from the head back to the rear and then back up to the head again. The
nervous system of ants consists of a long nerve cord that also runs from head to rear with branches
leading to the parts of the body, like a human spinal cord.

Now that we know that ants can smell in 3D, it becomes clear why they can easily find the
direction to the source of smell (trail or food, for example). When designing our hand-made ant,
we would like to imitate the nature by somehow allowing our ant smell in 3D. By doing so we are
guaranteed to obtain behavior as robust as the one of real ants. Unfortunately, we are given an ant
which can only smell the food in front of him. How can we imitate the nature given just that? The
answer is simple and logical: we need to “program” our ant to turn around full 360 degrees in four
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Figure 3. Ant anatomy.

Old State | Input | New State | Action
00 0 01 1
00 1 00 3
01 0 02 1
01 1 00 3
02 0 03 1
02 1 00 3
03 0 04 1
03 | 00 3
04 0 00 3
04 1 00 3

Table 1. Hand-designed FSA state-transition table. Start state: [00]. Actions: “0”=no-op, “1”=right,
“27=left, “3”=forward.

steps if it sees no food in front of him, and keep going in case no food (trail) was found around the
cell it was standing on. Figure 4 shows an FSA which provides exactly this kind of behavior. The
start state is state 0, and the other four states signify the four 90-degree turns of the ant and a step
forward from state 4, if no food was found. Figure 5 and Table 1 show the encoding of this ant and
the FSA state-transition table respectively (notice that this ant only uses five states out of possible
sixteen). i

This approach has both advantages and disadvantages. On the one hand, the most serious disad-
vantage is the inefficiency of this “algorithm” for a particular trail. On the other hand a “special-
ized” ant can do better on specific trail, while as it will most likely fail miserably on an unknown
trail. Our approach is thus generality, which leads to good results on any types of trails. To see
that, let’s take a look at how our ant traverses the John Muir trail.

Figures 6, 7, and 8 represent the John Muir Trail and two walks of the hand-made ant, the first
one given enough time to finish (full score of 89 points), and the second one limited to 200 time
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Figure 4. Hand-designed FSA.

(133 [ 243 [ 343 [ 443 ] 0c3 ] 000 ] 000 [ 000 ] 000 [ 000 ] 000 [ 000 [ 000 [ 000 [ 000 [ 000 [0 ]

Figure 5. Hand-designed genome (hexadecimal representation).
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Figure 6. The John Muir Trail (“1”=food, “.’=no food). The ant starts out at the topmost left cell
facing East.
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Figure 7. Hand-made ant walks the John Muir Trail (values represent the states of its FSA) and gets
all 89 food points in 314 steps.
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Figure 8. When given only 200 time steps, the ant scores 81 out of 89.
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stepsl. Thus, we see that the fitness of our hand-made ant is 81 out of 89. This fitness is lower than
that of a specialized ant for this particular trail, but in our simulation we wanted to create nature-
like behavior (see the argument above), and our goal, again, is a universal ant, which would be
able to act reasonably well under any conditions, such as other trails (see following sections).

"Having finished the simulation, we read the Jefferson paper and noticed that we came up with the same solution
of the hand-made ant. This is logical, since this is the solution that the nature gave millions of years ago. Also, it is

interesting to notice that changing “turn right” behavior to “turn left” behavior results in longer time (322 steps) to get
all the food.



6.836 Embodied Intelligence
Research Assignment 4: Ant Farm Gleb Chuvpilo

Problem 2: Using ‘“no-ops”

Does your ant use the N operation? Under what circumstances might the N operation be useful?

The hand-made ant given in Problem 1 does not use no-ops. Generally, this action could be
useful in order to let an ant change its internal state without changing its orientation in the environ-
ment or moving away from its current position. However, it is unlikely that the evolution would be
using this action, because taking one step out of possible 200 for “changing mind” is too expensive
(0.5% of the total time), and thus the animals able to do well without using no-ops are more likely

to procreate.
i
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Figure 9. Genetic encoding (repeated for convenience).

(1) ] act_one |
2
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Figure 10. Packing fields into Ulnt16 (repeated for convenience).

Problem 3: Counting Individuals
How many different individuals are possible in your representation?

As you can see in Figures 9 and 10, which are exactly the same as Figures 1 and 2, the length of
the ant’s genome is 16 x 12 44 = 196 bits (each state transition encoding takes up 4 bits, and each
action encoding takes up 2 bits). Thus, since each bit can take two values (0 or 1), there are 29
possible different individuals in this representation, which is the number on the order of 10%° (this
number is roughly equal to the time it would take a black hole a few times the mass of our sun to
evaporate; another way to think about this number is that it is a billion times greater than the mass

of the Universe).
A4
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Figure 11. The Santa Fe trail (“1”=food, “’=no food). The ant starts out at the topmost left cell facing
East.

Problem 4: Santa Fe Performance

How does your ant fare on the “Santa Fe” trail?

Figure 11 shows the Santa Fe trail, and Figure 12 shows the walk of our ant on that trail. As
you can see, the argument presented in Problem 1 claiming that a universal ant is better that the

one specialized for a particular trail does work! Indeed, the same ant scores 63 points in 200 time
steps, which is a very good result proving the robustness of our ant. //L/W A
A
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Figure 12. Hand-made ant walks the Santa Fe trail (the score is 63 out of 89).
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Figure 14. Packing fields for n states.

Problem 5S: Some Generalizations on Representation

Generalize your representation to allow 2" states. Express the number of bits in your represen-
tation, and the number of possible individuals, as functions of n.

Figures 13 and 14 show the genetic encoding for the general case of n states. These figures
suggest that the number of bits in this representation is 2" X (2n+4) +n = 2" x (n+2) +n. In
order to make sure this is correct, let’s try n = 4 from Problem 3: 2"+ x (n+2)+n = 2°x6+4 =

196, which is the same result.

As far as the number of possible individuals is concerned, we can compute it by assuming two
distinct values of 0 and 1 for each bit of the genetic encoding. Thus, we get 22" X(1+2+n_\which

grows faster than the exponent.

.//
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Problem 6a: Designing Evolution

Write an outline in English of how your code works and what representations you use. Tell us
about the algorithm for selection of individuals for the next generation. Run your system and plot
how fitness increases by generation.

As we know, Darwin’s theory of evolution includes two sets of balanced biological phenom-
ena. One set provides relative stability in plant and animal species from generation to generation.
Another set contributes some source of variation to plant and animal species. The first are called
mechanisms of continuity, and the latter mechanisms of variation./Wlﬁc;th sets are necessary
for evolution, it is one of the paradoxes of biology that one, the mechanisms of continuity, reflects
the perfection of biological systems and that the other, the mechanisms of variation, is nothing
more than mistakes or errors in a process of replication. Without these mistakes there could be no
evolution, and evolution, therefore, is in a very real sense an accidental process. What this means
is that change does not occur in response to need. Nature does not provide species with the inher-
ent ability to adapt to environmental variation. An evolutionary change can occur only if some of
the variation already present within the population has a certain value as far as adaptation to new
conditions is concerned. In our system we want to imitate the process of natural selection under
the influence of both of these mechanisms. ‘

The evolution is started with a set of 1,000 randomly generated genotypes, each of which is a bit
string of length 196 described in Problem 1. During a generation, each genotype is translated into
its respective phenotype, which in our case is an ant’s FSA control. Then each ant gets a chance
to walk the trail, and its score is recorded. In order to form the next generation, we draw a pair of
parent ants randomly from the pool of the best-scoring 1% genomes, and we cross the genotypes
of parents to form a child’s genotype, who is placed into the new generation. The evolution is not
elitist; which means that the best individual is not retained in the gene pool from one generation to

(/fél?t;ler.

The crossover is probabilistic: the probability of changing from one parent to the other while
copying each bit of the genome is set to 10%. Therefore, the expected switch from one parent to
the other happens every ten bits of the genome, and since the total length of the genome is 196
bits, the expected value of the number of crossovers to happen in each genome is about 20. The
mutation is also probabilistic, and it is set to 1% for each bit to be copied. The mutation itself is a
simple bit flip. We can apply the previous argument to see that the expected mutation will happen
once every 100 bits, or twice per genome.

The evolution is not elitist, i.e. the best individual of the population is not carried over to the next
population explicitly. Nevertheless, as you can see from the explanation of crossover and mutation
rules, the probability that one of the high-scoring ants will make it to the next generation without
too many damaging mutations is high. In fact, this was our reasoning behind the choice of evolution
parameters; otherwise, if we chose to go for higher constants of crossover and mutation probability,
we would get an unstable population (see Problem 6¢), because high degree of mutation in genomes
does not leave much chance to the high-scoring ants to procreate the copies of themselves (although
higher mutation rates lead to better adaptation of a species to an environment).

The evolution program is written in ANSI C, and Figures 15 through 19 show the snippets of
the representation that we are using. As you can see in Figure 16, each genome is comprised of

15
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Figure 15. Genetic encoding (repeated for convenience).

/* ant’s genotype */
typedef struct {
/* each of the first 16 codons is:

|<----- A == >|<--== 2 ——->|<--——- AN=TT >|<-=== 2 ————>|
| new_state on 0 | action_on_0 | new_state_on_ 1 | action_on_1 |

aligned to the right boundary of UIntlé6;

the last codon (codon[FSA_STATES]) is the start state (same right alignment)*/
UIntl6é codon[FSA_STATES+1];

"} Tgenotype;

Figure 16. Genotype.

seventeen codons (we are using 16-state FSAs), the first sixteen of which encode state transitions
and actions taken upon these transitions, and the last one encodes the start state of the FSA (see
Figure 15). We decided to expose the start state to the evolution in order to give it more freedom.
The phenotype representation (Figure 17) is a set of arrays encoding transitions and actions, as
well as the start state. The ant (Figure 18) is simply a type containing both the genotype and the
phenotype. However, the population is comprised of genomes, but not ants, in order to lessen
memory requirements of the program and allow up to 65,536 individuals in the population (other-
wise, the program could segfault). The representation of the trail is given in Figure 19. Due to our
representation, the code is fast (evolving 1,000 ants for 2,000 generations takes about half-an-hour
on a 1-GHz Pentium-III Linux machine). To see that, look at Figure 20: most of the code is simple
shifting and masking.

Now, having described the representation, let’s see what actually is happening and how evolution
works. Figure 21 shows the champion of all randomly-generated ants of generation 0 and the
history of its walk on the John Muir trail. As you can see, this random ant does a pretty good job
and scores 42 points, but gets lost at the first missing cell. However, after 2,000 generations, the

/* ant’s phenotype (FSA control) */
typedef struct {

UInt8 start; /* start state */
UInt8 state_zero[FSA_STATES]; /* new state on 0 */
UInt8 state_one[FSA_STATES]; /* new state on 1 */
UInt8 act_zero[FSA_STATES]; /* aetion on 0 */
UInt8 act_one[FSA_STATES]; /* action on 1 */

} Tphenotype;

Figure 17. Phenotype.
16
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/% ant %/
typedef struct {
Tgenotype gene; /* genotype */
Tphenotype phen; /* phenotype */
} Tant;

f* Emadll Ay

typedef struct {
UInt32 cell [TRAIL_SIZE] [TRAIL_SIZE];
UInt32 maxfood;

} Ttrail;

Figure 18. Ant.

/* array of cells */
/* amount of food in the trail */

Figure 19. Trail.

/* mutate each bit of the gene with a given probability */
void mutate_genome (Tgenotype *gene, float prob) ({

UIntl6 i; /* counter */

UInt32 thresh; /* mutation threshold */

UIntl6 pos; /* potential flip position */

UIntl6 mask; /* mask in the form of 0x00...010...0, with "1" at pos=i */
UIntl6 temp; /* temp variable */

thresh = (unsigned int) ((1+(unsigned int)RAND_MAX) *prob) ;

/* repeat for all codons */

for (i=0; i<=FSA_STATES; i++) {
mask = 0xl; /* reset mask */
for (pos=0; pos<12; pos++) {

mask = 0x1 << pos; /* update mask */

/i S E SR
if (rand()<thresh) {
temp = gene->codon[i];

temp = (temp & ("mask)) | ((“temp)& mask);

gene->codon([i] = temp;

}

}

/* reset the unimportant part to zero*/
gene->codon [FSA_STATES] = gene->codon[FSA_STATES] & OxF;

return;

Figure 20. Mutation code.

17
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best ant can get the full score!! It’s FSA, as well as the history of its walk on the trail, are given in
Figure 22. As you can see, the evolution has done a very good job in specializing ants to the John
Muir trail! It is important to notice that all FSAs have been automatically minimized to remove
unreachable states.

Now let’s take a look at how fitness increases by generation. Figure 23 shows fitness as a
function of generation. The mean score is shown by solid line, the standard deviation score by
medium dashed line, and the maximum score by short dashed line. As you can see, it only takes
the evolution thirty generations or so to produce an ant scoring 80 points out of 89. Another
observation is that the score is not non-decreasing — generations around 1,200 are a good example.
After 2,000 generations, the final statistics is the following: maxz = 89, mean = 58.6, stdev =
23.7. Mode 1 is not shown on the graph, because it adds more noise to the graph than opportunity
of useful analysis.

18
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Evolution of ants
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Figure 23. Fitness as a function of generation (score=89; population=1,000; mutation=1%:

crossover=10%:; breed=1%).
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Problem 6b: Cross-Trail Performance

Make your system work on some number of the aannn . txt files to evolve your ant. Take one
of the highest scoring ants evolved and try it on the bbnnn . txt files. Report the results of this to
us. If there is a significant difference what could be the explanation?

It is known that species which have recently invaded a particular geographic zone and which
therefore have not adapted to it are said to be generalized for that zone. As the process of adap-
tation unfolds, the resulting species become more and more specialized. That is, their adaptation
becomes more and more efficient for a specific environment. Specialization represents an increase
in population efficiency since it reflects successful adaptation. Specialization, however, also leads
to restricted variation, since any significant change from a specialized form is highly likely to be
less viable that the established type. Thus old, fully established species, well adapted to a spe-
cific and rather invariant environment, ayd likely to change little or not at all. They have “traded”
variability for continuity geared to long-standing conditions.
enon of specialization in our evolution system, we evolved a population of

22
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Problem 6¢: Fitness Analysis

Generate some tables on how the overall fitness varies on each set of files for different popu-
lation sizes, different parameters for what proportion of the fittest individuals are retained, what
proportion are used for reproduction, and what levels of mutation are used.

This part of the assignment presents a sensitivity study of evolution behavior under changes of
evolution parameters, namely crossover, mutation, and breeding threshold rates, as well as popu-
lation size. Figure 25 showing the normal evolutionary process is repeated here for convenience of
comparison.

Crossover. Figure 26 shows evolution under extremely low crossover rate. As you can see, the
general picture is not different from that of the normal evolution (Figure 25), but the maximum
fitness line has less oscillations and is more smooth. The maximum fitness achieved is in high
80s. However, if the crossover rate is set to an extremely high value (Figure 27), the general
picture is the same, but the evolution only makes it to the score a little over 80. This probably
happens because high level of crossover introduces too much randomness, and the best ants are
not retained. Thus, we can conclude that evolution is robust under any reasonable changes of the
Crossover parameter.

Mutation. The consequences of an extremely low mutation rate are depicted in Figure 28. As
you can witness, the mean fitness and the maximum fitness lines collide a little above 45 points,
and the standard deviation line representing the variation of the population is located at the very
bottom of the graph, at the level of around 3. This certainly means that the population is very
uniform, and no evolution change is happening — the mechanism of variation is turned off (see
the first paragraph of Problem 6a for further explanation). However, if we turn mutation to a very
higtlevel (see Figure 29), we will not let successful ants procreate properly, and the evolutionary

/ change will be destroyed by this randomness (we can see that the mean value oscillates at the level
of 5 units, and the best ants are very unstable in successive generations). The conclusion is that
evolution is sensitive to changes of mutation.

Breeding threshold. Figure 30 represents the process of evolution under an extremely low
breeding threshold rate. As you see, the graph is practically identical to Figure 25 of the normal
evolution, except for there are no oscillations of the maximum fitness. The reason is obvious —
since-ess individuals are used for breeding, the children generation is more uniform. However, if
we tune the breeding threshold high up (Figure 31), the evolution is dead. Again, the reason for
that is simple — there is no natural selection in the population, so the high-scoring ants mate with
poor-scoring ants, which results in poor-scoring children (the process of spoiling of the genome).
Thus, the conclusion is that evolution is very robust to decreasing the breeding threshold, but it
is destroyed by increasing breeding threshold. As a side note to prove the conclusion let’s recall
that 6% of the sea lions inseminate 99% of females — a phenomenon frequently observed within
various animal species.

Populatien size. Here we see an interesting phenomenon: if you look at Figures 25, 32, and 33,
you wHl notice that the number of generations that it takes to evolve a reasonably well-performing
(scoring 80 points) is inversely proportional to the size of the population, and the product
|population| x |generations| = 100 x 600 = 1,000 x 60 = 65,536 x 1 remains constant for all
population sizes. Therefore, the evolution process is robust with respect to the population size, and
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the emergence of high-scoring ants is only the matter of time, shorter for bigger populations and
longer for smaller ones.

Thus, the general conclusion is that the qualitative nature of the evolutionary process is ex-
tremely robust over wide variations of the evolutionary parameters.
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Problem 7: Best Behavior Analysis

lake one of the best individuals your system produced for each of problem 6a and 6b (i.e., their
FSA state-transition tables and diagrams), and analyze its behavior. Does the problem 6a ant
demonstrate any particular specializations? What about the 6b ant? And if it does better on the
“a” files that the “b” files, what might be going on? How do both compare to your hand-coded
solution for Problem 1?

We will now attempt to analyze the behavior of evolved ants for Problems 6a and 6b. Let’s first
start with the John Muir trail walker (see Figures 34 and 35). This ant seems to have absorbed the
knowledge of this particular trail into its FSA. Indeed, since there is a bias towards right turns in
the beginning of the trail, it performs right turns in a single step, and otherwise efficiently walks
the trail while staying in one of the states 09 or 06. However, the left turn is done with extra two
steps to turn right and then back left. As you can see, this ant efficiently reuses the sequence of
states (06-11-12) seven times in order to do a left turn in the absense of food. The respective right
turn in the absense of food is done through the sequence (06-14-12), which is repeated eight times.
Also, the ant actually manages to do one extra step after it has eaten all of the food!

As for Problem 6b ant, things aren’t that simple here — the FSA is more complicated to suite
the needs of all three trails on which the ants have been evolved (see Figures 36 through 42). But
again, even with this complexity, there is some nice reuse of state sequences, such as that of (02-
11-10-12-09-07-13-02), which looks sort of like “dancing”, and (02-13-02), which is simply a turn
right along the trail. However, now the ant is so specialized that it scores 86, 82, and 80 points
respectively in all three trails on which it is “trained”! Alas, this over-specialization fails to work
in other environments of the “b” test trails, where the ant can only score 31, 23, and 71 points. As
you see, the performance is 248 out of 267 points (93%) on the “a” suite versus 126 out of 267
(47%) on the “b” suite. We send you back to Problem 6b for our argument which explains why
there is this 2x gap (the argument of specialization versus generalization as evolutionary forces).

As far as the comparison to the hand-coded solution is concerned, there is an obvious difference:
our hand-coded solution is very general (see the argument in Problem 1), and thus it is guaranteed
to work in any reasonable environments, while as the evolved ant is highly specialized to either
walk the John Muir trail (as in Problem 6a) or a set of study trails (Problem 6b) perfectly or almost
perfectly. Both approaches have their niches and applications, but let’s not forget that evolution
tries to “optimize” solutions for a particular environment.
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Figure 34. Champion of generation 2,000 from Problem 6a (John Muir trail).
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Figure 36. Champion of generation 2,000 for Problem 6b (multitrail).
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(/**‘k*******************************)‘(****‘k**‘k*********************************

* Ant Farm By Gleb Chuvpilo (chuvpilo@mit.Edu)
* 11-Apr-2002
T

* (Based On Genesys/Tracker System as described in the Jefferson paper)
****************-k**-k************'k****~ki«'7'(*:k-k*'k'k************************'k*****/

,/ *

#i

we need some external files */

/* set ﬁp some useful stuff */

o1 FALSE (0)
# TRUE (1)
#d > max (A, B) ((A) > (B) ? (A):(B))
# min (A, B) ((a) > (B) ? (B):(A))
#c ZERO 0

<<?

<<6

>>2

>>8

>>6

control and trail */
: FSA 16
(4+12* (FSA_STATES) )

/ X

number of states in the FSA */
genotype length = 4+ (2*LOG_2 (FSA_STATES+4))*FSA_ST

b

/ *
/

312
200
(FSA_STATES)

/[ *
/%
/

trail square side length, in cells */
how many steps to simulate */

/* default value for ant’s history of states on trail

/ *
/
/
/*
/*
/

/*

/ *

(int)
(int)

threshold =
_threshold =

static int crossover

static int mutat

/%
/* useful control cons&ants iy
/* states */

# 0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD

=

#d

Bl ol ol ol ol s .

population size */

init random number generator */
number of generations to simulate */
mutation rate */

/* crossover rate */

breeding threshold */

((1+ (unsigned int)RAND_MAX) *CROSSOVER_RATE) ;
((1+(unsigned int)RAND_MAX) *MUTATION_RATE) ;



antfarm.c
/u/chuvpilo/classes/6.836/ra4/multitrail/antfarm_D/

2119
Apr 12 2002

N 0x0 /* 00 = no-op */
R0zl /=0 IS = e
0320 ik 0 =l e S

0x3 /* 11 = forward */

/* directions the ant can be looking at */

0x0
0x1
‘H 0x2
0x3
*
2 FOOD 1

/* masks for phenotvpe */
ne PHEN_ STATE_ZERO 0xF00

PHEN_ACT 0xCO0
_PHEN_ 87" 5 0x3C
' O 0x3

/* define new convenient types */
typedef char SIint8;
typedef unsigned char
typedef short int
typedef unsigned short int |
typedef int

typedef unsigned int
typedef UInt8

/* _________________________________________________________________________ * /
(F o Eradl s A/
typedef struct {

UInt32 cell[TRAIL_SIZE] [TRAIL_SIZE]; /* array of cells */

UInt32 maxfood; /* amount of food in the trail */
} Ttrail;

/* best genotypes */
typedef struct {
SInt32 genelID; /* gene, -1 = no record */
UInt32 score; /* the score of that gene */
} Tbest;

/* _________________________________________________________________________ */
/* history of ant’s walk along the trail */
/* should be pre-initialized to CELL_UNUSED */
typedef struct {
UInt32 cell[TRAIL_SIZE] [TRAIL_SIZE]; /* array of states in cells */

UInt32 food; /* amount of food the ant has gathered */
} Thistory;

PR e gl S S S G S e e e e * /
/

/* ant'’'s phenotype (FSA control) */
typedef struct {

UInt8 start; /* start state */
UInt8 state_zero[FSA_STATES]; /* new state on 0 */
UInt8 state_one[FSA_STATES]; /* new state on 1 */
UInt8 act_zero[FSA_STATES]; /* action on 0 */

UInt8 act_one[FSA_STATES]; YENacEien en 4 T/
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} Tphenotype;

/* ant’s genotype */
typedef struct {
/* each of the first 16 codons is:

Ty

<——=—- 4 —————- >l<——mm 2 ———> < 4 —————= >|<-—== 2
| new_state on_0 | action_on_0 | new_state_on 1l | action on_ 1 |

aligned to the right boundary of UIntlé;

the last codon (codon[FSA_STATES]) is the start state (same right alignment)*/

UIntl6é codon[FSA_STATES+1];
} Tgenotvpe;

/* _________________________________________________________________________ * /

/¥ ant */
typedef struct {
Tgenotype gene; /* genotype */
Tphenotype phen; /* phenotype */
} Tant;
/* ______________________________________________________________________________

/* set seed */

void set_seed (int seed) {
srand (seed) ;
return;

}

/* read file into trail */

void get_trail ( Ttrail *trail, char **trai {
UInt32 i, j, num, val; /* counters, temp variables
FILE *fp; /* pointer to file */

#1f DEBUG==1
printf ("R
#e £

fp = fopen (*trailfile, “»");

/* exit if no file */

if (£p==NULL) {
printf (* =
exit (1) ;

}

trail->maxfood = 0;

e

/* read and ignore the first two numbers (dimensions)
n = fscanf (fp, sd v, &val);
n = fscanf (fp, Y, &val) ;

um
um
/* read trail from file */

for (i=0; i<TRAIL_SIZE; i++)
for (j=0; JF<TRAIL_SIZE; j++) {

num = fscanf (fp, *“%d *, &val);
/* exit if value in cell is illegal */
if (! ((val==0) || (val==1))) {
printf ("Trail entry is not 0 or 1: %d. Exiting

exit (1) ;
)i
trail->cell([i] [j] = wval;
trail->maxfood += val;

"%, ..\n", *trailfile);

*

\n", *trailfile);

\ 11

’

=/

val) ;
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}
fclose (fp);
#if G==i
prinEf (¥R One si)fos
#endif
return;
}

] %
[5 print trails =/
void print_trail (Ttrail *trail) {

UInt32 i, j; /* counters */
UInt32 maxfood = 0; /* amount of food in the trail */
printf (*Printing ¢ 1 R T

/* print trail to screen */
for (i=0; i<TRAIL_SIZE; i++) {
for (j=0; J<TRAIL_SIZE; j++) {
if (trail->cell[i][j] == FOOD)
printf("$sd *, FOOD) ;
else
ohaalbolEame i (LIS m
}
printE (=),
}

printf
printf
return;

("

', trail->maxfood) ;

/%

/* reset an ant */

void reset_ant (Tant *ant) {
UInt8 i; /* counter */

/* reset genotype - 17 elements */
for (i1=0; i<=FSA_STATES; i++)
ant->gene.codon[i] = 0;

/* reset phenotype */

ant->phen.start = 0;

for (i=0; i<FSA_STATES; i++) {
ant->phen.state_zero[i] = 0;
ant->phen.state_one[i] = 0;
ant->phen.act_zero[i] = 0;
ant->phen.act_one[i] = 0;

) ;

return;

/"r ______________________________________________________________________
/* set a hand-made genotype */
void set_handmade (Tant *ant) ({

/* reset ant */
reset_ant (ant);

/* set FSA states (packed new state and action for "0" and

transitions); */
/* description: go forward if see food, look around and go forward if no food; */
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/* state 0 */

ant->gene.codon[0] =
(((STATE_1 LEFT SHIFT 2) + ACT_R) LEFT_SHIFT 6) + /* "0" transition
((STATE_O LEFT_SHIFT 2) + ACT F); /* "1" transition

* /’
* //
/* state 1 */
ant->gene.codon[l] =
(((STATE_2 LEFT_SHIFT 2) + ACT_R) LEFT_SHIFT 6) + /* "0" transition */
((STATE_O LEFT_SHIFT 2) + ACT_F); [* 1% transition */

/* state 2 */

ant->gene.codon[2] =
(((STATE_3 LEFT_SHIFT 2) + ACT_R) LEFT_SHIFT 6) + /* "0' transition */
((STATE_O LEFT_SHIFT 2) + ACT_F); xS Eransdtieonl Xy

/* state 3 */

ant->gene.codon[3] =
(((STATE_4 LEFT_SHIFT 2) + ACT_R) LEFT_SHIFT 6) + /* "0"' transition */
((STATE_O LEFT_SHIFT 2) + ACT_F); /* "1" transition */

/* state 4 */

ant->gene.codon[4] =
(((STATE_O0 LEFT_SHIFT 2) + ACT_F) LEFT SHIFT 6) + /* "0" transition */
((STATE_O LEFT _SHIFT 2) + ACT_F); (% Y10 Eransitionwky

/* set start state - #17 */
ant->gene.codon[FSA_STATES] = STATE_O;

return;

}

/* interpret genotype to phenotype */

void interpret (Tant *ant) {

UInt8 i; /* counter */

#if G
printf (*Translating g

#endif

==

/

/* set transitions */

for (i=0; i<FSA_STATES; i++) {

ant->phen.state_zero[i] = (ant->gene.codon[i] & M_PHEN_STATE_ZERO) RIGHT_SHIFT_ 8;
ant->phen.act_zero[i] (ant->gene.codon[i] & M_PHEN_ACT_ZERO) RIGHT_SHIFT 6;
ant->phen.state_one[i] (ant->gene.codon([i] & M_PHEN_STATE_ONE) RIGHT_ SHIFT 2;
ant->phen.act_one[i] = (ant->gene.codon[i] & M_PHEN_ACT_ONE) ;

Inn

}

/* set start state */
ant->phen.start = ant->gene.codon[FSA_STATES];

retitrn;

/* __________________________________________________________________________________________ c 2 A
/* print an ant'’s description */
void print_ant (Tant *ant) ({

UInt8 i; /* counter */

char s[80]; /X for printing bit strings */

boolean used[FSA_STATES]; /* array of "used" FSA states */
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printf ("Prin antos ot

/* create array of "used" nodes of the FSA */

/* reset all */

for (i=0; i<FSA_STATES; i++) {
used[i] = FALSE;

}

/* update for all states, except for start */

for (1i=0; i<FSA_STATES; i++) {
used|[ant->phen.state_zero[i]] = 1;
used[ant->phen.state_one[i]] = 1;

}

/* update for start state */

used|[ant->phen.start] = 1;

/* print genotype: */

/* transitions */

printf (*Genome (hex): ");
for (i=0; i<FSA_STATES; i++) {
printf (“%03x *, ant->gene.codon[i]);

}
/* start state */
printf ("%0ix\n", ant->gene.codon[i]);

/* print phenotype */
printf (“P: e {8
printf (*
printf (*

9 oy -
ant->phen.start) ;
scbi\nt);

¢

\t{input]}\tin

/* print only used states */
for (i=0; i<FSA_STATES; i++) {
if (used[i]) {
printf (°
prinkEN(
}
}
printf (*Prin
return;

/* modulo operations (modulo = val % base) */
UIntl6 modulo(SIntlé val, UIntl6 base) {
if (val < 0)
val += base;
val = val % base;
return val;

}

/* reset history */ P

void reset_history (Thistory *history) {
WABayEILE ahn 519

#if DE
printf (*:

#endif

/* reset map */
for (1i=0; i<TRAIL_SIZE; i++) {
for (j=0; J<TRAIL_SIZE; j++) {
history->cell[i] [j] = CELL_UNUSED;
}
}

/* reset food */
history->food = 0;
#if I G==

i, ant->phen.state_zero[i], ant->phen.act_zero[il]);
i, ant->phen.state_one[i], ant->phen.act_one[i]);
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printf (
#endif
return;

}

/* _________________________________________________________________________ */’
/* print ant’s history to screen */
void print_history (Thistory *history) ({

UIntlée i, 3J;

printf ("Pri higtery. .\
/* print map
for (i=0; i<TRAIL_SIZE;
for (j=0; Jj<TRAIL_SIZE;
if (history->cell[i][3j]
PrintE N (E Sl
else
printf (°%
}
printf ("\a");

}

/* print food gathered*/
printf ( d red:
printf ("} =0
return;

v

10

/ *

n");

i++) {
j++) {

== CELL_UNUSED)

", history->cell[i][jl);

1Y, history->food);
. .\"1 ") ;

Tl N R BN e B o e e B S DI T e RN e, e, (e st e e Y, * 7

void run_ant (Ttrail *trail,
UIntl6é 1i; 7
UIntl6 state; el
SIRELGE =y v S d ik
UIntlée food; 7
UIntl6 peek_x, peek_y; /*

#if DEBUG==1
printf (*Ru
#endif

\ oy H

reset_history (history );

/* set initial parameters,
state = ant->phen.start;
dir = EAST;

Tant *ant, Thistory *history)

counter */

ant‘s state */

ant’s state, coordinates,
food so far */

direction

{(SIGNED INT!!

—— forymodulo)*/

coordinates of cell into which the ant is peeking */

)i

/* reset history first */

(0,0) is top left */

x = 0;
y = 0;
food = 0;
/* simulate ant for TIME LIMIT steps, sense-and-act loop, wrap-around the trail */
for (i=0; i<TIME_LIMIT; i++) {
/* record history */
history->cell([y] [x] = state;

/* if the ant is on cell

if (trail->cell[y][x] == FOOD) {
food++;
trail->cell[y] [x] = ZERO;
/* TEMPI!! */
Vi 1t (food == 88) */
/* printf ("STEPS FOR FULL FOOD: %d\n", i);

}

with food,

*

/

consume it and update map */

/* compute the coordinates of the cell into which the ant is peeking */

switch (dir) {
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X

I s

peek_vy modulo (y-1, TRAIL_SIZE);
break;

case EAST:
peek_x = modulo (x+1, TRAIL_SIZE);
peek_y = y;
break;

case S50
peek_x = x;
peek_y = modulo (y+1, TRAIL_SIZE);
break;

case h :
peek_x = modulo (x-1, TRAIL_SIZE);
peek y = y;
break;

}

/* if see food; note indexing: trailly][x] */
if (trail->cell[peek_y] [peek_x] == FOOD) {

/* first, need to take an action */

switch (ant->phen.act_one[state]) {

case ACT_N:
[*Nde nothdme */
break;

case ACT R:

(% burn right */
dir = modulo (dir + 1, 4);
break;

case ACT_
[* turn left */
dir = modulo (dir - 1, 4);
break;

AT

case ACT_F:
/* go straight (use precomputed "peek" values) */
x = peek_x;
y = peek_y;
break;

}

/* second, update the state of the FSA */
state = ant->phen.state_one[state];

}

/* else, if no food */
else {

/* first, need to take an action */
switch (ant->phen.act_zero[state]) {

case ACT _N: .
/* do nothing */
break;

case AC

/* turn rights ey
dir = modulo (dir + 1, 4);

break;
case ACT L:
(= turn, left %/
dir = modulo (dir - 1, 4);
break;
case A

/* go straight (use precomputed "peek" values) */
x = peek_x;
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y = peek_vy;
break;

b

/* second, update the state of the FSA */
state = ant->phen.state_zero[state];

} /* end of if-else */

/* save value of food gathered in history */
history->food = food;
#if 18
printf (°F
#endif
return;

}

/‘k _________________________________________________________________________
/* print the FSA of the ant to the "dot" file */
void phen2dot (Tant *ant, char **dotfile) {

ULnt320 il /* counter */

FILE *fp; /* pointer to file */

char *act_str; /* temp char to hold actions */

boolean used[FSA_STATES]; /* array of "used" FSA states */

printf (*Prin

‘%g'...\n", *dotfile);

/* create array of "used" nodes of the FSA */
/* reset all */
for (1=0; i<FSA_STATES; i++) {

used[i] = FALSE;
}
/* update for all states, except for start */
for (i=0; i<FSA_STATES; i++) {

used[ant->phen.state_zero[i]] = 1;
used[ant->phen.state_one[i]] = 1;
}
/* update for start state */
used[ant->phen.start] = 1;

fp = fopen (*dotfile, *w");

/* form a dot description */
fprintf (fp, N ®
EtprintE (Ep,
fprintf (fp), « =
for (i=0; i<FSA_STATES; i++) {

“, ant->phen.start);

/* zero transitions */
switch (ant->phen.act_zero[i]) {
case ACT_N:

break;

case ACT L:
acEistEr = St
break;

case ACT R:
QCEESEE = R
break;

”»

case ; P
act_str = °*F";
break;
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/* print only if used */
if (used[i])
fprintf (fp, ¥ %4 ->

A1:\n*, i, ant->phen.state_zero[i], act_str);

/* one transitions */

switch (ant->phen.act_one[i]) {
case ! 3z
act_str = *NY;

break;

case ACT_
act_str L i
break;

case ACT F:
act_str = *F*;
break;

}

/* print only if used */
if (used[i])
fprintf (fp, * %4 -> %d [lab

;\n*, i, ant->phen.state_one[i], act_str);

}

/* draw arrow to start state */
fprintf (fp, * le [gt i
fprintE (fp 1A
fprintf (fp, *i\n*

ext];\n", ant->phen.start);
ant->phen.start) ;

fclose (fp);

printf ("Brintid oo %! \nn*, *dotfile);
return;
}
e e e e s B S S S s S o | 2
/* do experiment with a hand-made ant */
void main_handmade () {
fE ind ey
Ttrail trail; /S traat e
UIntl6 generation = 0; /* current generation */

Tant antA; s anEs
i “trail /* file to open */
/* file to print dot graphs to */
/* history of states for an ant on the trail */

/* work */
printf (* g ‘handmade’ experiment...\n");
get_trail (&trail, &trailfile); /* load trail */
set_handmade (&antA); /* create a hand-made ant */
interpret (&antd); /* get an ant’s fsa from its genome */
print_ant (&antAh); /* print ant to screen */
phen2dot (&antA, &dotfile); /* print the FSA to a dot file */
print_trail (&trail); /* print trail to screen */
run_ant (&trail, &antA, &history); /* run ant on trail */
print_history (&history); /* print ant’s history on that trail */
printf ("Starting the ’'hs xat);
return;
}

% M U, SRR B S R LS R R B O I S B B e R S S * /
/* mutate each bit of the gene with a given probability */
void mutate_genome (Tgenotype *gene, float prok) {
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UIntl6 1i; /* counter */

UInt32 thresh; /* mutation threshold */

UIntl6 pos; /* potential flip position */

UIntl6 mask; /* mask in the form of 0x00...010...0, with "1" at pos=i */
UIntl6 temp; /* temp variable */

thresh = (unsigned int) ((1+(unsigned int)RAND_MAX) *prob) ;

/* repeat for all codons */
for (i=0; i<=FSA_STATES; i++) {
mask = 0xl; /* reset mask */
for (pos=0; pos<l2; pos++) {
mask = 0x1 << pos; /* update mask */
[ SR A
if (rand()<thresh) {
temp = gene->codon[i];
temp = (temp & (~mask)) | ((~temp)& mask);
gene->codon[i] = temp;
}
}
}

/* reset the unimportant part to zero*/
gene->codon[FSA_STATES] = gene->codon[FSA_STATES] & OxF;
return;

/* generate random ant */
void set_random (Tgenotype *gene) ({

UIntl6é i; /* counter */

/* reset genome - 17 elements */

for (i=0; i<=FSA_STATES; i++) {
gene->codon[i] = 0;

}

/* now, flip each bit with probability 0.5 */
mutate_genome (gene, 0.5);
return;

/* inject genome to ant */
void inject_genome (Tgenotype *gene, Tant *ant) {
UIntl6 1i; /* counter */

/* copy genome to ant */

for (i=0; i<=FSA_STATES; i++) {
ant->gene.codon[i] = gene->codon[i];

}

recturn; e

/* copy genome genel to gene2 */
void copy_genome (Tgenotype *genel, Tgenotype *gene2 ) {
UIntl6 i; [* counter */

/* copy genome */

for (i=0; i<=FSA_STATES; i++) {
gene2->codon[i] = genel->codon[i];

}

weturEs;
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/ *
/

/* conceive genome with a given crossover probability */

void conceive_genome (Tgenotype *parentl, Tgenotype *parent2, Tgenotype *child,

UIntl6 1i; /* counter */

UInt32 thresh; /* crossover threshold */

UIntl6 pos; /* potential flip position */

UIntl6 mask; /* mask in the form of 0x00...010...0, with "1" at pos=i */

UInt8 parent; /* who is the current parent

thresh = (unsigned int)

1f ((rand() % 2) == 0)
parent = 1;

else

parent = 2;

/* repeat for all codons */
for (i=0; i<=FSA_STATES; i++) {

child->codon[i] = 0; /* reset child codon

mask = 0xl; /* reset mask */
for (pos=0; pos<l2; pos++) {

mask = 0xl << pos; /* update mask */

if (parent == 1)

child->codon[i] += (parentl->codon[i])

else

child->codon[i] += (parent2->codon[i])

/* if change the parent */
if (rand()<thresh) {

if (parent == 1)
parent = 2;
else
parent = 1;
}
}
}
return;

/* do evolution on the Muir trail */
void main_g0_muir () {
Vi St <
Ttrail trail;
Tgenotype pop_base [POPULATION] ;
Tant ant;
UIntl6 generation = 0;
UInt32 score[POPULATION] ;
UInt32 best_score;
SInt32 best_num;
Thistory history;

LA/

Thistory history_best_g200;
Gy

UInt32 i;

/* work */
printf (*Starting the 'best gi’ e
set_seed (DEFAULT_SEED) ;

printf ("G

ng initial p

/* generate initial population */

for (i=0; i<POPULATION; i++) {

& mask;

& mask;

I/*
/%
il
l/*
/*

/ 3

/*

(source of bits) */

((1+ (unsigned int)RAND_MAX) *prob) ;

trail */

current and next population */
ant */

current generation */

array of scores */

best ant */

history of states for an ant on
file to open */

file to print dot graphs to */
history of states for an ant on

history of states for an ant on

counter */

the trai

the trai

the trai
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set_random (&pop_base[il]); /* create a random ant */

}
printf (*Dc¢

PrinE £ e g

/* find best ant in g0 */
best_num = -1;

best_score = 0;

for (i1i=0; i<POPULATION; i++) {

if ((4d % 100) == 0)
printE (YSts ing i=%d...\n", 1i);
get_trail (&trail, &trailfile); [* load trail */
inject_genome (&pop_base[i], &ant); /* inject genome to ant */
interpret (&ant); /* get an ant’s fsa from its genome */
run_ant (&trail, &ant, &history); /* run ant on trail */

if (history.food > best_score) {

best_score = history.food;

best_num =i;

printf ("?i!?%fi!?f‘f%?!?fifE“?35!3!!5!?!??%£f§}§?1!7??f?i!ff?ii!??55§§HER£, 1= %4,
1", 1, best_score);

printf (* Done.\n*);

if (best_num != -1) {
printf (“Printing best ant: number %d, s = %d...\n", best_num, best_score);
get_trail (&trail, &trailfile); /* load trail */
print_trail (&trail); /* print trail to screen */
inject_genome (&pop_base[best_num], &ant); /* inject genome to ant */
interpret (&ant); /* get an ant‘s fsa from its genome */
print_ant (&ant); /* print ant to screen */
phen2dot (&ant, &dotfile_best_g0); /* print the FSA to a dot file */
run_ant (&trail, &ant, &history); /* run ant on trail */
print_history (&history); /* print amt’s history on that trail */
}
printf (°
printf (° Done.\n");
return;
}
/ e e e s LR S s T R * /’
/% do evolution on the Muir trail */
void main_evolve_muir () {
/* main stuff */
Ttrail trail; e e aid
Tgenotype pop_base[POPULATION], pop_child[POPULATION]; /* base and children populations */
Tant ant; /* ant */
UIntl6 generation = 0; /* current generation */
UInt32 score[POPULATION] ; /* array of scores */
Thistory history; /* history of states for an ant on the t
Tail *y/
UInt32 parentl, paremt2; /* parents */

/* file to open */
/* file to print dot graphs to */
“;/* file to print dot graphs to */

UInt32 4, 3, k; /* counters */

/* procreation */

Tbest best [POPULATION] ; /* best genotvpes */

UInt32 bestMax; /* pointer to the last element of the ar
ray */

/* statistics

char at . 5 /ESEile toVprint 'statisties ko */

FILE /* pointer to file */

/* stats */
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UInt32
UInt32
ULnt32
UInt32
UInt32

* /
/

modes [1000] ;

maxMode ;

mostMode;

allScores [POPULATION] ;
max;

/* work */

printE (e riing the ’‘evolve 4

set_seed (DEFAULT_SEED) ;

bestMax = (unsigned int) (BREED_THRESH

printf (¢ abing initial lation

/* generate initial population */

for (i=0; i<POPULATION; i++) ({
set_random (&pop_base[i]);

}

printf (®Done.\n");

printf ( ing \n");

fp = fopen (statfile, "w®);

EprintE (fp, "# tubid

printf (*# Evol

fprintf (£p,

printf (*# gen

get_trail (&trail, &trailfile);

/* TODO: NEEDS TO BE CHANGED IF EVOLVE ON MULTIPLE FILES

maxMode = trail.maxfood;

/* modes */
/* max mode used */

/* most frequently used mode */

/* array to compute st.

dev.

* /

/* food gathered by the best-scoring ant

* POPULATION) +1;

u);

/* create a random ant */

/* load trail */

VR /i

/* evolve population and find the best ant in the last generation */

for (j=0; j<bestMax;

/* if found better,

if (history.food > best[j].score)
/% shaife wight */

for (k=bestMax; k>j;

best [k] .geneID =

It

Je=l

shift old right

/* get an ant’'s fsa from its genome

for (generation=0; generation<GENERATIONS; generation++) {
/* printf ("Generation: %d\n", generation); */

/* reset stats */

mean = 0;

stdev = 0;

max = 0;

mostMode = 0;

/* reset modes */

for (i=0; i<=maxMode; i++)
modes[i] = 0;

/* reset "best genomes" set */

for (i=0; i<bestMax; i++) {
best[i] .geneID = -1;
best[i] .score = 0;

}

for (i=0; i<POPULATION; i++) ({
get_trail (&trail, &trailfile); /* load trail */
inject_genome (&pop_base[i], &ant); /* inject genome to ant */
interpret (&ant)y
run_ant (&trail, &ant, &history); /* run ant on trail */
/* update stats */
mean += history.food;
allScores[i] = history.food;
modes [history. food] ++;
/* update the "best genomes" list */

and exit the "while" loop*/

best[k-1] .genelD;

* /
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}
}
}

best[j].genelD = i;

best[j].score

history. food;

break;

/* compute stats */
best[0] .score;

max
mean

for

(3=0;

mean/POPULATION;

j<POPULATION; {

J++)

stdev += pow((allScores[j]-mean),2);

}
stdev

mostMode

’

/

sgrt (stdev/POPULATION) ;

0;

* find most frequently used mode */

for (j=0; j<=maxMode; j++) {
if (modes[j]>modes[mostMode]) {
mostMode = j;
}
}
x printf ("mostMode=%u, repeated %u times\n", mostMode, modes[mostMode]); */
fprintf (fp, * t % ", generation, mean, stdev, max, mostMode) ;
printf (" %u ", generation, mean, stdev, max, mostMode) ;
/* printf (*\tFitness: %d\n", best[0].score); */
/* select random parents and let them procreate */
for (j=0; Jj<POPULATION; j++) {
parentl = best[rand() % bestMax].genelD;
parentl = best([rand() % bestMax] .genelD;
conceive_genome (&pop_base[parentl], &pop_base[parent2], &pop_child[j], CROSSOVER_RATE) ;
/* now, f£lip each bit with a given probability */
mutate_genome (&pop_child[j], MUTATION_RATE) ;
}
/* copy children back into the base population */
if (generation < (GENERATIONS-1)) {
for (j=0; Jj<POPULATION; j++) {
copy_genome (&pop_child[j], &pop_basel[j]);
)y
}
}
/* close stats file */
fclose (fp);
printf ("E Done\n*®) ;

/* print best

printf

est[0] .geneID],

(

get_trail

print_trail
inject_genome

interpret
print_ant
phen2dot (

run_ant

print_history

printE
printf
return;

(&

(9,
(*s

ant */,
Printing best ant in genera
pop_base [best[0] .score] );
(&trail, &trailfile); i
(&trail) ; *

(&pop_base [best[0] .geneID], &ant);

(&ant) ; =
(&ant) ; /*
&ant, &dotfile_best_g_last); /%
trail, &ant, &history); />

(&history) ; /[*

score=%¥d\n", (generation-1), pop_basel[b
load trail.*/

print trail to screen */

inject genome to ant */

get an ant’s fsa from its genome */

print ant to screen */

print the FSA to a dot file */

run ant on trail */

print ant’s history on that trail */
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/* do evolution on multiple trails */
void main_evolve_multitrail () {
/* main stuff */
Ttrail trail;
Tgenotype pop_base[POPULATION],
Tant ant;
UIntl6 generation = 0;
UInt32 score[POPULATION] ;
Thistory history;
rail */
UInt32 parentl, parent2;

char *traij

chaxr *
char %6

WUTnt328 5, s
/* procreation */
Tbest best [POPULATION] ;
UInt32 bestMax;

ray */

b StaleLlCS =/

modes[lOOO],

maxMode;

mostMode;

allScores [POPULATION] ;
max;

/* multitrail stuff */
UInt32 nTrails=3;
char *studyTrails[3]

char *tes

UInt32 maxFitness;
UInt32 curTrail;
UInt32 globalFitness;
float ratio;

/* work */
printf (*Starting the ‘evolve multitrail’
set_seed (DEFAULT SEED) ;

exper

pop_child [POPULATION] ;

/*
/*

/ %
/*
/%
/*
/ *
/’*
/ *

/*

/ *

[ *

A/ *
J*
/%

tranl =/

base and children populations */

ant >/

current generation */

array of scores */

history of states for an ant on the t

parents */

file to open */

file to
file to

s

% /
* /

print dot graphs to
print dot graphs to

counters */

best genotypes */

pointer to the last element of the ar

file to print statistics to */
pointer to file */

stats */

modes */

max mode used */

most frequently used mode */
array to compute st. dev. */

food gathered by the best-scoring ant

the number of trails */
study files to open */

test files to open */

max fitness = sum of all trails */
counter into current trail */

ant’s global fitness on all trails */
ratio of fitnesses */

s AR ARG )

bestMax = (unsigned int) (BREED_THRESH * POPULATION) +1;
printf ("G ing initial ] ")
/* generate initial population */
for (i=0; i<POPULATION; i++) {
set_random (&pop_base([i]); /* create a random ant */
}
printf (4D n");
printf (*Evolvii e S 4
fp = fopen (statfile,
fprintf (fp, "# E
printf (*# Evyolutior

maxFitness = 0;
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/* compute max fitness */

for (curTrail=0; curTrail<nTrails; curTrail++) {

trailfile = studyTrails[curTrail];
get_trail (&trail, &trailfile);
maxFitness += trail.maxfood;

}

printf ("m:
EfprintE (Ep;
printf

maxMode = maxFitness; /* mode 1 */

/* evolve population and find the best ant
for (generation=0; generation<GENERATIONS;

/* reset stats */
mean = 0;

stdev = 0;

max = 0;

mostMode = 0;

/* reset modes */
for (i1i=0; i<=maxMode; i++)
modes[i] = 0;

/* reset "best genomes" set */

for (1=0; i<bestMax; i++) {
best[i] .geneID = -1;
best[i].score = 0;

}

for (i1i=0; i<POPULATION; i++) {
globalFitness = 0;

/* load trail */

in the last generation */
generation++) {

for (curTrail=0; curTrail<nTrails; curTrail++) {

trailfile = studyTrails[curTraill];
get_trail (&trail, &trailfile);
inject_genome (&pop_base[i], &ant);
interpret (&ant);
run_ant (&trail, &ant, &history);
globalFitness += history.food;

}

/* update stats */

mean += globalFitness;
allScores([i] = globalFitness;
modes [globalFitness]++;

/* update the "best genomes" list */
for (j=0; j<bestMax; j++) {

/* pick current trail */
/% load trail */

/* inject genome to ant */
/* get an ant’s fsa from its genome */

/¥ run ant.on Erail */

/* update ant’s global fitness */

/* if found better, shift old right and exit the °"while" loop*/

if (globalFitness > best[j].score) {

/¥ shift right */
for (kzbesthx; k>j; k-—-) {

best [k] .geneID = best[k-1].genelD;

}

/* insert */

best[j] .genelID = 1i;
best[j].score = globalFitness;
break;

/* compute stats */
max = best[0].score;
mean = mean/POPULATION;

for (j=0; J<POPULATION; j++) {
stdev += pow((allScores([j]-mean),b2);
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}
stdev = sqgrt (stdev/POPULATION) ;
mostMode = 0;

/* find most frequently used mode */
for (3j=0; j<=maxMode; j++) {
if (modes[j]>modes[mostMode]) {
mostMode = j;
}

/* select

for (j=0; Jj<POPULATION; j++) {
parentl = best[rand() % bestMax].genelID;
parentl = best[rand() % bestMax].genelD;

conceive_genome (&pop_base|[parentl],
/* now,
mutate_genome

}

(&pop_child[j], MUTATION_RATE) ;

/* copy children back into the base population */

if (generation < (GENERATIONS-1)) {
for (j=0; j<POPULATION; j++) {
copy_genome (&pop_child[j], &pop_basel[jl);
}
}

random parents and let them procreate */

&pop_base[parent2],

&pop_child[j], CROSSOVER_RATE) ;

flip each bit with a given probability */

/* run best ant on test trails and print statistics */

globalFitness = 0;
for (curTrail=0; curTrail<nTrails;
trailfile = testTrails[curTraill;

curTrail++) {

/* pick current trail */

get_trail (&trail, &trailfile); /* load trail */
inject_genome (&pop_base[best[0].geneID], &ant); /* inject genome to ant */
interpret (&ant); /* get an ant’s fsa from its genome */
run_ant (&trail, &ant, &history); /¥ run®antYeonAtrai 1Y
globalFitness += history.food; /* update ant’s global fitness */
}
fprintf (fp, ° %u \n1", generation, max, globalFitness) ;
printf (* "%u :\n?, generation, max, globalFitness);
3
/* close stats file */
fclose (fp);
pPrintEN(ies

/* EVALUATE ANT */
printf (*Printing best i iy,
est[0] .geneID], pop_base[best[0].score]

101

);

genexac

inject_genome (&pop_kasel[best[0].geneID], &ant); /*
interpret (&ant); /*
print_ant (&ant); /*
phen2dot (&ant, &dotfile_best_g_last); =

/* study trails */

Printf (M- ) ;
maxFitness = 0;
/* compute max fitness on study trails */
for (curTrail=0; curTrail<nTrails; curTrail++) {
trailfile = studyTrails[curTrail];
get_trail (&trail, &trailfile);
maxFitness += trail.maxfood;
}
globalFitness = 0;

score=%d\n", (generation-1), pop_basel[b
inject genome to ant */

get an ant’s fsa from its genome */

print ant to screen */

print the FSA to a dot file */

/#* liead Erail */
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for (curTrail=0; curTrail<nTrails; curTrail++) {

trailfile = studyTrails[curTraill]; /* pick current trail */
get_trail (&trail, &trailfile); /* load trail */
print_trail (&trail); /* print trail to screen */
inject_genome (&pop_base[best[0].geneID], &ant); /* inject genome to ant */
interpret (&ant) ; /* get an ant‘s fsa from its genome */
run_ant (&trail, &ant, &history); /* run ant on trail */
print_history (&history); /* print ant’s history on that trail */
globalFitness += history.food; /* update ant’s global fitness */
}
ratio = (float) globalFitness/maxFitness;
printf (*¢ bal fitr s on STUDY trails is %4 out ¥ (% i \n", globalFitness, maxFitness, r
atio*100) ;
/* test trails */
printf (*--————- j——————=\n"%) ;
maxFitness = 0;
/* compute max fitness on test trails */
for (curTrail=0; curTrail<nTrails; curTrail++) {
trailfile = testTrails[curTraill;
get_trail (&trail, &trailfile); /* load Erail */
maxFitness += trail.maxfood;
}
globalFitness = 0;
for (curTrail=0; curTrail<nTrails; curTrail++) {
trailfile = testTrails[curTrail]; /* pick current trail */
get_trail (&trail, &trailfile); /* load trail */
print_trail (&trail); /* print trail to screen */
inject_genome (&pop_base[best[0].geneID], &ant); /* inject genome to ant */
interpret (&ant); /* get an ant’s fsa from its genome */
run_ant (&trail, &ant, &history); /* run ant on trail */
print_history (&history); /* print ant’s history on that trail */
globalFitness += history.food; /* update ant’s global fitness */
}
ratio = (float) globalFitness/maxFitness;
printf (%€ al £its o1 1s i ti\n", globalFitness, maxFitness, ra
tio*100);
printf (P
printf ( nin
return;
}
/* %%%5%5%%%%% BELEEEEBBLBLLLLHFHHBRLIRLY */
int main (voi
(XN dmale S/
/% work */
9:9,0:9.9,9.9.9.9.0.9.9:0:9.9,0.9.9.9.9.9.9.9.9:9:9.9.9.0.9.9.9.0.9.9:¢:6.0.0.0:¢

printf (*Exi
return 0;

}







