
Gigabit IP Routing on Raw

Gleb Chuvpilo, David Wentzlaff, and Saman Amarasinghe
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139�

chuvpilo, wentzlaf, saman � @lcs.mit.edu

Abstract

Network processors afford a great degree of flexibility to
current day routers, yet they still have followed the trend
of being largely specialized to the domain of route table
look-up. By using a processor architecture that is more gen-
eral purpose, routers can gain from economies of scale and
increased programmatic flexibility. We propose the use of
the Raw Processor [5] as both a network processor and
switch fabric for multi-gigabit IP routing. While previous
general purpose architectures have failed to give a useful
programmatic interface to sufficient bandwidth to support
multi-gigabit IP routing, the Raw Processor, through its
tiled architecture and software exposed on-chip network-
ing, has enough internal and external bandwidth to deal
with high rate routing problems. We describe why the in-
tegration of processing elements and switch fabric leads to
increased flexibility for one chip router solutions, and pro-
pose a rotating crossbar design that achieves efficient IP
routing on the Raw static network.

1. Introduction

This paper presents the beginning of research in mapping
real world applications normally only handled by custom
hardware or special purpose processors to the Raw general
purpose processor. The application area that this paper fo-
cuses on is mapping an IP router to Raw. The IP router dis-
cussed in this paper is designed to be either an edge router
or just the switch fabric of a core router.

This paper has two main goals. Firstly, it shows that one
can efficiently map a semi-dynamic communications pat-
tern, such as the switch fabric of an IP router, to a program-
matically static interconnect. And, secondly it proposes the
incorporation of computation into the communication in-
terconnect of an IP router’s switch fabric. The addition of
computation is motivated by two reasons. First, there is a
growing need for routers to operate on the data payload of

IP packets to provide extended services such as encryption.
Second, the addition of computation to the switch fabric re-
moves the difficulty of bringing data near to a computational
resource that is able to compute on it.

2. The Raw Processor Overview

Before this paper goes into great detail about mapping
IP routing onto the Raw Processor, the resources provided
and organization of the Raw Processor need to be discussed.
The Raw Processor is a general purpose microprocessor be-
ing developed in the Computer Architecture Group at The
Massachusetts Institute of Technology.

The general organization of the Raw Processor is as a
chip multiprocessor with multiple fine grain, first class, reg-
ister mapped communication networks. The processor con-
tains 16 tiles in a 4x4 mesh grid. A tile consists of a
main processor, memory, two dynamic network routers, two
static switch crossbars and a static switch processor. Tiles
are connected to each of their four nearest neighbors by
two sets of static network interconnect and two sets of dy-
namic network interconnect. The Raw instruction set archi-
tecture (ISA) works together with this parallel architecture
by exposing both the computational and communication re-
sources up to the software. By exposing the communication
delays up to the software, compilers can do better jobs at
compiling because they are able to explicitly manage wire
delay and spatially map computation appropriately. This
is in sharp contrast to other ISAs’ approaches which effec-
tively mask wire delay. Because communication delay is
exposed up to the software, this allows for larger scaling of
functional units where conventional superscalar processors
would break down because these wire delays would exist,
but would have no way to be managed by software. The
Raw project is examining larger configurations and hence
Raw Processors can be gluelessly connected to build fab-
rics of up to 1024 tiles.

The Raw project has a very software centric approach
as can be seen in two of the main goals of the Raw chip.

IMEM
DMEM

REGS

ALU

SMEM

SWITCH

PC

PC

RawTile

Raw P

Figure 1. The Raw Processor is composed of 16 identical
Tiles connected by two dynamic and two static communi-
cation networks.

The first goal is to reduce the complexity of the hardware as
much as possible while maintaining high performance and
do as much as can done in software in software. This goal
allows for easier design and verification of hardware. It also
allows for greater configurability. When algorithms are put
in silicon, they are no longer changeable and as such lose
opportunities to optimize based on the running application.
An example of this software centric hardware approach is
Raw’s software based instruction caching system. The sec-
ond goal that fits into this software centric hardware is the
goal of exposing as much hardware resources up to the soft-
ware level, and programmer’s control, as is possible. The
only substantial non-exposed state of the Raw Processor is
the pipeline registers. Also, the on-chip networks extend
off-chip, thus providing a direct software interface to the
pins on Raw. This organization removes the inefficiencies
present in other architectures that require the use of memory
hierarchies to communicate with off chip devices.

Each Raw chip has 16 main processors, one in each tile.
A main processor is a 32bit 8-stage pipelined MIPS-like
processor. Each main processor contains a fully pipelined
two-stage integer multiplier, and a pipelined four-stage sin-
gle precision floating point unit. The main processor’s in-
struction set is roughly equivalent to that of a R4000 with
a few additions for communication applications such as bit
level extraction, masking and population related operations.
The main processor uses static branch prediction instead
of delay slots. It has no branch penalty for properly pre-
dicted branches and a three cycle penalty for mispredicted
branches. The main processor is also tightly integrated with
its corresponding communication resources. Each network
is directly mapped into the register space. Network registers
can be used as both a source and destination for instructions.

The main communication mechanism in the Raw Proces-
sor is the static switch network. This network is controlled
by a simplistic six-stage switch processor which configures
a tile’s static network crossbar on a per cycle basis. The
Raw static network is flow-controlled and stalls when data
is not available. The static network relies on compile time
knowledge so that it can be programmed with appropriate
control instructions and routes. The name static network is
somewhat of a misnomer because it is very programmable.
The static switch network has a completely independent
instruction stream and is able to take simplistic branches.
Thus it is very well suited for compile time known com-
munication patterns and is able to handle these without the
need for headers as are found in dynamic networks. Each
tile contains one switch processor but two switch networks.
The one switch processor can control the crossbar on each
of five directions (North, South, East, West, and into the
main processor) for each switch network independently.

The dynamic networks on Raw are there to assist com-
munication patterns that cannot be determined easily at
compile time. Examples of this are external asynchronous
interrupts and cache misses. Each tile has two identi-
cal dynamic networks. The dynamic network is a worm-
hole routed, two-stage pipelined, dimension-ordered net-
work. The dynamic network uses header words to dy-
namically route messages on a two-dimensional mesh net-
work. Messages on this network can vary in length from
only the header up to 32 words including the header. Near-
est neighbor alu-to-alu communication on the dynamic net-
work takes between 15 and 30 cycles, while the static net-
work’s latency is only three cycles.

As can be seen from the proliferation of networks, the
Raw Processor is filled with communication mechanisms
and it is these communication mechanisms that allow it to
exploit parallelism differently from other chip multiproces-
sors. For instance instead of simply allowing thread level
parallelism, Raw’s fine grain communication networks en-
able instruction level parallelism (ILP) to be mapped across
multiple tiles efficiently. This is done by having advanced
parallelizing compilers statically map a program’s data-flow
graph onto the Raw Processor’s computation and communi-
cation resources. This is in contrast to superscalars which
dynamically do functional unit assignment. Another appli-
cation area where Raw excels is Streaming applications.
These applications are typically digital signal processing
applications such as software radios. Because of the inter-
nal and external bandwidth, and the streaming nature of the
Raw hardware, these applications can receive large amounts
of speed-up from the Raw Processor. An effort has been
started to compile streaming applications to Raw using ad-
vanced compiler technology in the StreaMIT project. [4]

Lastly, this section will conclude with a note about the
performance of the Raw Processor. The Raw Processor Pro-

totype is being fabricated on IBM’s SA-27E, 6 layer metal
copper ��������� process. The Raw Processor will operate at
or above 225MHz, and have 3.6 GOPS/GFLOPS of peak
performance. It has 230 Gbps of bisection bandwidth and
201 Gbps of external chip bandwidth. Access to this off-
chip bandwidth is provided through the Raw Processor’s
networks. To connect off-chip, the native internal networks
are multiplexed through 1080 signal I/O pins. More infor-
mation on the Raw microarchitecture can be found in the
Raw Processor Specification. [3]

3. Router Design Overview

The goal of this project is to design a multi-gigabit sin-
gle chip router solution using the Raw Processor. Some
assumptions and practical considerations have influenced
the design of this router. Firstly, the goal of this design
was to build an edge router or a scalable switch fabric of
a core router, but not a complete core router. Many of the
ideas presented here can be leveraged to build core routers
but considerations such as limited internal buffer-space and
complex route look-ups require more analysis. Another de-
sign point is that this design is for a 4-input and 4-output
router. Lastly, because this design is not for a core router,
the route look-up tree is assumed to fit within a single tile’s
data cache.

Whenever designing a system, a high-level organiza-
tional plan is needed to guide overall design. This is
even more apparent in this project where a system is be-
ing mapped to a fixed set of resources. The fact that these
resources not only have logical connection constraints, but
also spatial constraints makes this mapping even more dif-
ficult. Because Raw is a parallel processor, it only makes
sense to statically map computation onto its parallel re-
sources and use the native on-chip communication prim-
itives to shuttle data around. Figure 2 shows graphically
the mapping that was chosen for this project. Each input
port uses two tiles, one to stream in and buffer data and an-
other one to perform route look-ups. Four tiles are used as a
crossbar as is shown in the center of the chip, and each out-
put has a dedicated tile to deal with fragmentation internal
to the router and stream data to the output line-card.

The path that data travels through this router is as fol-
lows. First data streams in on the static network from an
off-chip input line-card. The IP header, but not the data
payload, of this packet is sent over the static network to
the input’s neighboring route processor to do classification
and route decision making. While the routing decision is
being made, the rest of the data payload streams into the
input tile’s data cache. After the routing decision is made,
the packet is sent into the rotating crossbar which is imple-
mented over Raw’s static network. This may take multiple
macro-cycles on the crossbar and hence a packet may be

Route 3Output 3Output 4Route 4

Input 3
Crossbar

3
Crossbar

4
Input 4

ROTATING CROSSBAR

Input 2
Crossbar

2
Crossbar

1
Input 1

Route 2Output 2Output 1Route 1

In1

In4

In2

In3

Out1 Out2

Out4 Out3

Figure 2. Layout of the router

fragmented as it travels across the crossbar. After the cross-
bar has been traversed the output tile buffers the packet in its
internal cache until all of the fragments are available. Then
it streams the completed IP packet to its output port, which
is connected to an output line-card.

Practical design considerations that hinder and shape this
design include the fact that each tile’s data cache only has
one port. Thus accessing a tile’s data cache requires main
processor cycles because there is no built in DMA engine
from the networks into the data cache. A side effect of this
that may not be apparent at first glance is that when a tile
is being used to buffer data as is being done in the input
and output tiles of this design, two cycles are needed on the
main processor for each data word, one to write and one to
read data thus cutting the effective bandwidth in half. Also,
code running throughout this design needs to be carefully
unrolled, because even though there is no branch penalty for
predicted branches, a branch still uses one cycle to execute
on the main processor.

This design is rather conservative with regards to com-
putational resources, and it leaves room to grow and hence
possibilities of using this same basic design for a core
router. One challenge that faces this design as an edge
router that is intensified when used as a core router is the
problem of where to do bulk packet queuing. This design
assumes that there is large amounts of buffering on the input
and output external to the Raw Processor. This needs to be
done because the maximum internal storage of the Raw Pro-
cessor Prototype is 2MB. While this is a large amount for
a single processor, the bandwidth delay product for multi-
gigabit flows is two to three orders of magnitude larger.
Therefore in this design prototype, FIFO delivery is imple-

mented, with dropping assumed to be occurring external to
the Raw chip.

4. Routing Algorithm

The heart of the problem of designing an IP router on
Raw was finding an algorithm that would allow the use of
the fast static networks to do dynamic routing. Indeed, the
fact that Raw was suitable for streaming applications with
patterns defined at compile time was well known to the
members of the Raw group, but the approaches to building
dynamic applications were still to be researched. Several
techniques were created and analyzed, but unfortunately
most of them either led to an unbalanced load distribution
across the tiles or to complicated configuration analysis in
order to determine and avoid possible deadlocks of the static
networks. The following is an explanation of the rotating
crossbar algorithm that arbitrarily connects four inputs to
four outputs and avoids these undesirable features. It is sim-
ilar to a well-known Token Ring algorithm [2] that has been
widely used in networking, but in this case it is applied to
the domain of router microarchitecture.

The algorithm is based on the idea of a token, which de-
notes the right of a crossbar tile to connect its respective in-
put tile to any of the four output tiles of the processor. The
token is implemented as a packet header field located in a
single 32-bit word together with the destination port num-
ber. The token starts out on one of the crossbar tiles, called
the master tile, while the other three crossbar tiles serve as
passive transceivers, called slave tiles. The master crossbar
tile first reads the header from its input tile. It then deter-
mines whether the packet should be routed immediately to
its own output tile outside of the ring, or passed on to the
next crossbar tile so that the packet would rotate clockwise
around the geometrical center of the processor until it finds
the desired output. All of the slave crossbar tiles on the
way of the packet towards its destination perform the same
check, but they do not read any more new packets from their
respective input tiles. After the token has been used for one
packet, it is passed on to the next crossbar tile in the ring,
and the sequence repeats.

Figure 3 illustrates the idea of the algorithm. There are
two packets coming into the crossbar from input 1 and input
2, which are destined for output 3 and output 2, respectively.
The master crossbar tile is number 1 (gray color), and the di-
rection of rotation is clockwise. According to the algorithm
the crossbar tile having the token has the exclusive right to
connect its input to any of the four outputs. Therefore, the
packet coming from input 1 will be routed around the cross-
bar until it reaches crossbar tile 3, then it will be sent out of
the ring and arrives at output 3. The token gives the right
to read only one packet from the input and then it should be
passed on to the next tile in the crossbar, which in this case

is crossbar tile number 2. Finally, the packet coming from
input 2 is routed to the desired destination tile, output 2.

An obvious and immediate advantage of this algorithm is
its natural fairness, which eliminates the danger of starva-
tion observed in other algorithms. When there is no control
over the transmission of packets, upstream crossbar tiles can
flood the static networks and prevent downstream tiles from
sending data. While starvation can be overcome by using
more complex macro-patterns, another far more dangerous
problem of deadlocking the static network is solved with
this algorithm. The deadlock occurs when the data-flow be-
tween the tiles of the crossbar forms a loop. Unfortunately,
the negative side of this rotating crossbar algorithm is a cer-
tain underutilization of the available bandwidth of the pro-
cessor.

In the current implementation, only one of the two static
networks of the Raw Processor is used. Work on a version
of the algorithm which will take advantage of both static
networks by introducing a second token coexisting with the
first one is now in progress. An issue with this improvement
is again deadlock, but now the problem can be straightfor-
wardly tackled. In this improvement only one of the master
crossbar tiles (tile A) will need to check if the other tile with
a token is sending. If this is found to be the case, tile A will
need to prioritize the incoming traffic and route it to the de-
sired output tile. Only then can it continue to send its own
data, and no deadlock conditions occur because the other
crossbar tile has used its token and will not send any more
packets that could form a loop.

This rotating crossbar algorithm has proven to be a gen-
eral, scalable, and powerful solution to designing an IP
router on the Raw Processor. There are still several open
questions to be researched, such as the aforementioned im-
provements to the algorithm, but it is evident that the ideol-
ogy of having localized decision making distributed across
the independent tiles of the processor pays off in terms of
fairness. Furthermore, there are advantageous side effects
of this approach including the ease of augmenting the func-
tionality of the IP router with such needed features as Qual-
ity of Service by using a weighted round robin modification
of the rotating crossbar algorithm. This can be done simply
by allowing different ports a weighted amount of differing
time with the token.

5. Flexibility of a General Purpose Switching
Fabric

A serious disadvantage of current day network proces-
sors is that while they excel at doing route table look-ups
and classifications quickly, they are not very adept with
more computationally intensive calculations or computa-
tions that operate on the data payloads of packets. When
these computations are needed in many current routers, they

Route 3Output 3Output 4Route 4

Input 3
Crossbar

3
Crossbar

4
Input 4

ROTATING CROSSBAR

Input 22Crossbar
2

Crossbar
13Input 1

Route 2Output 2Output 1Route 1

In1

In4

In2

In3

Out1 Out2

Out4 Out3

Route 3Output 3Output 4Route 4

Input 3
Crossbar

3
Crossbar

4
Input 4

ROTATING CROSSBAR

Input 22Crossbar
2

Crossbar
1

Input 1

Route 2Output 2Output 1Route 1

In1

In4

In2

In3

Out1 Out2

Out4 Out3

Route 3Output 3Output 4Route 4

Input 3
Crossbar

3
Crossbar

4
Input 4

ROTATING CROSSBAR

Input 22Crossbar
2

Crossbar
1

Input 1

Route 2Output 2Output 1Route 1

In1

In4

In2

In3

Out1 Out2

Out4 Out3

Figure 3. Rotating Crossbar illustrated

fall on a general purpose processor quaintly known as the
”slow path.” Because Raw is a general purpose processor, it
is excellent at computing on the data while it in transit.

The property that Raw has copious amounts of computa-
tion and that that computation is inter-mixed with the switch
fabric enables the switch fabric to compute on packets. This
provides a nice property that the data needs to pass these
computational resources while traversing the switch fabric
so might as well compute on it. This is in contrast to stan-
dard router architectures where a good portion of the effort
is getting the data to be computed on to where the compu-
tational resources are.

One foreseeable use of this form of intra-switch fab-
ric computation is in implementing virtual private networks
(VPN). One of the primary goals of VPNs is to provide se-
cure communication over an insecure medium like the In-
ternet. To achieve this, encryption is needed on both sides
of the virtualized links. These encryption algorithms need
to operate on the data payload of an IP packet, which can
be difficult on standard routers because of their less than
copious amounts of computation. Raw’s balance of compu-
tation and communication makes it suitable for this sort of
computation. This sort of payload computation is not com-
pletely specific to this paper’s proposed router, but rather
may be an impetus to mix computation and communication
on future switch fabrics.

Mixing computation and communication in switch fab-
rics is not only useful for encryption, but has some other
interesting uses. One of these is intrusion detection sys-
tems (IDS). An IDS is typically used in conjunction with a
firewall to detect intrusion attempts against a protected net-
work. They typically require analysis of higher level pro-
tocols and long term state. With computation integrated in-
side of a router’s switch fabric, an IDS could be crafted to
work by simply sniffing the traffic that it finds ”interesting”
and over time keep track of connections that are possible
intrusions.

Lastly, mixing computation inside of a routers switch
fabric can be used for compression. An idle node in a switch
fabric could decide to compress traffic thus saving band-
width on certain links. This would require some protocol
to support this intra-network compression, or it could be
implemented inside of one administrative domain in a user
transparent manner. Also, because of the internal state of
the auxiliary computation in the switch fabric, there is pos-
sibility of per-flow compression or compression of selected
flows and not simply on a per packet basis.

6. Implementation and Results

The elements of the IP router on Raw can be classified
into four categories as shown in Figure 2: input tiles, route
lookup tiles, crossbar tiles, and output tiles. The layout is

neighbors (static network 1)
#define PREV cSi # South in
#define IN cWi # West in
#define NEXT cEo # East out
#define OUT cNo # North out

#define ZERO 0
#define TOKEN 0x700

.text

.global begin

PHASE 1: INITIALIZATION
begin:
mtsri SW_PC, %lo(sw_begin) # load address
mtsri SW_FREEZE, ZERO # unfreeze the switch
li $csto, ZERO # send zero to switch
li $csto, TOKEN # send token
or $0, $csti, $0 # receive confirm from switch

PHASE 2: READ HEADERS
headers_master:
mtsri SW_PC, %lo(sw_headers_master)
mtsri SW_FREEZE, ZERO
or $10, $0, $csti # receive header (PREV)
or $11, $0, $csti # receive header (IN)

PHASE 3: CHOOSE CONFIGURATION
beq $11, $0, config_master0 # branch on equal
beq $11, $5, config_master1
j config_master2 # jump

PHASE 4: PROGRAM THE SWITCH
config_master2:
mtsri SW_PC, %lo(sw_config_master2)
mtsri SW_FREEZE, ZERO
addiu $12, $11, TOKEN # add immediate
or $csto, $0, $12 # send header
or $0, $csti, $0 # recv confirm
j headers

Figure 4. Example of the main processor code.

symmetrical, and all four elements are replicated four times
to match the number of ports. Each arrow in the figure cor-
responds to the data flowing along the static network 1 from
one tile to the other in the direction of that arrow. The static
network 2, as well as the dynamic network, have not been
used in the current version of the algorithm. Due to the fact
that the Raw Processor is not physically available yet, the
IP router has been tested using the cycle-accurate simulator
called btl developed in the Raw group.

Following are excerpts from the assembly code to illus-
trate programming the Raw Processor. Each of the Raw tiles
looks very much like a MIPS R4000, and their instruction
sets are also similar. Figure 4 shows an example of the main
processor code which initializes the switch processor, reads
headers, chooses the necessary configuration for the switch
processor, and loads the address of that configuration into
the program counter of the switch processor.

Figure 5 is an example of the switch processor code
which corresponds to the main processor code in Figure 4.
PREV, IN, NEXT, and OUT are the directions of previous
crossbar tile, input tile, next crossbar tile, and output tile re-
spectively. They are defined in the code above. The “route”
instruction connects input ports to output ports of the static
network, and also allows communication with the main pro-

.swtext

.global sw_begin

PHASE 1: INITIALIZATION
sw_begin:

move $0, $csto # receive zero
move $1, $csto # receive token
nop route $0->$csti # send confirm to main
j sw_done # jump

PHASE 2: READ HEADERS
sw_headers_master:

move $2, $PREV route $PREV->$csti # save, send to main
move $3, $IN route $IN->$csti
j sw_done

PHASE 3: EXECUTE CONFIGURATION
sw_config_master2:

nop route $csto->$NEXT # send header from main

nop route $IN->$NEXT # route body
... (unrolled 16 times)
nop route $IN->$NEXT

nop route $0->$OUT, $0->$csti # send to out, main
j sw_done

DO NOTHING
sw_done:

Figure 5. Example of the switch processor code.

cessor (ports $csto and $csti).
As far as the performance results are concerned, the IP

router has been tested in five different configurations, each
with a different static network packet size of 64, 128, 256,
512, and 1024 bytes long. The only difference between
them all was the degree of unrolling of “route” instruc-
tions in the switch code to avoid spending extra cycles on
branches. Figure 6 shows that it is possible to achieve 76
percent of the theoretical saturation limit of this version of
the algorithm with the packet size still within the maximum
Ethernet packet size of 1,500 bytes (the theoretical limit is
the throughput when sending one 32-bit word every cycle of
the processor at the clock speed of 225 MHz). In the simu-
lation, input 1 is sending to output 2 and input 2 to output 3,
etc. (one hop clockwise in the crossbar for all inputs), and
the system was tested with 1,000 packets total (250 com-
ing from every interface). There are several factors which
contribute to this growth of performance, but the most im-
portant one of them is certainly the relative amount of time
that the static network is kept busy. In other words, in order
to achieve better performance of the algorithm it is needed
to decrease the processing overhead by spending less rela-
tive time in the main processor and more on streaming data
through the Raw Processor networks.

The results obtained so far are quite promising, but the
Raw Processor can do better, and there are plenty of re-
sources to attain this goal. First of all, there is another static
network waiting to be used for routing. As noted before-
hand, the second static network can get involved in the al-
gorithm by introducing the second token into the rotating
crossbar algorithm. Secondly, while the two static networks

1.18

2.02

7.20

5.45

4.39

3.16

0

1

2

3

4

5

6

7

8

64 128 256 512 1024 limit

Packet size, bytes

T
hr

ou
gh

pu
t,

G
bp

s

Figure 6. Performance of the IP router.

will be busy streaming data from inputs to outputs, the dy-
namic network of Raw can provide much help for control
messaging and reconfiguration to reach the optimal perfor-
mance. This challenging problem is on the agenda of the
authors of this paper.

7. Future Work

The work presented in this paper is presented as a base
implementation of a simplistic IP router. In the future, the
Raw group would like to implement a more feature filled
router. The first thing needed for this will be the imple-
mentation of a higher performance interconnection cross-
bar. The authors know of more efficient, but much more
complex algorithms based on the basic idea of a rotating
crossbar, that will allow for fair routing on the switch fab-
ric.

Next, the Raw applications team hopes to examine more
complicated look-up algorithms with the hope of being able
to support enough routes to compete as a core router. To
be able to do this, one or several tiles per input port will
act as the route resolving entities. One interesting thing to
note here is that, usually network processors designed to
do this sort of route resolution are natively multi-threaded.

The Raw architecture is not multi-threaded, but its exposed
memory system allows for the same advantages as a multi-
threaded architecture. This main advantage is the ability to
get work done while the processor is blocked on external
memory accesses. On the Raw Processor, memory is sim-
ply implemented in a message passing style over one of the
dynamic networks. Typically when accessing RAM with
loads and stores, the cache is backed in a writeback man-
ner by main memory, which is accessed by a small state
machine that generates and receives messages on the mem-
ory dynamic network. If the programmer wants to use the
system in a non-blocking nature, dynamic messages can
be created and sent to the memory system without using
the cache. Thus this provides the same advantage of non-
blocking reads that a multi-threaded network processor pro-
vides.

Another future implementation feature is the building of
an infrastructure to provide the ability to implement stream-
ing based computations, such as encryption, inside of the
switch fabric as described in Section 5. This will prob-
ably take the form of special bits in the headers that are
exchanged around the routing ring. These bits describe to
the switch fabric what form of computation needs to be ap-
plied. Also, infrastructure for multi-cycle and multi-rate fil-
ters needs to be researched.

Lastly, a research direction that holds promise is the ap-
plication of the computational power of Raw to more in-
telligent routers. This would be an extension of the Active
Networks research thus providing endpoint network users
more control over their communications. [6]

7.1. Building Scalable Routers

This paper presented an architecture for a 4-input 4-
output port router. While this is a good starting point, one
goal of this research is to also examine larger configura-
tions. The Raw architecture itself was designed to be a scal-
able computational fabric, and this is the route that will be
needed to be followed to build a scalable router. Building
this larger fabric of processors is as simple as gluelessly
connecting multiple Raw chips in a two dimensional mesh
grid. An interesting question that will need to be addressed
includes what form of routing algorithm should be used.
One solution is simply to build a larger router out of multi-
ple of these small 4-port routers, or at least out of multiple
4-port crossbars. Another approach that the Raw group is
excited about is the use of fair hot potato routing algorithms
like the work done in [1].

7.2. Physical Router

The Raw group is a systems oriented group that believes
in actually building what it researches. Thus while all of

the results presented in this paper have been generated on
a cycle accurate simulation, everything about a system can-
not be known unless it is completely built. Thus, once the
Raw Processor is received back from fabrication, which is
to occur summer of 2002, there are plans to build line-card
PCB daughter cards. These will plug into the Raw Proto-
type testboard which has expansion connectors specifically
for the purpose of connecting high speed interfaces.

8. Conclusion

This paper has shown that efficient IP routing can be
done on Raw’s programmable static network. The results
obtained in the simulation suggest that it is possible to use
the Raw Processor as both a network processor and switch
fabric for multi-gigabit IP routing, and mixing computa-
tion and communication in a switch fabric lends itself to
augmenting the functionality of the IP router with encryp-
tion, compression, intrusion detection and other valuable
features. The presented rotating crossbar algorithm displays
nice properties, such as fairness and scalability, and allows
for further improvement by taking advantage of the second
static network of the Raw chip. It is also naturally utilizable
for implementing Quality of Service. This research is just
a starting place for mapping applications to the Raw Pro-
cessor, and the authors of this paper hope it will stand as an
impetus for future work.

Acknowledgments

We thank Walter Lee for his input into this paper. We
also thank other members of the Raw group without whose
infrastructure and help this paper would not have been
possible. This research is funded by DARPA contract #
F29601-04-2-0166.

References

[1] C. Busch, M. Herlihy, and R. Wattenhoffer. Routing without
flow control. In Proceedings of the 13th annual ACM Sympo-
sium on Parallel Algorithms and Architectures, July 2001.

[2] R. Donnan. IEEE Standard 802.5-1989, IEEE Standards for
Local Area Networks: Token Ring Access Method and Physi-
cal Layer Specifications. 1989.

[3] M. B. Taylor. Design Decisions in the Implementation
of a Raw Architecture Workstation. Master’s thesis, Mas-
sachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, September 1999.

[4] W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong,
H. Hoffmann, M. Brown, and S. Amarasinghe. Streamit:
A language for streaming applications. In Proceedings of
the International Conference of Compiler Construction, April
2002.

[5] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee,
V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Ama-
rasinghe, and A. Agarwal. Baring It All to Software: Raw
Machines. IEEE Computer, 30(9):86–93, Sept. 1997. Also
available as MIT-LCS-TR-709.

[6] D. Wetherall, U. Legedza, and J. Guttag. Introducing new
internet services: Why and how. IEEE Network, July 1998.

