
High-Bandwidth Packet Switching
on the Raw General-Purpose Architecture

Gleb A. Chuvpilo and Saman Amarasinghe
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

{chuvpilo, saman}@lcs.mit.edu

Abstract

The switching of packets and other performance-critical
tasks in modern Internet routers are done done using Ap-
plication Specific Integrated Circuits (ASICs) or custom-
designed hardware, while existing general-purpose archi-
tectures have failed to give a useful interface to sufficient
bandwidth to support high-bandwidth routing. By using an
architecture that is more general-purpose routers can gain
from economies of scale and increased flexibility compared
to special-purpose hardware. The work presented in this
paper proposes the use of the Raw general-purpose proces-
sor as both a network processor and switch fabric for multi-
gigabit routing. We show that the Raw processor, through
its tiled architecture and software-exposed on-chip network-
ing, has enough internal and external bandwidth to deal
with multigigabit routing.

1 Introduction

The relentless growth of the Internet over the past few
years has created a unique information space and provided
us with fast and cheap means of communication. The rapid
increase of available bandwidth was mainly instigated by
the innovation of link technologies, especially the devel-
opment of optical carriers, while as the routers that power
the Internet have become a bottleneck in the rocketing use
of the World Wide Web. With the advent of gigabit net-
working, sophisticated new distributed router designs have
emerged to meet the resulting technical challenges in ways
that allow Internet Service Providers (ISPs) to quickly scale
up their networks and bring new services to market. [3]

One of the distinct features of modern Internet routers
is that most performance-critical tasks, such as the switch-
ing of packets, is currently done using Application Spe-
cific Integrated Circuits (ASICs) or custom-designed hard-

ware. The only few cases when off-the-shelf general-
purpose processors or specialized network processors are
used are route lookup, Quality of Service (QoS), fabric
scheduling, and alike, while existing general-purpose archi-
tectures have failed to give a useful interface to sufficient
bandwidth to support high-bandwidth routing.

By using an architecture that is more general-purpose,
routers can gain from economies of scale and increased flex-
ibility compared to special-purpose hardware. The work
presented in this paper proposes the use of the Raw general-
purpose processor [11] as both a network processor and
switch fabric to build a Raw Router [1]. The Raw processor,
through its tiled architecture and software-exposed on-chip
networking, has enough internal and external bandwidth to
deal with multigigabit routing.

2 Raw Processor

This section describes the Raw general-purpose proces-
sor on which our router is built, including its Instruction Set
Architecture and communication mechanisms. The Raw
processor is a general purpose processor designed to take
advantage of Moore’s Law – the availability of large quan-
tities of fast transistors.

2.1 Processor Layout

The Raw processor is an array of 16 identical, pro-
grammable tiles (Figure 1). A tile (Figure 2) contains an 8-
stage in-order single-issue MIPS-style compute processor,
a 4-stage pipelined FPU, a 32kB data cache, two types of
communication routers — static and dynamic, and 96kB of
instruction cache. These tiles are interconnected to neigh-
boring tiles using four full duplex 32b networks, two static
and two dynamic. The static router controls the static net-
works, which are used as point-to-point scalar transport for
data between the tiles. The dynamic routers and networks

Figure 1. Raw processor micrograph (256mm2).

Figure 2. Raw tile layout.

are used for all other traffic such as memory, interrupts, I/O,
and message passing codes.

The Raw instruction set architecture works together with
this parallel architecture by exposing both the computa-
tional and communication resources up to the software.
By exposing the communication delays up to the soft-
ware, compilers can do better jobs at compiling because
they are able to explicitly manage wire delay and spatially
map computation appropriately. This is in sharp contrast
to approaches of other instruction sets, which effectively
mask wire delay. Because communication delay is ex-
posed up to the software, this allows for larger scaling of
functional units where conventional superscalar processors
would break down because these wire delays would exist,
but would have no way to be managed by software. Larger
Raw systems can be designed by stamping out more tiles.

The Raw chip 16-tile prototype is built in IBMs SA-27E,
a 0.15µm, 1.8 V, 6-level Cu ASIC process. Raw has a 1657
pin CCGA package. These HSTL pins provide 14 full-
duplex 32-bit chipspeed channels that can be connected to
either DRAM or stream I/O devices. The Raw chip’s core
has been verified to run programs at 420 MHz. More infor-
mation on the Raw microarchitecture can be found in the
Raw Processor Specification. [10]

2.2 Communication Mechanisms

The main communication mechanism in the Raw Proces-
sor is the static network. The code sequence to send a value
over a static network takes five cycles to execute. During the
first cycle, the source tile sends a value to its static router.
During the second cycle, this router transmits the value to
the adjacent router. During the third cycle, the latter trans-
mits the value to its compute processor. During the fourth
cycle, the value enters the decode stage of the processor.
During the fifth cycle, the value can be consumed. Since
two of those cycles were spent performing useful computa-
tion, the send-to-use latency is three cycles.

The static network is controlled by a static router which
configures a tile’s static network crossbar on a per-cycle ba-
sis. The Raw static network is flow-controlled and stalls
when data is not available. The static network relies on
compile-time knowledge so that it can be programmed
with appropriate control instructions and routes. The static
switch network has a completely independent instruction
stream and is able to take simple branches. Thus, it is
very well suited for compile-time known communication
patterns and is able to handle these without the need for
headers, which are found in dynamic networks.

The dynamic networks on Raw are used for communi-
cation that cannot be determined easily at compile time.
Examples of this are external asynchronous interrupts and
cache misses. Each tile has two identical dynamic net-

works. The dynamic network is a wormhole routed, two-
stage pipelined, dimension-ordered network. The dynamic
network uses header words to dynamically route messages
on a two-dimensional mesh network. Messages on this net-
work can vary in length from only the header up to 32 words
including the header. Nearest neighbor ALU-to-ALU com-
munication on the dynamic network takes between 15 and
30 cycles.

3 Raw Router Architecture

This and the following sections examine the Raw Router
architecture and a complete router configuration. This sec-
tion presents the chosen partitioning of the Raw processor,
the path that the packets take through the router, and other
general issues, such as buffer management.

3.1 Research Goals

The goal of this research was to design a multigigabit
single-chip router solution using the Raw Processor and de-
vise a switching algorithm for it. Some assumptions and
practical considerations have influenced the design of this
router. First of all, the goal of this design was to build an
edge router or a scalable switch fabric of a core router, but
not a complete core router. Many of the ideas presented
here can be leveraged to build core routers, but consider-
ations, such as limited internal buffer space and complex
IP routing lookups require more analysis. Another design
point is that this design is for a 4-input and 4-output router,
and larger configurations are still to be explored in the fu-
ture.

3.2 Partitioning of the Raw Processor

The ability to carry out complex communication pat-
terns quickly and efficiently is critical to implement a high-
bandwidth router. The ability to statically orchestrate the
computation and communication on the Raw processor’s
software-exposed parallel tiles and software-controlled
static communication networks makes this general-purpose
processor well suited for such an implementation. Thus,
the first task in designing a router on Raw is to partition the
router components and map them onto the Raw tiles. This
mapping should balance the computation load between the
16 compute processors of Raw. More importantly, the map-
ping has to efficiently support the communication patterns
of the router.

Figure 3 shows graphically the mapping that was chosen.
Each of the four ports uses four tiles. AnIngress Proces-
sor is used to stream in and buffer data coming from the line
card, as well as to perform the necessary processing of the

������������������������

�����		�������		�������		�������		��

���		
���		
���		
���		

�����		�������		�������		�������		��

���		
���		
���		
���		

�����		�������		�������		�������		��

������������������������

�����		�������		�������		�������		��

��

����		����		����		����		

�����		�������		�������		�������		��

���		������		������		������		���

�����		�������		�������		�������		��

���		������		������		������		���

�����		�������		�������		�������		��

����		����		����		����		

�����		�������		�������		�������		��

��

����		����		����		����		

�����		�������		�������		�������		��

���		������		������		������		���

�����		�������		�������		�������		��

���		������		������		������		���

�����		�������		�������		�������		��

����		����		����		����		

�����		�������		�������		�������		��

�����������������������������	�����	�����	�����	

������������������������

�����		�������		�������		�������		��

���		
���		
���		
���		

�����		�������		�������		�������		��

���		
���		
���		
���		

�����		�������		�������		�������		��

������������������������

�����		�������		�������		�������		��

��������

��������

��������

��������

�� ��� ��� ��� � �� ��� ��� ��� �

�� ��� ��� ��� � �� ��� ��� ��� �

!�� "�#��$�!�� "�#��$�!�� "�#��$�!�� "�#��$�

"%�&��'"%�&��'"%�&��'"%�&��'

!�� "�#��$�!�� "�#��$�!�� "�#��$�!�� "�#��$�

"%�&��'"%�&��'"%�&��'"%�&��'

!�� "�#��$�!�� "�#��$�!�� "�#��$�!�� "�#��$�

"%�&��'"%�&��'"%�&��'"%�&��'

!�� "�#��$�!�� "�#��$�!�� "�#��$�!�� "�#��$�

"%�&��'"%�&��'"%�&��'"%�&��'

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 3. Mapping router functional elements to Raw
tiles.

IP header, including the checksum computation and decre-
ment of the “Time to Live” field. This tile is also used for
fragmentation of IP packets if their size exceeds the internal
tile-to-tile data transfer block on the Raw chip. ALookup
Processoris necessary for accessing the routing table in
the off-chip memory.Crossbar Processorsform aRotat-
ing Crossbarand they are utilized to transfer data between
ports. AnEgress Processoris used to perform the reassem-
bly of large IP packets fragmented by the Ingress Processor,
service the output line, and stream data to the output line
card. The architecture of the Raw processor lends itself to
straightforward replication of the port four times resulting
in a 4×4 IP router.

3.3 Data Path

The path that data travels through this router is as fol-
lows. First data streams in on the static network from an
off-chip input line card. The IP header, but not the data
payload, of this packet is sent over the static network to the
Lookup Processor for classification and route decision mak-
ing. While the routing decision is being made, the rest of
the data payload streams into the local data memory of the
Ingress Processor. After the routing decision is made, the
packet is sent into the Rotating Crossbar, which is imple-
mented over the static network of the Raw processor. This
data transfer may take multiple phases on the crossbar and
hence a packet may be fragmented as it travels across the

Rotating Crossbar. After the Rotating Crossbar has been
traversed, the Egress Processor buffers the packet in its in-
ternal data memory until all of the fragments are available.
Then it streams the completed IP packet to its output port,
which is connected to an output line card.

3.4 Buffer Management

Practical design considerations that hinder and shape this
design include the fact that each tile’s data cache only has
one port. Thus accessing a tile’s data cache requires com-
pute processor cycles, since there is no built-in Direct Mem-
ory Access engine from the networks into the data cache.
For example, buffering data on a tile’s local memory re-
quires two processor cycles per word. Also, the assem-
bly code should be carefully unrolled, because even though
there is no branch penalty for predicted branches, a branch
still uses one cycle to execute on the compute processor.

This design is rather conservative with respect to com-
putational resources, and it leaves room to grow and hence
possibilities of using this same basic design for a core
router. One of the challenges of this design is the aggrava-
tion of problem of packet queueing when doing core rout-
ing. This design assumes that there is large amount of
buffering on the input and output external to the Raw Pro-
cessor. This needs to be done because the maximum inter-
nal storage of the Raw Processor prototype is 2 megabytes.
While this is a large amount for a single processor, the
bandwidth-delay product for multigigabit flows is two to
three orders of magnitude larger. Therefore in this design
prototype, first-in-first-out delivery is implemented, with
dropping assumed to be occurring externally to the Raw
chip.

4 Switch Fabric Design

This section moves from general descriptions to
specifics, describing the design of the router’s switch fab-
ric and the Rotating Crossbar algorithm. Several sections
show the properties of this algorithm, including fairness and
absence of possible deadlocks.

4.1 Rotating Crossbar Algorithm

A part of the problem was to design an algorithm that
would allow the use of the fast static networks to do dy-
namic routing.

It has been shown that Raw was suitable for streaming
and ILP applications with patterns defined at compile time
[8, 6], but the approaches to building dynamic applications
were still to be researched. Several techniques were created
and analyzed [2, 12], but unfortunately most of them either
led to underutilization of the Raw processor, an unbalanced

load distribution across the tiles, or to complicated config-
uration analysis in order to determine and avoid possible
deadlocks of the static networks.

The following is an explanation of the Rotating Cross-
bar algorithm with global knowledge, which is similar to a
well-known Token Ring algorithm [5] that has been widely
used in networking. In this case, however, it is nicely ap-
plied to the domain of router microarchitecture. The Ro-
tating Crossbar algorithm allows to arbitrarily connect four
Ingress Processors to four Egress Processors, provided there
are no conflicts for Egress Processors and Rotating Crossbar
static networks, for the duration of one quantum of routing
time, which is measured by the number of 32-bit words to
be routed around the Rotating Crossbar. Fortunately, this al-
gorithm avoids the aforementioned undesirable features and
is very efficient.

The algorithm is based on the idea of a token, which de-
notes the ultimate right of a Crossbar Processor to connect
its respective Ingress Processor to any of the four Egress
Processors of the Raw chip. The token starts out on one of
the Crossbar Processors, called the master tile. However,
there are no slave tiles, since, if the master tile is not send-
ing its data, which can happen in case its incoming queue
is empty, every downstream tile has an opportunity to fill
in the existing slots in the static network, though the prob-
ability to send data is decreasing with every step down the
stream. By using a token, we can avoid starvation of Ingress
Processors, since it guarantees that each input will send at
least once every four routing cycles. It is also important
to notice here that the token does not actually get passed
around the crossbar tiles. Instead, it is implemented as a
synchronous counter local to each of the Crossbar Proces-
sors.

4.2 Rotating Crossbar Illustrated

In the beginning of each routing phase all four Cross-
bar Processors read their respective packet headers, which
contain output port numbers prepared by the Ingress Pro-
cessors after route lookup. In the next phase the Crossbar
Processors exchange these headers with each other. In the
following phase they stream their local data into the Rotat-
ing Crossbar depending on current tile’s privileges, which
are determined by a local copy of a global routing rule for a
given combination of the master tile and four packet head-
ers. We pipeline the process by overlapping the process-
ing of the current header with the streaming of the previous
packet’s body into the crossbar. After the routing of the
current time quantum is over, the token is passed to the next
downstream crossbar tile, and the sequence repeats.

4.3 Sufficiency of a Single Raw Static Network

An interesting topological property of the router is that
whenever there is no contention for output ports, a single
full-duplex connection between Crossbar Processors is suf-
ficient to provide enough of interconnect bandwidth, and
the use of the Raw second static network does not improve
the performance of the router.

4.4 Fairness

An obvious and immediate advantage of this algorithm is
its natural fairness, which eliminates the danger of starva-
tion observed in other non-token-based algorithms. When
there is no global control over the transmission of pack-
ets, upstream crossbar tiles can flood the static network and
prevent downstream tiles from sending data. Furthermore,
there are advantageous side effects of this approach. One of
them is the ease of augmenting the functionality of the IP
router with such important features as Quality of Service,
flow prioritization and traffic shaping. These additions can
be achieved by using a weighted round robin modification
of the Rotating Crossbar algorithm. This can be done sim-
ply by allowing different ports a weighted amount of differ-
ing time with the token.

4.5 Deadlock Avoidance

While starvation can be overcome by using more com-
plex macro-patterns proposed in other algorithms, another
far more dangerous problem of deadlocking the static net-
work is solved with this algorithm. The deadlock can oc-
cur when the data-flow between the Crossbar Processors
forms a loop, and the static networks are not scheduled
properly. However, the described algorithm can not dead-
lock the static network, because it only allows non-blocking
crossbar schedules carefully generated at compile time (see
further on for more information).

5 A Distributed Scheduling Algorithm for
the Rotating Crossbar

This section introduces a distributed scheduling algo-
rithm for the Rotating Crossbar, and explains how the con-
straints on the memory system of the Raw processor influ-
ence on the implementation, and show a minimization of
the configuration space made in order to fit the code in a
tile’s local instruction memory. This section also describes
the timing of the algorithm at run-time, as well as the pro-
gramming techniques used on the Crossbar Processors.

5.1 Defining Configuration Space

In the current router layout there are four input ports
sending to four output ports, as shown in Figure 3. There-
fore, assuming that the input queue can also be empty, and
letting the number of possible token positions be equal to
the number of crossbar tiles, the configuration space can be
defined as

SPACE = |Hdr0| × ...× |Hdr3| × |Token|,
where|Hdr0| = ... = |Hdr3| = 5,
and|Token| = 4,
which gives usSPACE = 54 × 4 = 2, 500
Thus, the necessary number of individual Crossbar Pro-

cessor configurations is equal to 2,500. However, each tile
of the Raw processor has only 8,192 words of local instruc-
tion memory and 8,192 words of switch memory, and stor-
ing the Crossbar Processor code outside of the chip is too
slow for a gigabit router. Therefore, there are approximately
3.3 instructions left per each configuration, which is obvi-
ously not enough. Hence there needs to be an optimization
applied to the configuration space, which would allow us to
implement the router.

5.2 Minimizing Configuration Space

As an optimization of the configuration space we pro-
pose following definition: rather than defining the space
through possible combinations of packet headers and to-
ken owners, we change the focus to enumeratingclients,
or potentialincoming occupants, of a Crossbar Processor’s
servers– static networks connecting a Crossbar Processor
to its outgoingneighboring tiles, as shown in Figure 4.

The meaning of server names is the following: ”out” is
connection from a Crossbar Processor to an Egress Proces-
sor, “cwnext” and “ccwnext” are the clockwise and coun-
terclockwise downstream networks around the crossbar re-
spectively. Correspondingly, the meaning of the client
names is: “in” is the network connecting an Ingress Proces-
sor with a Crossbar Processor, “cwprev” and “ccwprev” are
the incoming networks to a Crossbar Processor from clock-
wise and counterclockwise neighbors.

Fortunately, not all possible configurations are used by
the compile-time scheduler, which allows to decrease the
number of distinct configurations even more. The afore-
mentioned minimization cuts down the number of config-
urations by 78 times and creates a self-sufficient subset of
32 entries. Here, “out”, “cwnext” and “ccwnext” have the
same meaning, as in the previous paragraph. There also
is a specific expansion number of a particular combination
of clients which is necessary to keep track of relative dis-
tances of data sources to a Crossbar Processor (the assembly
code of switch processors of the crossbar needs to be care-
fuly software-pipelined or loop-unrolled in order to avoid

��������������������������������

������������������������������������

��������������������������������

������������������������������������

��������������������������������

������������������������������������

��������������������������������

������������������������������������

	
�����	
�����	
�����	
�����

������������������������������������

������������������������

������������������������

������������������������������������

������������

��
�����
�����
�����
���

����������������������������

������������������������ ���
������
������
������
���

Figure 4. Network connections of a crossbar tile. Each
Crossbar Processor has three incoming (“client”) and three
outgoing (“server”) connections.

the deadlock of Raw static networks), as well as a special
boolean value, which is set to TRUE in case an Ingress Pro-
cessor can not send data in a given configuration.

5.3 Designing an Automatic Compile-time Sched-
uler

In order to simplify code generation of the IP switch, we
built a tool for automatic compile-time scheduling of cross-
bar configurations. The idea of this scheduler is a sequen-
tial walk starting from the master tile downstream across all
crossbar tiles and filling in reservations for inter-crossbar
and crossbar-to-output static network connections. When
the reservations are fully filled with IDs of requesting cross-
bar tiles, there is another simplificaion pass implemented
in accordance with the aforementioned space minimization.
The resulting schedule is then converted to Raw assembly
by the third pass.

5.4 Programming the Tiles of the Rotating Cross-
bar

Each of the Raw tiles looks very much like a MIPS
R4000, and the instruction sets of these two processors are
also similar. The compute processor code is programmed
with the use of software pipelining: the compute processor
of the crossbar tile computes the address into the jump ta-
ble of configurations while the switch processor is routing
the body of the previous packet, then receives a confirma-
tion from the switch processor stating that the routing is fin-
ished, reads the new set of headers and loads the address

of the configuration into the program counter of the switch
processor to immediately route the current body.

The second Raw static network, as well as the dynamic
network, have not been used in the algorithm. As it was
mentioned earlier, the addition of the second static net-
work to the system does not improve the performance of the
router because of the limiting factor of contention for output
ports rather than insufficiency of inter-tile bandwidth.

6 Results and Analysis

This section describes the results of our work – the peak
and aggregate performance of the Raw Router compared
to the Click router [9, 7], which is a sofware router imple-
mented on a general-purpose processor. The section shows
that we have achieved the goal of building a multigigabit
router on Raw. This section also studies the efficiency of
the current implementation and explains the utilization of
the Raw processor on a per-tile basis. The analysis also sug-
gests a general approach to obtain the maximum utilization
of the router.

6.1 Peak Performance

Figure 5 demonstrates the peak performance compared
to the Click Router. The performance of the router built on
Raw general-purpose processor is two orders of magnitude
better than the results obtained on Intel general-purpose
processors making Raw general-purpose processor a viable
candidate for networking applications.

6.2 Average Performance

Figure 6 shows the average performance compared to the
Click Router. Note that the average performance is only
about 69% of the peak performance due to the contention
for output ports. It is also important to notice that these
results are observed under complete fairness of the traffic.

6.3 Efficiency Study

There are several factors which contribute to the growth
of performance when using larger packet sizes, but the most
important one of them is certainly the relative amount of
time that the static network is kept busy. In order to achieve
better performance of the algorithm it is needed to decrease
the processing overhead by spending less relative time in
the compute processor and more on streaming data through
the Raw processor networks. To see that this is true, let us
take a look at Figure 7, which shows the utilization of the
Raw processor when routing 64- and 1024-byte packets.

When routing 64-byte (the top of Figure 7) and 1024-
byte (the bottom of the figure) packets, gray on tiles 4, 7, 8,

Figure 5. Peak Raw Router performance.

Figure 6. Average Raw Router performance.

and 11 means that the input ports are blocked by the cross-
bar. The top graph shows that Raw utilization is consider-
ably lower for smaller packet sizes than for bigger packet
sizes. It is possible to get close to Raw static network band-
width limit when routing larger packets.

7 Future Work

This section decribes the future improvements that we
are planning to add to the existing router, including new
designs pursuing full utilization of the Raw processor, the
implementation of the IP route lookup on Raw, the issues of
scalability and support of multicast traffic in the switch fab-
ric, flow prioritization to deploy Quality of Service, as well
as the application of the current router layout for routing in
low earth orbit satellite systems.

Figure 7. Utilization of the Raw processor on a per-tile
basis. The top graph is for 64-byte packets, and the bot-
tom graph is for 1,024-byte packets, both plotted for 800
clock cycles. The numbered horizontal lines correspond to
Raw compute processors. Gray color means that a compute
processor is blocked on transmit, receive, or cache miss.

7.1 Implementing IP Route Lookup

The previous sections described the solution to the prob-
lem of switching, but there still remains an issue of route
lookup. We would like to look at various lookup algorithms
with the hope of being able to support enough routes to
compete as a core router, such as the one given in [4]. To
be able to do this, one or several tiles per input port will act
as the route resolving entities. While network processors
deisgned to do route resolution are multi-threaded, the Raw
architecture is not multi-threaded, but its exposed memory
system allows for the same advantages as a multi-threaded
architecture. This main advantage is the ability to get work
done while the processor is blocked on external memory
accesses. On the Raw Processor, memory is simply imple-
mented in a message passing style over one of the dynamic
networks. Typically when accessing RAM with loads and
stores, the cache is backed in a write-back manner by main
memory, which is accessed by a small state machine that
generates and receives messages on the memory dynamic
network. If the programmer wants to use the system in a
non-blocking nature, dynamic messages can be created and
sent to the memory system without using the cache. Thus
this provides the same advantage of non-blocking reads that
a multi-threaded network processor provides.

7.2 Scalability

The work presented here describes an architecture for a
4-input 4-output port router. While this is a good starting
point, one goal of this research is to also examine larger
configurations. The Raw architecture itself was designed
to be a scalable computational fabric, and this is the route
that will be needed to be followed to build a scalable router.
Building this larger fabric of processors is as simple as glue-
lessly connecting multiple Raw chips in a two dimensional
mesh grid. One solution is simply to build a larger router
out of multiple of these small 4-port routers, or at least out
of multiple 4-port crossbars.

8 Conclusion

The presented work shows that efficient routing can
be done on the programmable static network of the Raw
general-purpose processor. The results demonstrate that a
4-port edge router running on a 420 MHz Raw processor is
able to switch 5.5 million packets per second at peak rate,
which results in the throughput of 45.2 gigabits per second
for 1,024-byte packets, suggesting that it is possible to use
the Raw Processor as both a network processor and switch
fabric for multigigabit routing. Mixing computation and
communication in a switch fabric lends itself to augment-
ing the functionality of the router with encryption, compres-

sion, intrusion detection, multicast routing, and other valu-
able features. The presented Rotating Crossbar algorithm
displays good properties, such as fairness and scalability,
and allows for further improvement by taking advantage of
the second static network of the Raw general-purpose pro-
cessor. It is also naturally capable of accommodating the
implementation of Quality of Service. Therefore, we con-
clude that the Raw processor will be further explored in or-
der to add more of these features.

References

[1] G. A. Chuvpilo. High-Bandwidth Packet Switching on the
Raw General-Purpose Architecture. Master’s thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139,
August 2002.

[2] G. A. Chuvpilo, D. Wentzlaff, and S. Amarasinghe. Giga-
bit IP Routing on Raw. InProceedings of the 8th Inter-
national Symposium on High-Performance Computer Archi-
tecture, Workshop on Network Processors, February 2002.

[3] The Evolution of High-End Router Architectures: Basic
Scalability and Performance Considerations for Evaluating
Large-Scale Router Designs.White Paper, Cisco Systems,
January 2001.

[4] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small
Forwarding Tables for Fast Routing Lookups. InACM SIG-
COMM, September 1997.

[5] R. Donnan. IEEE Standard 802.5-1989, IEEE Standards
for Local Area Networks: Token Ring Access Method and
Physical Layer Specifications. 1989.

[6] M. Gordon, W. Thies, M. Karczmarek, J. Wong, H. Hoff-
mann, D. Z. Maze, and S. Amarasinghe. A Stream Compiler
for Communication-Exposed Architectures. InProceedings
of the ACM ASPLOS, 2002.

[7] E. Kohler.The Click modular router. PhD thesis, MIT, Cam-
bridge, MA, June 2000.

[8] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb,
V. Sarkar, and S. Amarasinghe. Space-Time Scheduling of
Instruction-Level Parallelism on a Raw Machine. InPro-
ceedings of the Eighth ACM Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, pages 46–57, San Jose, CA, Oct. 1998.

[9] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The
Click Modular Router. InProceedings of the Symposium on
Operating Systems Principles, pages 217–231, 1999.

[10] M. B. Taylor. Design Decisions in the Implementation of
a Raw Architecture Workstation. Master’s thesis, Mas-
sachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, September 1999.

[11] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee,
V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb,
S. Amarasinghe, and A. Agarwal. Baring It All to Software:
Raw Machines.IEEE Computer, 30(9):86–93, Sept. 1997.
Also available as MIT-LCS-TR-709.

[12] D. Wentzlaff, G. A. Chuvpilo, A. Saraf, S. Amarasinghe,
and A. Agarwal. RawNet: Network Processing on the Raw
Processor. InResearch Abstracts of the MIT Laboratory for
Computer Science, March 2002.

